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The application of artificial intelligence (AI) methods to the determination of intramolecular quantum dynamics for multidi-
mensional systems is described. An Al method based on a physically motivated search algorithm and evaluation function 1s
considered. In both the cases of quantum beats and energy “dissipation” the results for the intramolecular vibrational energy
redistribution within an eleven-coordinate model system are shown to be accurate with a considerably reduced number of basis

states.

1. Introduction

The quantum dynamics of the intramolecular vi-
brational redistribution (IVR) of energy poses, 1n
general, a quite difficult problem, because of the large
number of basis states required for the correct mod-
elling of the physical process. For this reason, many
different approaches have been developed for in-
creasing the number of basis states which may be ef-
fectively handled in the computations. Sometimes
physical arguments have been used to limit consid-
eration to only a fe of the degrees of freedom [1].
In other approaches methods such as recursive res-
idue generation [2], partitioning [3], and a gener-
alized moment expansion [4] have been used.

A reduction in the number of basis states to the
subset of dynamically important states i1s an alter-
native method for solving high-dimensional prob-
lems. Recent experimental work has, 1n fact, provided
examples of selective mode coupling among a subset
of states [5]. In the present Letter we use an Al
method to select the states important to the dynam-
ics and to examine convergence properties. Al meth-
ods are particularly well suited to performing the

reduction in basis set size and thus more degrees of

freedom may be considered, thereby contributing to
the study of actual molecular systems.
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We describe a method for applying Al to the treat-
ment of the time behavior of an initially prepared
vibrational state and apply it to an eleven-coordinate
model system. The results from this AI method tend
to converge toward the “exact” results as the number
of basis states generated by the Al method increases.
Examples are given for the cases of quantum beats
and of quasidissipative dynamics. AI methods have
previously been applied to the study of the dynamics
of multiphoton excitation [6] and to the determi-
nation of individual eigenvalues [7]. The basis for
these applications was the use of Al search methods,
as it is here. However, since the present application
is to IVR, the search algorithms and evaluation func-
tions presented here are quite different from those
given previously.

2. Search algorithm and evaluation function

In the IVR problem the probability distribution
function among zeroth-order states is often initiaily
localized and can be represented by a single basis state
or a set of basis states. This probability becomes re-
distributed over some set of final basis states. How-
ever, this set of final basis states over which the
probability 1s distributed is not in general known a
priori. A search algorithm is discussed next for de-
termining the dynamically important basis states and
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Fig. 1. Example of a best incomplete paths search in which two
levels of beam search are performed. The horizontal lines repre-
sent states and the dashed diagonal connecting lines represent
non-zero couplings. The first number above each line is the num-
ber given to the basis state (according to the order in which it is
found 1n the search) and the second number is the evaluation
function for the path leading to that basis state.

followed by a description of the evaluation function
which is used to estimate the importance of each path
in the search process.

The search algorithm, which we have called a best
incomplete paths search, 1s a combination of a ““beam
search” [8] and a *““best-fit seach™ [8]. A beam search
considers all states directly coupled to every incom-
plete path whose evaluation function is above a cer-
tain minimum *!, A best-first search considers only
the most promising incomplete path as determined
by the evaluation function EF for each path (the EF
is described later). An example of the search is given
in fig. 1, in which the horizontal lines represent basis
states with the first number above the line number-
ing the states in the order searched and the second
number giving the evaluation function for the path
to that basis state. The first part of the best incom-
pete paths search involves a beam search for the first
two levels as seen in fig. 1. In the example, every state
directly coupled to the initial state (IS=1) 1s found
and this yields states 2, 3 and 4. The “X” after state
4 represents the fact that the evaluation function for
its path of 0.1 1s below the minimum (0.15 say) used
for this example, and this path 1s thus removed from

*! The minimum is chosen through experience to reduce the
number of states searched without removing states of impor-
tance. A more detailed discussion appears in ref. [9].
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future consideration. The present beam search con-
tinues for one more step and all states coupled to
states 2 and 3 are found (states 5, 6 and 7). Though
the beam search considers many possible choices of
paths simultaneously, 1t necessitates keeping track of
a rapidly increasing list of paths. To avoid main-
taining an unmanageable list of potential paths, a
best-first search i1s then implemented for all future
choices. The beam search 1s utilized for the first two
steps, because poor estimates by the evaluation func-
tion at early steps can cause important paths to be
discounted unless many possible alternatives are
considered.

The best-first search begins at the end of the sec-
ond level of the two-level beam search. In the ex-
ample 1n fig. 1, the path to basis state 5 has the highest
evaluation function (0.7) of the three incomplete
paths leading to states 5, 6 and 7. All states coupled
to state 5 are then found and this yields a path to state
8. There are now three incomplete paths to states 6,
7 and 8, of which the path to state 8 has the highest
evaluation function (0.6). When all states coupled
to this state 8 are found this only gives state 9, which
is a duplicate of state 5. This duplicate state (9) 1s
removed from consideration (marked by “X’) since
it has a lower evaluation function for its path than
the earlier path to state 5 *2. Removal of the new path
to state 9 leaves two 1ncomplete paths to states 6 and
7 for consideration. Since the evaluation function for
the path to state 7 1s greatest, all states coupled to
state 7 are found to vield the paths to states 10 and
11. The best-first search process of considering the
best incomplete path can continue but 1s stopped here
for brevity of presentation.

