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An analysis is made of electron transfer (ET) in a polar medium described by a distribution of dielectric relaxation times, for
the case that intramolecular contributions to the ET are negligible. The generalized moment expansion 1s used for an approximate
multi-exponential description of the non-exponential time behavior of the ET. As an example, ET in glycerol-like solvents 1$
considered, treated by the spatially inhomogeneous model for dielectric relaxation. For this model the ET rate at long times is
found to vary as 75 ', 7o being a dielectric relaxation time parameter, in contrast with a fractional dependence at short times.

1. Introduction

Recent experimental [1-10] and theoretical
[11-27] results have established that ET 1n polar
solvents can depend strongly on the dielectric relax-
ation of the surrounding medium. When 1ntramo-
lecular contributions to the ET are negligible, and
the dielectric relaxation of the solvent around the
donor-acceptor complex is characterized by a single
dielectric relaxation time t (Debye solvent) *', the
time behavior of the ET process is single exponential
[19,21]. This time behavior holds approximately
even in case the barrier of the reaction 1s small. For
the single-exponential time behavior an ET transter
rate constant can be defined unambiguously and 1s
given by

] |
= o—IT, - 1
e(0) ~ K. (1)

where 7 is the longitudinal dielectric relaxation time
of the solvent. I is a numerical factor depending on
the free energy barrier AG* of the reaction [19,21],

' Contribution No. 7688.

* We note, however, that there is recent theoretical and experi-
mental evidence that, although the bulk dielectric properties
of a solvent have Debye form, the local dielectric relaxation in
the vicinity of an ion can be more complicated; see, e.g., refs.
[24-26], and references therein.

1

[ = ln2+2jdx

0

exp[(1 —x°)BAG*] -1
 —x*

~ \/ n/BAG* exp(BAG*) , for BAG™ large .
(2)

B is the scaled inverse temperature, f= (kg7) ~', and
the free energy barrier AG* is related to the standard
free energy AGY of the reaction by AG*=
(AG®—=1,)%/42,, Ao being the reorganization energy
of the solvent [19,21]. The rate constant k. in eq.
(1) 1s the equilibrated ET rate constant,

k.=v,exp(—pAG*) , (3)

and refers to adiabatic as well as non-adiabatic pro-
cesses [11]. The functional form of the pretactor v,
in eq. (3) depends on the adiabaticity of the reaction
[18,19]. Experimentally, the observed rate constant
k. will be k. in the limit of fast dielectric relaxation
of the solvent.

For ET processes with non-vanishing intramolie-
cular contributions the time behavior of the traction
O(t) of non-reacted donors can deviate strongly from
a single-exponential form [19,21]. This behavior 1s
also expected for ET in a medium inhomogeneous
with respect to the dielectric relaxation times [22],
even in the absence of intramolecular contribu-
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tions 2. In such a situation the unambiguous defi-
nition of a (time-independent) ET rate constant 1s
no longer possible. Instead, for a comparison of the-
oretical results with experiment the full complexity
of the time behavior of Q(¢) should be taken 1nto
account in this case.

Recently, McGuire and McLendon [9] have re-
ported results on intermolecular ET 1n solid glycerol
which indicated a fractional power-law dependence
of the ET rate on the dielectric relaxation time, kg
« 17 %% The analysis of their experiment is some-
what indirect since they observed E'T between ran-
domly distributed donors and acceptors, 1.e. they saw
a superposition of many different ET processes, and
inferred a time-independent ET rate constant from
their time-resolved data under the assumption of a
single-exponential behavior for each individual pro-
cess. The dielectric behavior of glycerol deviates
strongly from a Debye form [28], and the deviation
has been considered as deriving from an underlying
microscopic spatial inhomogeneity in the dielectric
relaxation times [22,29]. Rips and Jortner [22] have
shown that under this assumption the short-time rate
constant k.= — (d/dt)Q(t=0) exhibits a fractional
power-law dependence, the exponent being equal to
the exponent governing the distribution of relaxa-
tion times, as in eq. (8) below, having a value of
about 0.6 for glycerol. One expects that the full time
behavior of Q(¢) would be strongly non-exponential.
Subsequently, Heitele et al. [10] reported time-re-
solved measurements of intramolecular ET 1n pro-
pylene glycol, having dielectric properties similar to
glycerol, which showed a strong deviation from a
single-exponential behavior. The short-time rate
constant inferred from their observed Q(¢) again
showed the fractional power-law dependence on 7
with an exponent of about 0.6.

