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An approximately single-exponential decay of an initially prepared non-stationary state can occur in quantum systems even if
there are only a finite number of states. The time scale t of the decay is then much shorter than the recurrence time T of the
system. We describe here a method for calculating the probability amplitude of the non-stationary state, observed on a time scale
y~', by a mean relaxation time approximation. In many cases the resulting decay constant I'(y) is almost independent of 7 for
T <<y~ '« T, and the value found for it in this regime constitutes the actually observed decay constant.

1. Introduction

The exponential decay of a quantum state coupled
to a continuum of states 1s a well-known phenome-
non. Under certain assumptions, e.g., an unbounded
continuum with density p(£) and weak coupling be-
tween the unstable state and the continuum states
with the coupling element v(£) depending only on
the energy E, this behavior can be derived theoret-
ically [1,2]. The resulting decay constant I" 1s given
by the golden rule formula

I' =2n |v(Eo) |*p(Eo) (1)

where E, 1s the mean energy of the initial state, and
we have set 2 equal to unity. However, even in quan-
tum systems with only a finite number of states,
where €q. (1) no longer 1s valid, an approximately
exponential decay can often be observed [3,4].
This quasi-dissipative decay on a time scale 7 is
followed by quantum recurrences on a much longer

time scale 7, related to the non-zero spacing AE of

the spectrum. Such a behavior may occur, for ex-
ample, 1n the case of quantum chaos [5]. More im-
portantly here, 1t 15 also encountered 1n the theoretical
description of intramolecular relaxation processes.
[f, for example, a vibrational/rotational wave packet
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of states 1n an isolated polyatomic molecule 1s ex-
cited optically to a high enough energy, a quasi-dis-
sipative and almost exponential decay of this *“state™
can be observed experimentally [6,7]. For inter-
mediate excitation energies damped quantum beats
are-observed also {6].

The theoretical description of this situation com-
monly starts with a representation of the system in
terms of a large but finite number of zeroth-order ba-
s1s states from which a matrix Hamiltonian H is de-
rived [8]. In this approach the probability of a non-
stationary state decreases initially as 1 —g?#2, ¢ being
the spread 1n energy of the initial wave packet, and
shows the above mentioned recurrences at long times.
An approximate exponential decay in such a finite-
state system 1s, therefore, a phenomenon which oc-
curs at an intermediate time scale. It cannot be de-
rived exactly, but 1s the result of some approximate
phenomenological description.

A direct way to determine the decay constant for
an excited state from the given Hamiltonian H of a
polyatomic molecule would be, in principle, to cal-
culate the time evolution of an initial state |{w{0) >
exphlicitly, using the diagonalized Hamiltonian, and
to fit an exponential function to the decaying part of
1ts occupation probability. In contrast, we seek a
method that avoids the diagonalization and yields
an approximate decay constant in terms of some
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general properties of the Hamiltonian, like the golden
rule formula does in the case of a continuum of states.
In the following we investigate whether the mean re-
laxation time description used successfully for cor-
relation functions in stochastic systems ¥! can provide
a simplified phenomenological approximation for the
intermediate time-scale quasi-dissipative decay 1n fi-
nite-state quantum systems.

2. Theory

In order to separate in the present theoretical de-
scription the expected decay of the non-stationary
inital state |w(0) > from the quantum recurrences,
we assume that the state 1s observed experimentally
on a time scale y ~' (e.g., a radiative time scale). The
probability to remain i1n |w(0) > is then given by

p(t)=|<{w(0) |w(t)> | exp(—7t) . (2)

For y> T ~! the recurrences will be largely damped
out by the exponential in eq. (2), and only the quasi-
dissipative decay will be visible in p(¢). In quantum
mechanics the underlying quantities are, of course,
the probability amplitudes, the one corresponding to
p(t) being given by (w(0)|w(?)) exp(—3yt). The
mean relaxation time (1n our case complex-valued)
of this amplitude i1s given by [9]