The states included in the dynamical calculation
are the states for those paths with the best evaluation
function at each step in the best-first phase of the
search. The states along the path are thereby in-
cluded. In the example 1n fig. 1, the path up to and
including state 5 (states 1, 2 and 5) are chosen first.
This is followed by the path to state 8 for which only
state 8 has not been previously chosen. Finally, the
path to state 7 1s included for which states 3 and 7
are new. A new path of states 1s included for each
step 1n the best-first search. The search process 1s

#2 A further discussion of duplicate states and multiple paths to
the same state 1s given in ref. [9].
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stopped when a preassigned number of states for the
dynamics has been chosen.

The choice of an evaluation function in the pres-
ent work was based primarily on several considera-
tions: (a) a high weighting for the most dynamically
important states must be used 1n order to encourage
these states to be accepted first; (b) the calculation
of the evaluation function must be rapid since it has
to be determined many times during the searching
process; (¢) paths should be encouraged to return to
an energy near that of the initial state, reflecting the
role of the uncertainty principle at long times. The
evaluation function given below, motivated by per-
turbative expressions [10], is a heuristic combina-
tion of terms which encourage a return to the imtial
energy region and which still encourage some search-
ing at energies near that of the previous energy level.

The evaluation function used here in the best 1n-
complete paths seach is given by

Vi
EF: V12 1_[ 1 il

. |
i= 22(A13‘34!+1_E-AE‘11+1) ( )

Each factor after the product sign was set equal to
unity whenever its magnitude exceeds unity (again
motivated by perturbation arguments). V;,,, and
AE, ., represent the Hamiltonian matrix element
and energy difference, respectively, between the / and
i+ 1 basis states and AFE, ,,, is the energy difference
between the initial state and state i+ 1. The evalu-
ation function EF gives an equal weighting to AL, ;|
and AE, ;. for each state in the path. The evalua-
tion function estimates the importance of the path
and is a function of the specific path. The search al-
gorithm compares the magnitude of the evaluation
functions for the various states (for the particular
paths), and selects states, and their paths, with the
largest EFs. It does not maximize (in the sense of
setting some derivative equal to zero) the evaluation
function for a given state. Other evaluation func-
tions and search methods were studied and are dis-
cussed in detail elsewhere [9]. (This more detailed
discussion introduces other terms and concepts such
as a goal state and expansion of states.)

After the determination of the important subset of
states by the Al procedure the quantum dynamics of
the system was then determined by full matrix dia-
gonalization of this subset. From the resulting e1-
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genvalues and eigenvectors the quantities of physical
interest were determined.

3. Model system

In the testing of the AI method an eleven-coor-
dinate IVR problem involving a heavy central mass
was examined [11]. The model represents the sys-
tem C,-C,—-M-CD,-C,, where M 1s a relatively heavy
central mass that can act as a barrier to energy re-
distribution in the molecule, and C and D denote
carbon and deuterium atoms [12]. C,, C, and C.
have as effective masses those of CH;, CH, and CD,
respectively. The Hamiltonian for the system is given
by the sum of the Hamiltonians for the left and right
ligands and the coupling term:

H=HL+HR+VLR3 (2)

where ;

)
+ z Df{l_exp[af(ri_r?)]}zr (3)
I=1
12 aG
o=t £ 5[ 7 (0 £ 50 )2
=3 j=23 k
12
+% Z k:‘(”f—r?)za (4)
i=3
cos ¢
VLR=1 m P2P3. (5)

Here, r; and P; are the bond coordinate and mo-
mentum, respectively. The left Hamiltonian, eq. (3),
contains two stretching coordinates and the right
Hamiltonian, eq. (4), contains four stretching and
five bending coordinates as in a methane-like ligand
(but our model system has a reduced C, symme-
try) #3. G, is the Wilson G matrix [13]; G and its
derivatives in eqs. (3) and (4) are evaluated at the

%3 The right Hamiltonian, Hg, in eq. (4) contains ten bond co-
ordinates, for which one of the bending coordinates 1s redun-
dant and linearly dependent on the other four bending
coordinates. The calculations were performed 1n symmetry co-
ordinates which remove this redundant coordinate. Details are
given in ref. [13].
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equilibrium value of the bond coordinates. In eq. (5)
0 represents the fixed enclosed angle between the left
and right ligand (i.e. the C,—M-C angle). The de-
tailed parameters used in the model and a detailed
discussion of its relevance to IVR calculations are
given elsewhere [12].

