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In this article we describe recent research of our group on the rate constants and the distribution of quantum states of the reaction
products of unimolecular dissociations and on methods to treat intramolecular dynamics. Connéctions among various transition state
type theories are also discussed.

1. Introduction

In the present paper some recent work of our group is
described on specific rate constants kz; of unimolecular dis-
sociations for reactions with flexible transition states (Sec. 2)
and on the distribution of the quantum states of the reaction
products (Sec. 3). The systems considered are those for which
there is no potential energy barrier for the reverse reaction
of recombination. The relationship between several transi-
tion state (TS) theories for the rate constants is discussed in
Sec. 4. In a concluding section (Sec. 5) several approaches
to the topic of intramolecular dynamics are summarized.
The methods in Sec. 5 are based on a generalized moment
expansion, a partitioning, and an artificial intelligence
method.

*) Contribution No. 7633.

2. Unimolecular Reaction Rate Constants kg;

The rate constant for a unimolecular dissociation or 1S0-
merization of a molecule at a given energy E and total an-
gular momentum quantum number J is given in RRKM

theory by [1]

, (1)

where N, is the number of quantum states of the transition
state at the given E and J, and gg, is the density of states
of the parent molecule, determined by state counting, taking
vibrational anharmonicity into account when practical.
NZ; can be determined variationally, from the minimum 1n
a plot of N, (R) versus some reaction coordinate R [2]. The

Ber. Bunsenges. Phys. Chem. 92, 209 —212 (1988) — © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1988.
0005 —9021/88/0303 — 0209 § 02.50/0

Bei den in dieser Zeitschrift wiedergegebenen Gebrauchsnamen, Handelsnamen, Warenbezeichnungen und dgl. handelt es sich hdufig um
gesetzlich geschiitzte eingetragene Warenzeichen, auch wenn sie nicht als solche mit ® gekennzeichnet sind.



210

R. A. Marcus: Intramolecular Dynamics and Unimolecular Reactions

main task, given any potential energy surface for the dis-
sociating molecule, is to calculate this Ng,(R).

Simple analytic models can be used when the transition
state (TS) 1s “tight” or “loose”. In the intermediate case the
state counting for Ny, is more difficult, because of the highly
coupled nature of the hindered rotational-overall rotational
motion in the TS. In principle, at each R one could solve
the relevant Schrodinger equation for the nuclear motion to
obtain the energy levels, and so obtain Nz,(R). We have
adopted instead the following procedure [3,4].

The degrees of freedom are classified into two groups: (i)
the “conserved” modes, for which the motion in the TS is
similar to that in the parent molecule, as for example, certain
vibrations which only undergo some change of vibration
frequency during the reaction; (ii) the “transitional modes”,
which undergo a considerable change in the nature of their
motion. For example, the rocking vibrations of the sepa-
rating fragments of a dissociation become hindered and sub-
sequently free rotations of the products. Also included in
the transitional modes are the overall rotations, since they
are strongly coupled to the other rotations. Ng;(R) at any
R 1s then given by a convolution of the number of states
N,(E — ¢) of the conserved modes and the density of states
0,(¢) of the transitional ones at that R:

E
Nes = N(E—z)o,(e)de. (2)

A quantum count was used for the N,(E — ¢), while g,(¢)
was expressed 1n terms of the corresponding classical phase
space integral. Initially, to facilitate the imposition of a con-
stant total angular momentum quantum number J in a mi-
‘crocanonical ensemble, action-angle variables were used to
treat the transitional modes [3], modes which were, for the
case of two polyatomic fragments, typically six in number
[3,4]. Later, a constant J was achieved using conventional
coordinates [4]. A simple Monte Carlo importance sam-
pling was also introduced, particularly effective for transi-
tion states which were close to being loose [4]. The calcu-
lation of each kg, for a given E and J was easily programmed
and required little computer time, about 10 to 15 minutes
on a VAX 11/780 [4].

Quantum corrections for the transitional modes, for ther-
mally averaged kg,’s, were calculated using a Feynman path
integral method and found to be negligible for the system
studied: 2CH;— C,H¢ recombination at 300°K to 2000° K
[5]. Application of a Wigner-Kirkwood perturbation for-
mula gave similar results [5].

3. Distribution of Quantum States of Products

Two of the treatments of the products’ distribution of
states have been phase space theory (PST) [6] and the adi-
abatic channel model (ACM) [7]. The former assumes a
loose transition state (free rotations) and has been useful in
predicting the distribution of states of the products of uni-
molecular processes which have no barrier for the reverse
reaction of recombination. However, many examples exist
where PST yields too high a rate for the reverse reaction
and hence too high a unimolecular dissociation rate con-

stant kz; [8]. The experimentally observed slower rate can
be understood in terms of the Ng,;(R) in the TS being less
than would be predicted by PST: The rotational motion of
the fragments 1n the TS i1s frequently somewhat hindered,
rather than being free as postulated in PST, and so has more
widely spaced energy levels and hence a smaller number of
states Ny;(R™). (R™ denotes the position of the TS.) Two
methods which incorporate hindered rotations in the TS are
the adiabatic channel model (ACM), which is a microca-
nonical version of vibrationally-adiabatic TS theory [9],
and RRKM theory [1].

