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two quanta of the bend or stretch. With these assignments, it was
impossible to reproduce all of the peak intensities within the
uncertainties of the experiment. Thus, the assignment of the
vibrational origin is unambiguously confirmed.

C. Comparison with Previous Experiments and Theory. Table
IV compares the present result with other experimental and
theoretical molecular geometries for NO,™. Ab initio self-con-
sistent-field (SCF) calculations for NO,™ give bond lengths in the
range 1.22-1.26 A and bond angles of 117-118°. These values
agree well with the present results. The geometric constants of
NO;™ in crystalline environments differ from our determination
for gas-phase NO,™ by only a few percent. This result is consistent
with the ab initio results of Goddard and Klein,'¢ who calculated
the structure of NO,™ interacting with one or two sodium ions
and found only modest changes in the NO,™ geometry. Ozone,
which is isoelectronic with NO,~, has a bond length of 1.278 A
and a bond angle of 116.8°,%? quite close to the geometry found
for here for NO,".

Our conclusions regarding the anion geometry suggest a rein-
terpretation of the results of Woo et al.> They modeled photo-
detachment threshold data for NO,™ at photon energies up to 2.8
eV using a Franck—Condon analysis, in which the Franck—-Condon
intensities were derived from the increase in the photodetachment
cross section at the threshold for each transition. The magnitude
and behavior of the photodetachment cross section beyond the
threshold region were fixed by a fit to their data in the ultraviolet,
3.5-4.8 eV. Woo et al. found two possible fits, ” = 1.25 A, o”
=116° and r” = 1.15 A, &’ = 119.5°, corresponding to opposite
directions of the displacement in the »; symmetric stretch normal
coordinate. The latter geometry gave a better least-squares fit
to the threshold data (by a factor of 10 in the sum of squared
residuals of Franck—-Condon factors), and it was chosen by Woo
et al. primarily on that basis. Our observations provide intensities
for individual transitions directly, which should be more sensitive
to small difference in Franck—Condon intensities than threshold
measurements, and we also observe higher vibrational transitions.
We find no direct experimental basis for determing the direction

(53) Herzberg, G. Molecular Spectra and Molecular Structure. III.
Electronic Spectra and Electronic Structure of Polyatomic Molecules, Yan
Nostrand Reinhold: New York, 1966; p 604.

of the geometry displacements. We believe the molecular orbital
considerations and comparisons to ab initio calculations, above,
argue convincingly in favor of the configuration with longer bond
length and smaller bond angle. In particular, it seems unlikely
that the SCF calculations of the bond lengths (Table IV) are in
error by 0.07-0.11 A (6~10%). Therefore, we suggest a rein-
terpretation of the data of Woo et al. in favor of their alternative
NO, geometry (r” = 1.25 A, o/ = 116°), which agrees well with
the present work and with theoretical values. A possible source
of the discrepancy is photodetachment to electronically excited
states of NO, at the higher photon energies in the study of Woo
et al., which could alter the shape and magnitude of the cross
section and therefore the fitting parameters used for the threshold
data.

V. Conclusion

We have measured the 351-nm photoelectron spectrum of NO,™.
The electron affinity of NO, is 2.273 + 0.005 eV.

The vibrational spectrum of the ground electronic state of NO,
is observed within 1 eV of its ground vibrational state. There is
no evidence of electronic excited states in this region. In contrast
to the highly complicated visible spectrum of NO,, the vibrational
structure in the energy range studied here is completely described
by simple overtone and combination progressions in the two totally
symmetric vibrational modes of the ground electronic state.
Franck-Condon analysis of the vibrational band intensities pro-
vides an estimate of the molecular geometry of the anion: »” =
1.25 % 0,02 A and &” = 117.5 % 2° for NO,~, compared to r’
=1.194 A and o = 133.9° for NO,.0 The large increase in the
bond angle upon removal of an electron from NO," is responsible
for the extended progression observed in the bend vibrational mode.
The symmetric stretch progression is also active due to a decrease
in the N-O bond length from NO,™ to NO,.
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A method for using conventional coordinates in the implementation of RRKM theory for unimolecular dissociations was
described in part 1 of this series, for the case where both fragment molecules are nonlinear. The corresponding formalism
for all possible types of fragments, atomic, linear, and nonlinear fragments and their combinations, is presented here. Also
discussed analytically is the tendency, in a unimolecular dissociation, for the position of the transition state to move to shorter
fragment—fragment separation distances with increasing total energy £. This tendency has marked consequences, including
increasing deviation of rate constants from those of phase space theory with increasing E and, in the case of fragment—{fragment
recombination, a corresponding tendency for high-pressure rate constants to decrease with increasing temperature. Two
other topics considered in this paper are the case of two minima in the variational calculation and the role of the repulsive
potential energy curves in the unimolecular dissociations under consideration.

