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A recent variational implementation of RRKM theory, plus an additional dynamical assumption, is used to calculate the dis-
tribution of quantum states of reaction products of unimolecular dissociations. It is assumed that the “conserved” modes of the
molecule are vibrationally adiabatic after passage through the transition state region, but that the “transitional modes™ are non-
adiabatic until the “loose transition state” region is reached. The rate constants k., themselves are those of RRKM theory, but,
for energies below those needed to vield vibrationally excited products, the phase space theory expression (PST) 1s obtained for
the distribution of rotational states of the products. The product state distribution differs from that of PST when the energy is
sufficient to permit product vibrational excitation. The unimolecular reactions considered are those for which there 1s no potential

energy barrier for the reverse reaction {(recombination).

1. Introduction

Of particular interest 1n the study of the unimolec-
ular dissociations of molecules having a given vi-
brational-rotational energy E are the rate of disso-
ciation and the distribution of quantum states of the
resulting reaction products. Various theories exist in
the literature which attempt to predict both. They
include phase space theory [1], which has had a
number of successes 1n predicting the products’ ro-
tational state distribution, at least at low energies.
Usually, on the other hand, 1ts predicted reaction

rates appear to be too high, because of the neglect of

any hindrance to internal rotation of the separating
fragments 1in the transition state [2]. Alternative
models, which allow for steric hindrance and have

been used to calculate the products’ distribution of

quantum states, include the adiabatic channel model
(ACM) [3,4] and a statistical-adiabatic model [5].
The ACM assumes a vibrational adiabaticity for all
coordinates during the motion of the fragments from
the transition state region to infinity. Additional as-
sumptions, including a universal interpolation for-
mula for the energy levels, are typically added to
simplify the calculation [ 3,4]. A statistical-adiabatic
model [5] assumes adiabaticity for the “conserved
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modes” and a ““statistical adiabaticity” for the others.

In the present paper a theoretical approach 1s de-
scribed which contains any steric hindrance present
in the transition state (RRKM theory) and which
adds a dynamical postulate for the motions along the
exit channel, a new postulate, for predicting the
products’ state distribution. To calculate the rate
constants k., for the unimolecular dissociation of an
1solated molecule of energy E and total angular mo-
mentum guantum number J, the recently described
variational implementation of RRKM theory is used
[6~8], in which the number of states Ng,(R) 1s cal-
culated along a reaction coordinate R, using a quan-
tum count of certain modes and a Monte Carlo count
of the classical-like modes (section 2). (Cf. refs. [4,9]
for earlier usage of the variational criterion itself.)
We next introduce a dynamical approximation for
motion from the transition state (R=R*) to R=co.
For energies below that needed for vibrational ex-
citation of the latter, the predicted distribution of
states of the products proves to be the same as that
of phase space theory, even though the predicted k;’s
can be very different. For energies sufficient to ex-
cite the products vibrationally, differences from the
PST product state distribution occur. The relation-
ship to a treatment of rates and product distribu-
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tions of unimolecular ion dissociations [10] 1s
discussed later.

The present theory aims at providing a benchmark
model for comparison with experimental data on the
products’ state distribution. Only systems are con-
sidered for which there is no potential energy drop
in the exit channel for the dissociation, 1.e. for which
there is no potential energy barrier for the reverse
reaction of recombination. The theory is best tested
with experiments in which the kgz;’s, or kg,’s aver-
aged over some range of J values and the products’
distribution of states are measured for the same mol-
ecule and for the same energy range. Such experi-
ments have been performed for NCNO.
Microcanonical rate constants have been reported
by Zewail and co-workers [ 11] and the products’ ro-
vibrational state distribution has been described by
Wittig and co-workers [12].

2. RRKM theory and kg;

We first summarize briefly the recent formulation
for implementing RRKM theory for unimolecular
dissociations having highly flexible transition states
16,7]. In the transition state the rotations of the frag-
ments can be free or hindered, depending on the po-
tential energy surface and on E and J, and there can
be extensive coupling between these rotations and
the orbital motion of the two fragments at R=R".
Since RRKM theory does not in itself yield predic-
tions of energy distributions of the products, some
additional approximation is needed for the details of
the motion after leaving R, and is introduced in sec-
tion 3.