()= | <WO)Iw(D)> exp(— 4y dr. (3)
0

Using |w(t) > =exp( —10H?) |w(0) > the mean relax-
ation time can be expressed as matrix element of a
resolvent operator,

t(y)=w(0) | (371+16H) ' jw(0) >, (4)

where | 1s the 1dentity matrix. We have used the
shifted Hamiltonian oH=H—-<{(H) 1neq. (4), (H)
being the mean energy of the inital state,
(HY=<w(0)|H|w(0))>. This shift is useful for the
determination of long-time properties [10]. The
mean relaxation time approximation of the proba-

*1 The quantity called here the mean relaxation time 1s com-
monly used in the field of statistical mechanics, sometimes un-
der different names like /inear relaxation time, Some references
are given in ref. [9].
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bility amplitude 1s a single-exponential description
[9], resulting 1n

p(t)~|exp[ —t/t(y)]|* =exp[ -1 (y)1] (5a)
for the probability 1tself, with the decay constant
I'(y)=2Re(1/7(y)) . (5b)

Eqg. (5a) 1s the phenomenological form for p(¢) that
we are secking. As argued above, this phenomeno-
logical description should reproduce the decaying
part of the probability for y> 7 .

By a suitable choice of basis states, or by employ-
ing a simple unitary transformation, the matrix
Hamiltonian 6 H can always be cast into a form such
that the initial wave-packet is given by the first basis
state, 1.e. where the initial wave packet can be writ-
ten as

1
[@(0) ) =(0) : (6a)
0 denoting the zero vector, and
0 »o”
6H=(v SHB)' (6b)

v is a vector describing the interactions of the initial
state with the remaining states which we denote as
“bath” B, v is its transpose, and o Hg 1s the matrix
Hamiltonian of the bath. Employing eqs. (4) to (6)
we can determine the phenomenological decay con-
stant '(y) to be

I(y)=y{1+e"[(37)°1+8Hz]~'v} . (7)

As can be seen 1n the appendix, eq. (7) reduces to
the golden rule, eq. (1), in the limit y -0, upon using
the continuum approximation for the bath. We note,
in passing, that renormalizations of the golden rule
formula due to tiers of mutually coupled continua
[11] can also be derived tfrom eq. (7).

The qualitative properties of I'(y) for a finite-state
system can readily be investigated with a model of
the Bixon-Jortner type { 3], 1.e. a diagonal (2A/+1)-
state bath Hamiltonian oHg with eigenvalues
E,=AEy+JAE, j=—-M, .., M, and a constant cou-
pling v, i.e. (v),=v. AE, is the energy shift between
the center of the bath spectrum and the mean energy
of the initial state, and AF 1s the spacing of the spec-
trum. For large values of the density p=1/AF this
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Fig. 1. Decay constant I"(y) versus inverse experimental time scale
v in Bixon-Jortner models; parameters: (a) AE=10""', (b)
AE=10"2%(c)AE=10 =3 (d) AE-0; M=2/AE, AEy= }AE and
2 =AE/2n in each case; (dashed line) golden rule value /' =1;
(dotted line) asymptotic behavior I'(y) =y for large y.

model exhibits an approximate exponential decay of
the initial state with the decay constant determined
by eq. (1) [3,4]. The behavior of I'(y) for this model
is shown in fig. 1 for different values of v and of the
spacing AE of the bath spectrum. The parameters AL
and v are chosen in such a way that they lead to the
same golden rule decay constant I', eq. (1), 1n each
case. For large y the experimental damping domi-
nates over the actual decay and, therefore, I'(y)=7
holds asymptotically. For small y the recurrences are
simply superimposed on a decay curve with rate con-
stant 7, thereby leading to I'(y) oc y as asymptotic be-
havior. As can be seen from fig. 1, I'(y) exhibits a
stationary behavior, I'(y) ~I', for values of y be-
tween y~T " '=AE and y~t~'=I". This resuit
demonstrates that the approximation eq. (3) 1s, 1n-
deed, independent of the experimental time scale In
this regime of I"(y), and that the value of I'(») 1n the
stationary regime gives a good estimate for the ac-
tually observed decay constant. For comparison,
curve (d) in fig. 1 shows the dependence of I'(y) on
y in the limit of vanishing spacing, where
r'(y)=y+2n|v|?p holds. As is seen clearly, in the
limit y —0 the phenomenological decay constant I'(y)
goes to a finite value which is given by the golden
rule formula.