RRKM theory was designed to calculate rates. To use it
to calculate the products’ distribution of states it is necessary
to mtroduce some dynamical approximation for the motion
in the exit channel after passing through the TS. We restrict
our attention to the case where the reverse reaction of re-
combination of the fragments has no potential energy bar-
rier. |
It will be recalled that when the TS is “loose”, as in PST,
there 1s only a radial interaction between the two fragments
In the vicinity of the transition state. The TS of PST occurs
at a value R, of the reaction coordinate where the radial
interaction force just balances the centrifugal force. The lat-
ter, in turn, depends on the orbital angular momentum
quantum number [. In PST the internal state distribution of
the reaction products (R = o0) i1s given by the statistical dis-
tribution in the loose TS (R = R)).

On the other hand when the rotations of the fragments
in the TS are hindered, they are coupled to I, which is no
longer a good constant of the motion in the vicinity of the
transition state. J, its projection, and E remain good con-
stants. In RRKM theory the TS involves an R* which de-
pends on J and E and so involves an ensemble of I’s, rather

- than there being (as in PST) a separate TS for each .

Elsewhere, we have described a dynamical approximation
for predicting the quantum state distribution in the frag-
ments, imncorporating RRKM theory in the process [10]: the
conserved modes were treated as vibrationally-adiabatic
(VA) between R™ and R = 0. Since in a VA approximation,
no state 1s reflected during its flow from R* to oo, the dis-
tribution of quantum states for the conserved modes in the
products at R = co is the same as that in the TS at R*. The
latter distribution was calculated statistically. Given this dis-
tribution, that of the transitional modes was then calculated
assuming them to be determined statistically at R;. It was
assumed, thereby, that they are nonadiabatic between R™
and R,. The transitional modes are typically expected to be
low frequency modes at the R’s involved and so to be sus-
ceptible to nonadiabatic effects, much as rotations are in
collisions. The details of the formulation are given elsewhere
[10].

The net result of the treatment is to yield a predicted
rotational state distribution of the products which is the
same as that of PST, when the energy of the products is
insufficient to excite them vibrationally [10]. Differences
from the state distribution of PST occur at higher energies
[10].

Some similar results have been found experimentally: for
energies insufficient to excite the products vibrationally

[11]. Wittig and coworkers indeed found good agreement
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with PST for NCNO decomposition, as did Moore and
coworkers at this meeting for CH,CO dissociation [12]. The
NCNO results for higher energies showed small deviations
from PST, and these have been discussed [10,117. Quali-
tatively they are in a direction consistent with the present
model and we are currently exploring them quantitatively.
Results for H,O, dissociation using the fifth OH overtone
excitation of H,O, by Crim and coworkers showed reason-
able agreement with PST and ACM [13]. (Results with the
fourth overtone require additional thermal excitation for the
dissociation, thus introducing some additional complexity

in the interpretation.) Comparisions with ACM and PST
were described [13].

4. Various TS’s and the Dynamical TST

Since there exist various types of TS theory (TST, such
as PST, VA theory, ACM, RRKM theory, an adiabatic-
statistically adiabatic theory) it is useful to note here the
relationship of some of them to Wigner’s classically-derived
transition state theory [14], and thereby to each other. It
will be recalled that Wigner showed that given an equilib-
rium statistical ensemble in phase space for the reactant(s),
a classical mechanical transition state theory could be de-
rived dynamically, rather than merely postulated ad hoc. In
particular, he showed that if a hypersurface, positioned be-
tween reactants’ and products’ portions of phase space,
could be found such that no trajectories emanating from the
reactants recrossed that surface, that none emanating from
the products recrossed it, and finally that none emanated
from the hypersurface itself without reaching reactants or
products, 1.¢€., if all of this hypersurface were effectively used
for reactive trajectories, a classical mechanical transition
state theory would follow rigorously from the classical dy-
namics, given an equilibrium ensemble for the reactant(s).