The RRKM expression for the rate constant kg, 1S
given by [13]

Key =N%J/hPEJ ; (1)

where N%, is the value of Ng,(R) at the transition
state R=R*. R* and N,(R*) are obtained variation-
ally, namely by minimizing the function Ng,(R) ver-
sus R; pr; is the density of states of the reactants at
the given F and J.

In the calculation of N:,(R) the degrees of free-
dom were classified into two types, the “conserved™
and the “transitional” modes [6]. In the former,
usually vibrational, the motion in the transition state

is similar to that in the parent molecule but the vi-
bration frequencies may differ. For the transitional
modes, on the other hand, the motion may change
considerably. In particular, the mutual bending Vi-
brations of the two fragments in the parent molecule
become hindered rotations at R* and ultimately free
rotations at R = co. The orbital modes are coupled to
these rotations and are included in the transitional
modes. For the case in which the two polyatomic
fragments are each non-linear there are, typically, S1X
transitional modes [6,7]: When due account 1s taken
of the role of total angular momentum conservation
in reducing the number of relevant coordinates from
eight to six, there are, for example, the six Euler an-
gles describing the orientation of the fragments [7].

The number of states Ng ;(R) was expressed as a
convolution

E

Nes(R)= | NAE=€) pi(e) de, (2)

0

where N,(E—¢) is the number of quantum states for
the conserved modes when their energy 1s equal to
or less than E—¢; p,(€) is for the given J the density
of states of the transitional modes when their energy
(including that of the R motion) is €. At any R some
of the energy E is “fixed” as potential energy of the
R motion, and so is not available for distribution.
This fact is taken into account in the counting. N,
was obtained by a direct quantum count and the p;
via a Monte Carlo count of the phase space for the
transitional modes. In the process the integral in eq.
(2) was first reduced in dimensionality, since the in-
tegrand (p; itself involves a phase space integral) 1s
independent of a number of the coordinates and mo-
menta. Initially, action-angle variables were used for
the transitional modes [6], and later it was found
that ordinary variables could be used instead [7].
The initial impetus for using action-angle variables
was, in part, to be able to fulfill immediately the con-
servation of total angular momentum.

This calculation of k., proved to be a very simple
one computationally (10 to 15 min on a VAX
11/780) [7]. Quantum corrections for the classically
treated transitional modes were obtained for ther-
mally averaged kg,/s. In the particular example
treated the corrections were found to be negligible

[8].
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3. Distribution of states of the reaction products

The dynamical approximation made 1n this paper
is twofold: The motion of the conserved modes 1s as-
sumed to be vibrationally adiabatic (VA) between
R* and R=oc0. In this VA approximation each state
is presumed not to undergo any reflection in its flow
from R* to oo. The distribution of states for those
modes at oo is then the same as at R*. Given this dis-
tribution at R’ calculated statistically, it is then as-
sumed that there 1s a ready energy interchange among
the transitional modes during the motion along R
from R’ to some value R,, the loose transition state
value of R. These modes are usually of low frequency
between R* and R, and, like rotations in collisions,
are typically expected to undergo easy energy inter-
change. It is assumed that the distribution of states
of the transitional modes is determined statistically
(phase space theory) at R,. Specifically, R; 1s the
value of R where the centrifugal force acting on the
fragments, determined by an orbital angular mo-
mentum quantum number /, just balances the long
range radial attractive force.

Since R* depends only on J and E, while R, de-
pends on /, it could happen for some /’s that R*> R,.
For those I’s we shall still, as a first approximation,
use the same procedure: determine statistically the
state distribution of the conserved modes at R* and,
given that distribution, then determine that of the
transitional modes at R,.

For all modes the quantum numbers (or action
variables) between R, and oo are constants of the
motion, when for R> R, there are no further inter-
actions between the fragments, apart from a radial
one. It is also possible that the interaction among the
transitional modes and the R motion ceases betore
R, is reached. The present approximation for the dis-
tributions is perhaps the simplest (non-adiabatic)
one for comparing with the data. Its assumption that
the motion of the transitional modes 1s non-adi-
abatic between R* and R, distinguishes it from the
vibrational adiabaticity postulated for all modes 1n
ACM [3,4] and from the statistical adiabaticity pos-
tulated elsewhere [5].