The approximate separability of the Hamiltonian
into the left and right contributions suggested the use
of a basis set with its elements given by the product
of a wavefunction of a prediagonalized H, and one
ot the normal modes of Hy, the latter found when
the derivatives of the G matrix in Hy are omitted.
H, was prediagonalized because of the high energies
of excitation used for the left ligand. The Al tech-
nique was applied to vibrational energy transfer be-
tween the left and right ligands. The system was
initially “prepared” in a basis state that only had ex-
cess energy in the left ligand and the amount of en-
ergy 1n the left ligand of the molecule as a function
of time was studied.

The A parameter in V;, permits the variation of

the kinetic coupling between left and right ligands in
a way which mimicks changing the central mass M.
The advantage of using 4 instead of actually chang-
ing the central mass is that the frequencies of the left
and right ligands remain unchanged. Thus, a “pure”
mass effect 1s achieved in this model calculation
without the possibility of resonances accidentally
being modified.

4. Results

The Al method described in section 2 is compared
with the “exact™ result, for two different initial states
and masses 1n figs. 2 and 3. These “exact’ results in-
volved large calculations that were still practical with
presently available computers by imposing a simple
energy constraint on the basis states used in the cal-
culation. In order to ‘compare the results of the Al
method with these exact results, the AI search was
constrained to those basis states used in the exact
calculations. These calculations were performed so
as to determine the quality of the AI method, with
the ultimate goal of using the developed technique
without such a constraint on the basis states chosen,
both for this and for other systems. In the present
comparison, m 1n eq. (5) is the mass of carbon. In
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Fig. 2. Comparison of the results for the excess energy in the left
ligand plotted versus the time, with A=0.1655 (mass of Ge). The
solid [ine ( ) 1s the exact result, the dashed line (---) is the
Al result. E; denotes the energy, and E{ the zero-point energy,
in the left higand.

tig. 2, the basis set for this large, exact calculation
consisted of all basis states within an energy of + 1300
cm~! of the initial state, thereby giving 1023 basis
functions. Also, A was set to 0.1655 to represent the
mass of Ge. In fig. 3 twice the mass of carbon was
used giving a A of 0.5, and all basis states within an
energy of =650 cm~' of the initial state were in-
cluded, resulting in a basis set size of 1112 for the
higher energy excitation.

In the exact calculations, the heavier mass system
(fig. 2) displayed vibrational quantum beats, whereas
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Fig. 3. Asin fig. 2 except A=0.5 (twice the mass of C).
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the lighter mass system (fig. 3) showed, instead, a
greater dissipation of energy from the left ligand into
the right ligand. In both cases results from the Al
method are seen to be in good agreement with the
exact results, especially at short times. Even though
the quantum beats case resembles an effective three-
state problem, it involved many basis states for an
accurate description. Thus, 125 basis states had to be
generated by the Al method and used 1n the calcu-
lation of the dynamics in order to obtain good agree-
ment with the exact as given in fig. 2. In a quantum
beats case that resembled an effective two-state
problem 70 states were needed and will be discussed
in ref. [9]. In the dissipative case only 20 states were
generated by the AI method for the plot in fig. 3.
These two situations, quantum beats and dissipa-
tion, represent different dynamical situations and
serve to test the robustness of the present AI method.

5. Discussion

The AI method presented here has several attrac-
tive features for studying IVR problems with many
degrees of freedom. The Al technique can efficiently
identify a subset of thousands of dynamically im-
portant states from a set of a million or more pos-
sible basis states. It should, however, be stressed that
the Al search is performed within the set of basis
states. Thus, it is still important that an intelligent
choice be made for the zeroth-order description of
the problem. Without the use of Al searching, the
determination of the dynamics within a basis of a
million of states 1s beyond the scope of presently
available methods [2-4]. For the examples studied,
the time spent in the Al searches 1s typically only a
small fraction of the total computer time (¢.g. < 1%
for the examples given here) needed to solve the
problem. Furthermore, the computer time for the Al
search scales linearly with the number of basis states
chosen (provided the number of basis states consid-
ered scales linearly with the number of basis states
chosen, as is the case for the present model prob-
lem), but the dynamics scales as a cube of the num-
ber of basis states. Thus, the Al search will be a
smaller percent of the total computer time for larger
problems. Also, the computer time necessary for per-
forming the AI methods on higher energy excitations
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of a molecule is comparable to that at lower molec-
ular energy excitations, provided that the number of
possible states searched by the Al method 1s the same,
even though the total number of available states 1n-
crease exponentially with energy.

In the present Letter a search algorithm and eval-
uation function have been presented, and an Al tech-
nique has been applied to the determination of the
dynamics for two common situations in IVR, quan-
tum beats and dissipation. In the examples given, the
Al search method was able to converge towards and
represent well the exact calculations. The AI method
presented can be readily adapted for use in many
problems, since only the description of the Hamil-
tonian needs to be changed. (A different problem
might involve a different choice of search algorithm
and/or evaluation function.) Thus, the present Al
method is not only promising but can be readily ap-
plied to a range of problems.
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