In the case of Bixon-Jortner models the numerical
evaluation of eq. (7) is straightforward due to the
use of a diagonal bath Hamiltonian. For a general
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Hamiltonian a method similar to the low-frequency
expansion approach, presented by us recently [10],
can be employed. We can expand the matrix contri-
bution in eq. (7) formally for small 7, 1.e.

ot [D1H8HE] o~ T (=4 anm s (8)

with the generalized moments
U_2n =0 3H5*"V (9)

as expansion coefficients. The y_,, can be obtained
by solving numerically the hierarchy of linear equa-
tions SHgu_,,=n_ ., for the vectors g _,,, with o =0
as starting rhs vector, and evaluating yu_»,= |#_.|".
Using the first two expansion coetficients in eq. (8),
u_, and u_4, one can construct a lowest-order Padé
approx‘mation to I'(y) of the form

Woolp_a )
: 10
(39)°+u_>/n_4 )

Fl(}')=')’(1+

We note that I",(y) provides a lower bound for the
exact I'(y) [10], 1.e. I'\(y)<I'(y).

Although I",(7) is not a very accurate approxi-
mation for I"(7) in the quasi-stationary regime (see
below, section 3), it offers the possibility of deter-
mining approximately the location of the quasi-sta-
tionary regime of I'(y) on the y-axis. The quasi-
stationary regime contains an inflection point in a
log I"(y) versus logy plot. We can, therefore, deter-
mine the experimental time scale y* at which we have
to evaluate our phenomenological approximation
I(y) as the solution of

dz
log I =0. 11)
d(log}')z g (y) y=y* (

For the lowest-order approximant to I'(y), I',(7),
this equation yields

??=2(1+ﬂ—-2)1m\/ﬂ_2/ﬂ_4 : (12)

In our current experience ¥ has usually been a re-
liable empirical estimate for the regime of experi-
mental time scales where I'(y) exhibits its quasi-.
stationary behavior. An intuitive justification for this
result stems from the properties of I',(y). I"'(y) de-
scribes correctly the leading behavior of I'(y) for
small and large values of y, i.e. I'(y)=(1+u_,)y and
I'(y) =7, respectively (cf. fig. 1 above and fig. 2 be-
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low). The plateau or pseudo-plateau regime of 1'(y)
connects those asymptotic regimes. Since /' (y) also
interpolates between those asymptotic properties, it
will have an inflection point y¥ in this plateau-like
region and, so, may give a reasonable estimate for y*.

The actual decay constant can then be obtained by
evaluating I'(y¥). The best way of obtaining the lat-
ter numerically is comparable to the procedure for
determining the generalized moments [10]: the lin-
ear equation

[(3y¥)?1+0Hi [x=v (13)

is solved for x and, via eq. (7), the actual decay con-
stant 1s obtained from

reyy)=ril+ex). (14)

The term in parentheses 1s usually much larger than
unity.

3. Example

We have employed the technique introduced above
to approximate the quasi-dissipative decay of a high
energy excitation 1in the model molecule
C.-C,-M-CD,-C_, where M represents a heavy mass
barrier (Si in this case) for the energy transfer be-
tween the lhs and the rhs of the molecule, and C,, C,,
and C. have masses of CH;, CH, and CDj, respec-
tively [12]. The basis set employed for the analysis
was determined by an artificial intelligence approach
that selects those zeroth-order states that are impor-
tant for the time evolution of the particular initial
state for the given Hamiltonian [13]. In fig. 2 the
beharior of I'(y) is shown for a 15-quantum exci-
tation of a lhs anharmonic normal mode 1n the mol-
ecule [12]. An almost stationary behavior of I'(y)
in the range 10> <y <7X 107" au can be seen. The
approximate experimental time scale for the quasi-
stationary behavior of I'(y) is y¥=1.4X 10~ au for
this case, resulting in I"(y*) =4.1 X 10~* au. The lat-
ter value is very close to the actual average value of
I’ in the plateau regime, which is about 4.5 10—*
au. The single-exponential approximation, €q. (35),
for the decay of p(¢) following from this value of
I'(y*) is compared with the exact behavior of p(¢)
in fig. 3. It is seen that our approximate decay con-
stant I"(y*), eqs. (13) and (14), gives a good de-
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Fig. 2. Quasi-dissipative behavior in the heavy mass barrier
problem (see text): (solid line) decay constant I"(y) versus in-
verse experimental time scale y; (dashed) first-order approxi-
mation I ;(¥), eq. (10); the dotted line denotes yT.