We have referred above to a single R, the solution

of
AN, (R*)/OR* =0, | (3)
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in the interests of describing the basic idea in the
simplest way. However, strictly speaking, in a VA ap-
proximation for the conserved modes each state i/ of
these modes behaves adiabatically, and one should
obtain an R* for each such state (i denotes the to-
tality of quantum numbers of the conserved modes).
We follow this procedure, in fact, in eq. (5) below,
and denote that R’ by R!. Instead of calculating
Nz (R) via (2) we obtain N,z,(R), the number of
quantum states of the transition state having the
specified value of i at the given E and J,

E—Ei{(R)

NeAR)= | pie)de. (4)

0

Here, E;(R) is the energy of the ith state of the con-
served modes. In the adiabatic approximation E,(R)
can vary with R at fixed i.

By minimizing N,z,( R) with respect to R the tran-
sition state R=R* is found for each i,

ONg;,(R)/OR=0 atR:Rf. (5)

We denote N,.;(R}) by Nig,;. Eq. (5) recalls an ear-
lier instance where the position of the transition state
varied from state to state [14].

The probability p,., that the conserved modes of
the products are in a quantum state i at R=oo 1s the
same as it is at R}, and so is given by

p:’EJ=NEEJ/ 2 N:EEJ : (6)

With this formalism in which the set of R}’s re-
places a single R* eq. (1) is replaced by

Key= z NEEJ(RD/hpEJ . - (7)

The quantum number i is, in the VA approxima-
tion for the conserved modes, a constant of the mo-
tion in the entire region from R} to co. On the other
hand, / and ¢, the totality of quantum numbers for
the remaining transitional modes, are constants of
the motion only in the region R, to co, 1n our present
approximation. For a given i, the conditional prob-
ability p,x,; that the products at R=oco are in a state
¢ for the transitional modes thus equals the proba-
bility that they are in that state t at R=R, and so 1s
obtained using phase space theory for these modes.
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Specifically, for the given i, p,z;, 1s given by 1ts phase
space theory value plz}; for the given available
energy, '

DiEs.i =pF§'L =Ngs./ Z Nigsi s (8)
f

where the number of states N,z ; in the numerator 1s
the usual phase space theory sum (but for fixed i) in
which the energy of the transitional modes 1n state
t, the energy of the conserved modes 1n state i, the
centrifugal energy and the R-potential energy, all at
R=R,, do not in their sum exceed E, and 1in which
the various triangle inequalities are satisfied [1].
Typically, the energies of the ; and t modes at R, may
be set equal to their values at R=o0. The 7 1n eq. (8)
is intended to represent only the rotational quantum
numbers that are determined experimentally for the
fragments. .

The joint probability p,, that the reaction prod-
ucts are formed in the rotational-vibrational quan-
tum state (iz), for the given E and J, 1s the product

Pites =PiesP:Es,i > (9)

where p;z; and p,z,,; are given by egs. (6) and (8).
For molecules prepared with an energy E there will
be a distribution function p9 for J, the function de-
pending on the mode of preparation. The observed
probability function p,,z for forming product mole-
cules in a state (it) at the given FE is then given by

D= g PIDiEs - (10)

There is one approximation which will sometimes
be made, particularly if there are many states  en-
ergetically accessible at R=co, at the given E. This
added approximation saves some computation.
Namely, instead of determining an R; for each state
i of the conserved modes, a single R* is determined,

“as the solution of eq. (3). The distribution of i states

at this R’ is also the distribution at R=o00. E.g., if the
contribution of state i to N (R) 1s denoted by
N;z,(R) the latter is given by eq. (4), and then eq.
(6) still applies for p,z;, but now Nig, denotes
N..,(R") instead of N,z,(R}). There is one caveat,
however. Even when the total energ E is insufficient
to excite a particular state i for the conserved modes
at R=o00, and so when the *“channel” of excitation i
1s “closed’’ at R=co at that E, this state of excitation

CHEMICAL PHYSICS LETTERS

19 February 1988

i may exist at R*#' because of the energy made avail-
able at R! due to the attractive potential. Because of
the adiabaticity assumed for the conserved modes,
systems in this state i at R* would, however, be re-
flected before reaching R=o0, when the channel is
“closed”’, and so not contribute to p,z;. Thus, for such
i’s theNjz,; in eq. (6) should be replaced by zero
wherever it appears, both in the numerator and 1n
the denominator. This problem does not arise in the
formulation (eq. (5)) in which a different R} is de-
termined for each 1.