This successful description of the short-time be-
havior of ET in glycerol-like solvents raises the ques-
tion of the time range of the validity of a static model
using a distribution of dielectric relaxation times.
Apart from providing a further check ot that hy-
pothesis on the origin of the dielectric behavior of
glycerol-like solvents, an analysis of the full range of
time-resolved data on ET, particularly near the glass

#2 For a spatially homogeneous medium multiple relacation times
have been treated in an electron transfer context in ref. [27].
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transition, would also provide interesting informa-
tion concerning the glassy properties of these media.
For example, the temperature dependence of the time
range for the validity of the inhomogeneous medium
approximation could give information about the
freezing out of dynamical degrees of freedom near
the glass transition. It should also be noted that the
nature of the microscopic processes giving rise to the
Davidson—Cole behavior of the dielectric spectrum
and to other relaxation processes with similar prop-
erties in glycerol and glycerol-like solvents has ap-
parently not yet been resolved **. The time behavior
of ET is related to this question because of the cou-
pling of ET to the dielectric relaxation.

In the following we wish to provide some theo-
retical tools for a further analysis of time-resolved
measurements. An algorithm 1s given, based on the
generalized moment expansion method [31], for the
approximate description of the non-exponential time
behavior of ET in an inhomogeneous medium, and
is applied to the particular case of glycerol-like sol-
vents. In this Letter we restrict our attention to the
case of ET with a vanishing intramolecular contri-
bution, where the local time behavior of the reaction
can be described by eq. (1). The more complex case
of including a contribution from the intramolecular
degrees of freedom will be treated in a later publi-
cation [32].

2. Theory

The time behavior of a reaction process 1s usually
monitored by observing the fraction Q(¢) of the un-
reacted species at time ¢. In the case of ET, tor ex-
ample, O(¢) is the fraction of unreacted donor-ac-
ceptor complexes. In a spatially inhomogeneous me-
dium, each donor-acceptor has a local solvent en-
vironment with a relaxation time 7, with a probability
distribution g(7) for the latter. The time behavior of
a local reaction process is described by a function
O(t|7) that depends on the actual microscopic en-
vironment through the parameter r. The macros-
copically observed time behavior is obtained by

#3 For a discussion of different points of view and of experimen-
tal results, see, e.g., ref. [30].
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averaging the local function Q(¢|7) over the distri-
bution g(7), 1.e.

0(1)=<QUI D> = | drg() Q1] . (4)

Even when Q(¢|7) is single-exponential eq. (4) can-
not be evaluated analytically, in general, and Q(¢) 1s
expected to be strongly non-exponential. However,
provided the generalized moments [31], i.e. the
short-time moments (#>0)

dH
dr"|

ﬂn=(_’1)”

Q(1) (5a)
=

and the long-time moments (n>0)

S0

b= idrt”"Q(I) (5b)

are finite (and non-zero), and can be calculated an-
alytically or numerically, one can determine a multi-
exponential approximation

Q1) =gqn(t) = _Zl bexp(—4;t) | (6)

to the non-exponential function Q(¢) [33] #. The

parameters b; and A; 1n the N-exponential approxi-

mation eq. (6) are determined from the requirement
that gn(¢) reproduces N short-time moments (5a)
and N long-time moments (5b), as in ret. [31]. An
actual algorithm to determine these parameters from
the moments u_» to uy_, 18 provided in the present
appendix. The degree N necessary for a sutficient ap-
proximation is determined by comparing approxi-
mations of successive degree. If the plot of gy ,(?)
does not change visibly from gn(?), the approxi-
mation 1s presumed to be converged. In our expe-

rience, the convergence is relatively rapid because of

the construction of g,(t) as an interpolation be-
tween short-time and long-time behavior.

We assume in the following that for ET in an 1in-
homogeneous medium the local function Q(¢|7) 1s

#*4 This approach applies to pseudo-first-order reactions with an
exponential long-time behavior. In case of an algebraic long-
time tail Q(¢) ot~ for t—>o0, like, e.g., as in case of second-
order reactions, a modified treatment can be given. The situa-
tion of ET donors and acceptors not forming isolated com-
plexes and donors not 1n excess of acceptors would be such a
case. However, we do not wish to introduce unnecessary com-
plications here.
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given by a single exponential with rate constant
ker(7), eq. (1). In this case the generalized moments
can be determined easily to be averages of powers of
the rate constant with respect to g(7), 1.e.

.un=<[kET(r)]n>'r 3 foralln. (7)

3. Example: ET in glycerol-like solvents

In glycerol, propylene glycol, and other solvents
the data on the frequency dependence of the dielec-
tric constant (Davidson-Cole spectrum [28]) can
be described in one view by assuming there exists a
distribution of dielectric relaxation times [29]

sin(nf)( = F
= for <1y,
8oc (1) =—— (TO_T) , forr<7, (8)

with gpc(7) being zero for 7> 1, the exponent f
having a value of about 0.6 1n the case of glycerol,
and of about 0.66 in the case of propylene glycol. Us-
ing this distribution of relaxation times the gener-
alized moments can be calculated readily from eq.
(7), with the result

n=(ke)"F(n,B;1, —A4) , (9)
where F 1s the hypergeometric function [34] and
A=Ikefg g | (10)

with I given by eq. (2).
For negative values of n the function F 1s given by
polynomials 1n A,

g

F(=n,B;1; —4) = z(z’f)(ﬂ)p’—g— (n>0), (1)