One particular approximation in some TS-type theories
1s to assume that the above critical hypersurface in phase
space 1s for the given J and E one with a specified value of
a coordinate, which we will designate by R = constant; the
“constant” depends on J and E. This hypersurface corre-
sponds to the R for which Ng,(R) is a minimum [2,15,16]:
the flux for motion from the reactant(s) to the products along
some reaction coordinate R is proportional to Nz,(R) [17].
Suppose that this Ng,(R) has a minimum at some R =R7*.
For R’s on the parent molecule’s side of R7”, the situation
that Ny;(R) exceeds Ng,(R™) corresponds classically to tra-
jectories starting from that molecule’s side of R* and re-
crossing each R (for R < R”™) more than they recross R”.
Similarly, the Ng,(R) being greater than Nz, (R*) for
R > R™ corresponds to trajectories starting from the sep-
arated fragments and recrossing that R more than they re-
cross R”. Thus, for R = R7, there is the least recrossing of
the hypersurface R = constant, and so one obtains the clos-
est approximation to Wigner’s choice of the hypersurface,
for the case (for the given E and J) of a coordinate hyper-
surface. This approach is also frequently referred to now as
variational TS theory and has been used both microcanon-
ically and canonically (given temperature 7). In the can-
onical case, R™ depends only on 7.

To consider further the relation between Wigner’s clas-
sically-derived TS theory and some of the others it is useful,

first, to recall the connection between quantum and classical
variables. Semiclassically, it will be recalled, in one dimen-
sion a quantum state corresponds to a particular value of
a classical momentum — the action variable — and to a
unmiform range (27 or 1, depending on the definition) of the
canonically conjugate coordinate, the angle variable [18].
For N dimensions each quantum state has a specified value
for each of the N action variables. In phase space theory,
where [ is a good quantum number and the R™ depends on
[ as indicated earlier (denoted by R;), the critical hypersur-
face 1s the one which gives this functional relationship be-
tween R and an action variable [ and is independent of all
other coordinates and momenta. In RRKM theory it de-
scribes, instead, a functional relationship R” (J) between R
and J for the given E.

We consider next the vibrationally-adiabatic (VA) TS the-
ory [9], and denote the totality of quantum numbers for
each state by n (which includes J). The transition state value
of R, R” (n), corresponds to the maximum energy E,(R) in
a plot of the energy of this quantum state n vs. R. Thus, the
critical hypersurface here 1s the one giving this functional
relationship between R and n, and i1s independent of the
remaining vanables (the angle variables and the momentum
conjugate to R). At first glance such a hypersurface might
appear to be more general than one which merely yielded
an R(J). However, because of nonadiabaticity there can be
extensive transitions between the VA states during the mo-
tion along R (e.g., at vibrational-rotational “avoided cros-
sings”) and the apparent generality of VA theory then dis-
appears. Adiabaticity in the vicinity of R™ would be ex-
pected to be more valid for the conserved modes, especially
the high frequency ones or the less interactive ones, than for
the transitional modes.

5. Intramolecular Dynamics

When an isolated molecule is excited in some manner, for
example, vibrationally via a high OH or CH overtone, or
vibronically, by some laser pulse, the ensuing time-evolution
of the vibrational-rotational motion 1s of particular interest.
In principle, it can be described in terms of eigenvalues and
eigenvectors of the relevant Schrodinger equation for this
nuclear motion. For the higher energies, such a description
1s not practical. Its level of detail is also considerably more
than that provided by the relatively few time constants ex-
perimentally measurable from the evolution. In this section
several recent approaches in our group to this problem of
intramolecular dynamics are described, each intended to
simplify the treatment of the time-evolution [19—22].

In one method [19] some appropriate basis set is intro-
duced for the nuclear motion for the case that only a rela-
tively small number of basis set states desribe the dominant
initial or final states, with the remainder never building up
a significant concentration during the time-evolution [197.
A steady-state treatment of the latter then yielded a result
which we subsequently obtained also with a partitioning
argument [19]. This method i1s complementary to two oth-
ers we have explored, summarized below, and indeed can
be combined with them. |

In one of these the low-frequency behavior is obtained

. from moments of reciprocal powers of an energy-shifted
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Hamiltonian, in the case of vibrational quantum beats or,
in the case of dissipative behavior, by introducing also an
experimental “decay” time, and varying the latter to obtain
an extremum in the calculated relaxation time [20]. High
frequency properties were obtained from an expansion In
positive powers of the Hamiltonian. Details of the method
and various results obtained with it are described elsewhere
[20,21]. '

+ A third method which we have formulated for this prob-
lem involves the use of an “artificial intelligence” (Al) ap-
proach [22]. An Al method had been used by several au-
thors to treat a state-to-state multiphoton absorption [22],
and we have found that we could use a related method for
treating this intramolecular energy redistribution problem.
We have applied 1t to both an oscillatory case, where there
were quantum beats, and to a dissipative one [22]. Partic-
ularly in the latter, there are many acceptable final states,
rather than just one, which distinguished the treatment from
a particular multiphoton application [23]. The present cal-
culations reduced enormously the number of states needed
to describe the phenomenon of intramolecular dynamics for
the various cases treated. We are further exploring their
application to actual systems.

It is a real pleasure to acknowledge the support of this research
by the National Science Foundation and to acknowledge the many
cited contributions by the author’s coworkers.
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