Egs. (3-10) are the desired final equations for the
products’ state distribution using the present dynam-
ical assumptions for the motion in the exit channel.

4. Discussion

One alternative dynamical approximation, simple
at first glance, woud have been to assume that the
distribution of states of the reaction products is the
same as the distribution at R*. However, to imple-
ment such a possibility would require either that the
motions at R* be the same as those at co (i.e. sep-
arable) or that there be an appropriate method of
connecting the states at R* with those at oo even
though at R* the coupling (fragment rotational-or-
bital, for example) of the transitional modes may be
very strong. One such way of making the connection
for those modes is the statistical adiabaticity de-
scribed in ref. [5] or the adiabaticity in ACM. In-
stead, we have made in this paper a connection which
incorporates what we believe may be a somewhat
more realistic picture of a non-adiabaticity for the
transitional modes during their motion between R*
and R,. The experiments should resolve this question.

We first compare the above results with those of
phase space theory (PST), which has frequently been
used in comparisons with the experimental distn-
bution of states of the reaction products, e.g., refs.
[10,12,15,16]. The RRKM kg, values themselves will
usually be equal to or less than the PST values, when
there is steric hindrance (or its equivalence, hind-
ered rotations of the fragments) in the transition
state.

#1 T am indebted to Mr. Stephen Klippenstein of this laboratory
for calling my attention to this point.
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For energies below those needed to excite a con-
served vibrational mode in the products, the p;z, ap-
pearing in eqs. (6) and (9) is unity for unexcited !
modes and zero for all i excitations. The distribution
of the states of the products is then determined only
by the distribution at R=R,, and so eq. (10) for p;,z
reduces to the PST value. For higher energies, the
result for p,z will differ from that of PST, since in
the present theory the distribution of the i states, p;g,
in eq. (6), is determined by the behavior at R} (or
R*) instead of at the PST value, R,. It is readily seen
that the conserved modes will now usually be more
vibrationally excited than they would be in PST,
when their vibration frequencies at R, are approxi-
mately the same as that at R*; at R=R" the  modes
are somewhat hindered, and so their energy levels
are more widely spaced than they are at R,. As a re-
sult, the ¢t modes have a smaller share of the excess
energy and so the excitation of the i modes becomes
correspondingly greater than that in PST. (There is

also, usually, more energy available for excitation of

the i modes at R* than at R;.)

An extra predicted excitation of the products’ vi-
brations (the present i modes) was also achieved by
Wittig et al. in a different way, in their modification
(labeled SSE) of PST [12]. In effect, to calculate a
vibrational distribution, they assumed /=constant in
the exit channel and, via their eqgs. (7)-(10), ne-
glected the centrifugal and radial potential. Given
the resulting vibrational distribution they then used
the standard PST theory to calculate the rotational
state distribution of the products for each vibra-
tional state of the latter. They had obtained excellent
agreement between their experimental data for the
rotational distribution of the products and PST where
the products were in their ground states vibration-
ally, but found some deviations from PST for the
products’ rovibrational state distribution at energies

sufficient to excite the products vibrationally. The .

present model offers a different interpretation of the

latter, with trends in the same direction as that of

SSE.

We have seen that two aspects of unimolecular
studies are the rate constants kz; and the products’
state distributions. (A third aspect is, of course, the
question of intramolecular dynamics before reaching
the critical configurations for dissociation.) We have
also seen that the present model will differ from PST

212

CHEMICAL PHYSICS LETTERS

19 February 1988

in the rate constants k, when there are steric effects,
but will agree with it for the products’ rotational state
distribution when the energy is insufficient to excite
the products’ “conserved” vibrational modes. The
ks calculated from ACM can be expected to be
closer to the present kg,’s, at least if the former are
calculated from the actual vibrationally adiabatic
curves, obtained from a potential energy surface. The
products’ distribution of states will, however, difter
from that of the ACM, because of the non-adiabat-
icity assumed in the present model for the transi-
tional modes during motion from R* to R,. It will
also differ from that of a statistically adiabatic model
[5] for the same reason.