=0

where () 1s a binomial coefficient and (f), 1s
Pochhammers symbol [34],

(B)y=pB+1).(f+v-1),

with (8)o=1. For positive values of »n the functional
form of F in eq. (9) can be determined by succes-
sively using Gauss’ recurrence relations [34],

F(n+1,p8;1; _A)::n(l}l-A)
X{[n(2+A4)—-(1+p4)]F(n,B;1; —A)
—(n—=1)F(n-1,8,1, -4)}, (12a)
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with
F(O,6;1;, =A)=1 (12b)
and
F(,8,1; =A)=(1+A4)"* (12¢)

as starting values. Specifically, the lowest-order short-
and long-time moments are

=k (1+4) 7%, (13a)
s=k 4 (13b)
po=ks ' (1+p4), (13c)
U_>=kI2[1+284+LB(B+1)4%] . (13d)

For A< 1 the time behavior of Q(¢) is approxi-
mately single exponential with a relaxation time given
by u_,. This result can also be seen from the fact that
all moments can be approximated, correctly up to
firstorderin A4, by u,,~ (k.)"(1 +£A4)", which has the
functional dependence on »n expected from a single-
exponential behavior of Q(¢). The non-exponential
behavior becomes pronounced for A>1. In fig. |
the results for the non-exponential time behavior of
Q(t) using the method of section 2 are shown for
A=10 and for A=100. The value of £ used was 0.6.
The multi-exponential approximation was consid-
ered converged for N=3 and N=35, respectively.

For comparison, and in order to demonstrate the
deviation from a single-exponential behavior, we
have included 1n fig. 1 several one-exponential ap-
proximations. The short-time approximation

gs(1) = exp(—kst) , (14a)
with
ks =ﬂ1 (14b)

is equivalent to the approximate description already
discussed by Rips and Jortner [22]. Fig. 1 shows that
this approximation is useful at sufficiently short
times. Its range of validity, which decreases with 1n-
creasing values of A, i.e. for increasing 7, can be-
come quite small at large A4, as 1s demonstrated in fig.
1b. The long-time approximation

gv(t) =qu(0) exp( —1/1y) , (15a)
with
Ty =M1_2/l_, (15b)
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Fig. 1. Surviving fraction Q(t) versus time for A=10 (upper)
and A=100 (lower): the Davidson-Cole exponent 1s §=0.6;
(dotted) short-time approximation, egs. (14); (dashed) long-time
approximation, eqs. (15); (dash-dotted) mean relaxation time
approximation, eq. {16).

and

g(0)=(p_1)*/u_; (15¢c)

reproduces the first two long-time moments (5b) of
the exact function Q(t). As fig. 1 shows, it provides
a reasonable approximation of the exact Q(¢) for
k.tz1A. In the mean (or linear) relaxation time
approximation

q4:(1) = exp(—1/1,) , (16)

the time constant 7, i1s given by the first long-time

2



Volume 144, number | CHEMICAL PHYSICS LETTERS 12 February 1988

unreacted fraction Q(t)

0 50 100 150 200

reduced time ket

Fig. 2. Comparison of exact Q(¢) with Kohlrausch—-Williams
~Watts function, eq.(17); A= 100.

moment #_,. The mean relaxation time 7, i1s fre-
quently employed as a first approximation of the time
scale of the relaxation and, therefore, of the inverse
of the average rate constant. Fig. 1 shows that, other
than for short times, 7, 1s a much better estimate than
the short-time rate constant k. at large values of A.
However, the long-time approximation eq. (15) 1s
still superior to eq.(16) as an approximate descrip-
tion of the decay of Q(¢) for k. .tz A.

A common approximation of relaxation processes

in glassy systems is the stretched exponential tunc-
tion [30]

g (1) = exp[ — (/)] , (17)

sometimes also called the Kohlrausch or Williams
~Watts function. A modification of the generalized
moment scheme [35] can be used to determine an
optimized stretched exponential description of Q(?).
The parameters ax and 7k are given as solutions of
the coupled equations
2

T ] (/) B (1)1 (2/0k) (a8)
847 29 ¢

H_1=

where I’ is the gamma function [34]. For large val-
ues of A (A= 100) these parameters are o =0.78
and 7. =0.6571,. In fig. 2, eq. (17) is compared with
the exact function for A= 100. It is evident that Q(¢)

28

deviates somewhat from a stretched exponential
form. However, eq. (17) is seen to provide a rea-
sonable first approximation of the exact behavior
over the full time range.