scription of the apparent decay of p(¢).

For comparison, a heuristic application of the
golden rule formula, eq. (1), is included in fig. 3. For
this purpose we have used for p(E,) the averaged
smoothed density of zeroth-order states in the neigh-
bourhood of the enery of the initial state. This choice
for p(E,) is often possible, since the smoothed den-
sity in this energy regime shows little variation. Since

probability p(t)

T ——

time (ps)

Fig. 3. Quasi-dissipative behavior in the heavy mass barrier
problem (see text): (solid line) exact p(¢) for the 15-quantum
excitation; (dashed line) single-exponential description with
C(y*); (dotted line) approximation based on a heuristic evalua-
tion of the golden rule formula (see text).
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the couplings in the present model are sparse and the
magnitude fluctuates strongly, the same approach 1s
not possible for the coupling element contribution to
eq. (1). Instead, we have used for |v(E;,)|* an av-
erage squared coupling element, determined by av-
eraging over the states directly coupled to the initial
state. It is seen from the results presented in fig. 3
that the heuristic golden rule interpretation we use
overestimates the real apparent decay constant.
There is always a certain arbitrariness in applying
formulas such as eq. (1) to systems with discrete
states. It may well be possible to choose other inter-
pretations of eq. (1) that underestimate instead of
overestimate the real decay constant, or, perhaps,
even give a reasonable result for the particular case
discussed above. This arbitrariness formed part of
the reason for the approach presented in section 2.

4. Discussion

An approach has been presented here for the ap-
proximate description of quasi-dissipative behavior
in finite-state quantum systems. Approaches that lead
to golden rule type formulas have the disadvantage
that the assumption of a continuum of states has to
be introduced at one level or another [1,2,11]. This
assumption can lead to difficulties when such for-
mulas are applied to quantum systems with a finite
number of discrete states in the practical treatment
of quantum dynamics of molecules. The heuristic
application of the golden rule formula eq. (1) 1n sec-
tion 3 provides an example for this problem. The
present approach presents one way of overcoming
this difficulty by introducing an apparent decay con-
stant that depends on the experimental time scale tor
the observation of the system 1n question, and then
determining at which experimental time scale the
apparent decay constant should be evaluated.

The example in section 3 demonstrates that the
present approach can be used successfully for the de-
termination of the approximate decay constant for
a quantum state. However, this approach 1s not fool-
proof. For example, we encountered one case that
exhibited multiple quasi-stationary behavior of /(7).
In such a case the present approach can fail since the
wrong plateau may be selected.

A perhaps surprising by-product of the present re-
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search is the result that a heuristic application of the
golden rule formula still gives a relatively good re-
sult for decay constants, correct within an order of
magnitude. The choice of which method to use tor
the actual determination of an apparent decay con-
stant depends then on the desired accuracy. Natu-
rally, the method presented here 1s numerically more
demanding than the simplified approach based on
eq. (1). However, an important advantage of the
present approach is that it 1s model-independent, in
the sense that the specific structure of the Hamuil-
tonian is irrelevant for the application of the method.
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Appendix

In the continuum approximation eq. (7) has the
form

() =1+2 | 4B s 10(E) (B |

(37)*+(E-E,
(Al)

where we have assumed that the bath Hamiltonian
is diagonalized and that the coupling depends on the
energy only. The first term in the integral of (Al) 1s
a representation of the J-function [2], 1.e.

lim —— =nd(x) . (A2)

By using this relation eq. (1) follows immediately
from (A1) in the limit y—0.
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