In recent experiments on the unimolecular disso-
ciation of CH,CO molecules having a particular en-
ergy, Moore and co-workers found that the
distribution of states of the products agreed with PST
but differed from the ACM predictions or, more pre-
cisely, from a form of ACM which assumes a uni-
versal interpolation formula having the usually
employed parameter range for the ACM interpoia-
tion [ 16]. The experiments were with energies £ suf-
ficient to excite the rotation of the products, but not
to excite the conserved modes (the products’ vibra-
tions). Since the present treatment of products’ dis-
tribution of states agrees with that of PST, 1t agrees
with the results of Moore and co-workers. Compar-
ison of the present formulation with future results at
higher energies, as well as measurement of k:,’s, or
of k,.;’s averaged over some ensemble of J’s, should
prove to be especially interesting.

A related situation, but for the unimolecular dis-
sociation of ions, has been reported by Chesnavitch
et al. [10]: The rates agreed with RRKM theory (in
a form using a tight transition state), but the energy
distribution of the products, in this case the trans-
lational energy distribution, agreed with an “orbiting
transition state theory”’, i.e. with PST. While the de-
tails of the treatment differ (we use a variationally
calculated flexible transition state, classify the modes
as conserved or transitional, and treat their motion
differently as regards the energy distribution) the ex-
perimental and theoretical situation for the 10N1C
system is seen to be similar to that for the neutrals.

As with other models for the distribution of quan-
tum states of the reaction products the present one
is aimed, by comparison with the experimental data,
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at providing further information on the sources of
energy redistribution along the exit channel, as well
as on the question of whether or not there 1s a sta-
tistical energy distribution in the transition state.

As was the case with the kz,’s classical trajectories
could atso be used, in conjunction with RRKM the-
ory at R, to test the utility of the present dynamical
approximation, for various assumed potential en-
ergy surfaces. Typically, in classical trajectory stud-
ies for unimolecular reactions a microcanonical
ensemble of initial states for the parent molecule 1s
used, e.g., as in ref. [17]. Such classical trajectory
studies have permitted, among other things, a test of
intramolecular vibrational energy distribution, which
in turn can influence both the rates and the product
energy distribution (e.g., ref. [18] and references
therein). Instead, in the more restricted use of the
trajectories just mentioned only a narrow subset of
the microcanonical ensemble would be employed,
namely those originating at R=R’, with R>0. The
resulting product energy distribution (or the distr-
bution of classical action variables of the products)
could then be found from the trajectories and com-
pared with that predicted from the present model.

In our current applications the systems and ener-
gies chosen have been such that a suitable reaction
coordinate R has been the fragment—fragment sep-
aration distance [6-8]. The transition state has been
very flexible. However, for higher energies the tran-
sition state determined variationally tends to move
to shorter separation distances, and a different re-
action coordinate might be needed there, for ex-
ample, in some instances at least, the minimum
potential energy path (the “reaction path”). The po-
tential energy function also would have to be appro-
priate to that R region, as Klippenstein in our group
has found in his calculations.

Acknowledgement

It is a pleasure to acknowledge the support of this
research by the National Science Foundation. The
present paper was prompted by participation 1n a
symposium at Grainau, organized by Ed Schlag and
Martin Quack, and I am indebted to them for having
arranged such an interesting conference. I should also

CHEMICAL PHYSICS LETTERS

19 February 1988

like to thank Steve Klippenstein for his perceptive
comments. This is contribution No. 7684 from the
Department of Chemistry at Caltech.

References

[1] P. Pechukas and J.C. Light, J. Chem. Phys. 42 (1965) 3281;
P. Pechukas, J.C. Light and C. Rankin, J. Chem. Phys. 44
(1966) 794.

2] C.J. Cobos and J. Troe, J. Chem. Phys. 83 (1985) 1010;
S.W. Benson, Can. J. Chem. 61 (1983) 881,

W.L. Hase and R.J. Duchovic, J. Chem. Phys. 83 (1985)
3448, and references therein.