4. Discussion

We have presented above an analysis of the non-
exponential time behavior of ET in glycerol-like sol-
vents, under the assumption that the dielectric re-
laxation in this medium can be described by an
intrinsic spatial inhomogeneity. Some conclusions
that can be inferred from the above results are com-
mented on below.

First, however, we comment on the significance of
the important parameter A, defined in eq. (10). As
the form of eq. (1) indicates, 1/I7 1s a solvent-dy-
namics-controlled rate constant, when the solvent
dielectric relaxation time is 7 (cf. also refs. [19,21}).
The smallest value of the latter for the present in-
homogeneous distribution of 7 values is 1/17,, since
To>7 in eq. (8). Thus, 4 is the ratio of k. to this
smallest solvent-controlled rate constant 1//7,.

The short-time description of Rips and Jortner,
useful at sufficiently short times, 1S seen to be ap-
plicable only for a small time range (relative to the
time scale of the overall decay) when the parameter
A is large, 1.e. when the dielectric relaxation becomes
slow. This result is particularly relevant near the glass
transition, since 7, becomes large in this regime. Laser
excitation of a reaction is frequently employed now-
adays to study time-resolved reaction dynamics, and
a successful deconvolution from the shape of the laser
pulse is needed to extract the detailed very-short-time
behavior.

We note that the non-exponential character of the
decay of Q(¢) is present mainly in the very-short-time
range. As seen in fig. 1, the long-time approximation
eq. (15) is a reasonable approximation for k.t 2 34.
1., can therefore be regarded as the inverse of a valid
long-time ET rate constant, and may be the domi-
nant contribution to a multi-exponential fit to ex-
perimental data.

The short-time rate constant k. shows a fractional
power-law dependence on 1, for slow dielectric re-
laxation, k, octg”, as discussed by Rips and Jortner
[22]. In contrast, a different behavior holds for the
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long-time relaxation times 7, and 7, as seen from
eqs. (13), (15), and (16), in the case of the spatially
inhomogeneous model for the solvent. Both relaxa-
tion times depend linearly on 7, i.e. T,,0CTq, fOr 7g
large. It may also be noted from eqs. (13), (15), and
(16) that the ratio of 7, and 7, assumes a constant
value in the limit of very slow dielectric relaxation,
i.e. for A—oo. This constant is given by

ta_, 28
rb—*ﬂ+l (19)

and has a value of about 3/4 for glycerol (f~0.6).
The single-exponential value of 7,/t, would be unity.
The result that 7, ,oc T, for large 7, 1S not surprising:
At long reaction times, the donor-acceptor com-
plexes that are in a solvent environment with the
shorter 7 values in the distribution in eq. (8) have
largely reacted, leaving as survivors mainly com-
plexes whose solvent environment tends to have 7
values near the peak at 7, in the distribution, 7, being
the largest relaxation time in eq.(8).

Comparison of the theoretically predicted long- and
very-short-time behavior of ET with experimental
data may serve to determine whether the static de-
scription using a distribution of relaxation times
[28,29] is appropriate for glycerol-like solvents, or
whether a more dynamical model i1s necessary. In-
deed, in a more dynamical model 7, may no longer
be proportional to 7, at large 7,.
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Appendix

The algorithm to determine the parameters b; and
4. of the multi-exponential approximation eq. (6)
from the moments u_y 10 iy_, presented below is
the one given in ref. [ 31]. However, we repeat it here
for the sake of completeness and easier accessibility.

The rates A; of the approximation eq. (6) are the
eigenvalues of the Frobenius matrix
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0 O 0 Yo
1 O 0 7y,
0O 0 ... 1 vy_i

a special form of an upper Hessenberg matrix [36].
Due to the specific from of F, these eigenvalues can
be determined, alternatively to numerical diagonal-
ization, by determining the roots of the related po-
lynomial 1n 4,

Py(A) =AY —yn_ 1AV —i=71A=Y0 . (A2)

The y; in F are the elements of a vector y which 1s
the solution of the linear equation

Ay=a, (A3)
where the matrix A is given by (i, j=0, ..., N—1)
(A)jj=U_N+i+) (A4)
and the vectors a, by (i=0, ..., N—1,; j=0, .., N)

I (@), =U_Niiv)- (AS)

The amplitudes b; of the exponentials in eq. (6)
are given by

(a'f)(af)

bi = y (A6)
(fi-ASf)

where f; is the (right) eigenvector of the matrix F for

the eigenvalue 4,. Because of the simple form of F the

eigenvectors can be determined directly from the ei-
genvalues, 1.€.

(ﬂ)ﬂ =y0//11'a

(A7a)

(f)i=[(f)—+v;1/A, J>0. (A7b)

The vectors 4 and @’ in eq. (A5) are particular vec-
tors a; given for even N by

a=a =ay, (A8a)
and for odd N by
a=aN_1y2. @ =Any1y2. (A8b)
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