3] M. Quack and J. Troe, Ber. Bunsenges. Physik. Chem. 78
(1974) 240;

J. Troe, J. Chem. Phys. 79 (1983) 6017; J. Phys. Chem. 88
(1984) 4375,

C.J. Cobos andJ. Troe, J. Chem. Phys. 83 (1985) 1010, and
references therein.

[4] M. Quack and J. Troe, Ber. Bunsenges. Physik. Chem. 81
(1977) 329,

J. Troe, J. Chem. Phys. 75 (1981) 226; 79 (1983) 6017.

[5]1 R.A. Marcus, J. Chem. Phys. 62 (1975) 1372;

G. Worry and R.A. Marcus, J. Chem. Phys. 67 (1977) 1636;
R.A. Marcus, J. Chem. Phys. 85 (1986) 5035.

(6] D.M. Wardlaw and R.A. Marcus, Chem. Phys. Letters 110
(1984) 230;J. Chem. Phys. 83 (1985) 3462; J. Phys. Chem.
90 (1986) 5383; 91 (1987) 4864; Advan. Chem. Phys. 70
(1987) 231.

[7]1S.). Klippenstein and R.A. Marcus, J. Phys. Chem. 92
(1988), to be published.

(8] S.J. Klippenstein and R.A. Marcus, J. Chem. Phys. 87
(1987) 3410.

[9] R.A. Marcus, J. Chem. Phys. 45 (1966) 2630;

W.L. Hase, J. Chem. Phys. 57 (1972) 730; 64 (1976) 2442,
Accounts Chem. Res. 16 (1983) 258;
B.C. Garrett and D.G. Truhlar, J. Chem. Phys. 70 (1979)
1593.

10] W.J. Chesnavich, L. Bass, T. Su and M.T. Bowers, J. Chem.
Phys. 74 (1981) 2228,

[11] L.R. Khundkar, J.L. Knee and A.H. Zewail, J. Chem. Phys.
87 (1987) 77.

[12] C.X.W. Qian, M. Noble, 1. Nadler, H. Reisler and C.
Wittig, J. Chem. Phys. 83 (1985) 5573;
C. Wittig, 1. Nadler, H. Reisler, M. Noble, J. Catanzarite
and G. Radhakrishnan, J. Chem. Phys. 83 (1985) 5581,
J. Troe, C. Wittig, I. Nadler, H. Reisler, G. Radhakrishnan,
M. Noble and J. Catanzarite, J. Chem. Phys. 85 (1986) 1708.

13] R.A. Marcus, J. Chem. Phys. 20 (1952) 359:43 (1965) 2658;
52 (1970) 1018;
R.P. Robinson and K.A. Holbrook, Unimolecular reactions
(Wiley, New York, 1972);
W. Forst, Theory of unimolecular reactions (Academic
Press, New York, 1973).

[14] R.A. Marcus, J. Chem. Phys. 43 (1965) 1598.

213



Volume 144, number 2

[15] T.R. Rizzo, C.C. Hayden and F.F. Crim, J. Chem. Phys. 81

[16]

214

(1984) 4501,
H.-R. Dubal and F.F. Crim, J. Chem. Phys. 83 (1985) 3863;

T.M. Ticich, T.R. Rizzo, H.-R. Dubal and F.F. Crim, /.
Chem. Phys. 84 (1986) 1508;

L.J. Butler, T.M. Ticich, M.D. Likar and F.F. Crim, J. Chem.
Phys. 85 (1986) 2331.

W.H. Green, 1.-C. Chen and C.B. Moore, paper presented
at the Conference on Intramolecular Dynamics, Grainau,
FRG (Aug. 17-20, 1987), Ber. Bunsenges. Physik. Chem.,

to be published.

CHEMICAL PHYSICS LETTERS

19 February 1988

[17] W.L. Hase, R.J. Duchovic, K.N. Swamy and R.J. Wollf, J.

Chem. Phys. 80 (1984) 714;
T. Uzer, J.T. Hynes and W.P. Reinhardt, Chem. Phys. Let-

ters 117 (1985) 600;
W.L. Hase, in: Potential energy surfaces and dynamics cal-
culations, ed. D.G. Truhlar (Plenum Press, New York, 1981)

p. l.

[18] W.L. Hase, J. Phys. Chem. 87 (1983) 2754.