I. Introduction

The number of states Ng,(R) for a given excess energy F, total
angular momentum quantum number J, and position R along a
reaction coordinate enters into the RRKM theory! of unimolecular
dissociations. With a sufficiently accurate determination of this

Y Contribution No. 7731. Dedicated to.the memory of Ed Lee, whose
joyous spirit in research will always be remembered.

quantity and of the density of states py; of the molecule itself,
good agreement between theoretically and experimentally de-

(1) Robinson, P. J.; Holbrook, K. A. Unimolecular Reactions; Wiley: New
York, 1972. Forst, W. Theory of Unimolecular Reactions, Academic: New
York, 1973. Weston, R. E.; Schwarz, H. A. Chemical Kinetics; Prentice-Hall:
Englewood Cliffs, NJ, 1972. Marcus, R. A. J. Chem. Phys. 1952, 20, 359.
Marcus, R. A.; Rice, O. K. J. Phys. Colloid Chem. 1951, 55, 894. Marcus,
R. A. J. Chem. Phys. 1965, 43, 2658; 1970, 52, 1018.
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termined rate constants kg, is anticipated, as long as the statistical
assumption is valid. For kgz; we have

kgs = Ngs(R") /hpg; ¢y

where R is variationally determined. (A correction for nuclear
tunneling along the reaction coordinate, a rare circumstance in
dissociations into two polyatomic fragments, may be found in ref
2)

One facet of an accurate treatment of Ng/(R) is the manner
in which the “transitional” modes are treated. These transitional
modes are those modes which undergo a considerable change in
character during the transformation from reactants to products.
In particular, these modes are typically the bending /hindered rotor
and overall rotational modes of the reactant which change to free
rotations and to translations of the products. The remaining modes
(apart from the reaction coordinate) have been termed the
“conserved” modes and are typically vibrations in both the reactant
and product configurations.

Recently, Wardlaw and Marcus® described a method for
treating the transitional mode interactions within a classical
framework, while retaining a quantum treatment for the conserved
modes. The method of ref 3 for determining Nz {R) was based
on the approximate separation of variables into the transitional
modes and conserved modes described above, with a transfor-
mation of variables to canonically conjugate action-angle variables
being used for the transitional modes. That method also implicitly
assumed a reaction coordinate defined by the center-of-mass to
center-of-mass separation distance of the two fragments. Sub-
sequently, the present authors calculated the effect of using a
quantum mechanical treatment of the transitional modes on
thermally averaged rate constants.* This calculation was per-
formed via a Feynman path integration of partition function ratios.
It indicated, at least for the reaction studied, the C,Hs — 2CH,;
dissociation reaction, that the quantum mechanical correction for
the transitional modes was negligible at the temperatures inves-
tigated.

The present authors have also shown in part 13 how conventional
coordinates could be used to implement RRKM theory in a
formalism based on the same separation of variables as that of
ref 3. The formalism presented in part 1 was for the specific case
of two nonlinear fragments. In the present article expressions are
given for the determination of Ng; for the various other possible
fragment—fragment cases which arise in practice. In section II
a brief summary of the derivation of Ng;’s in terms of conventional
coordinates is given. In section III the definition of certain
quantities needed in the evaluation of Ng;(R) and which are
specific to the given fragment type are given. In particular, the
detailed formulas pertaining to the cases of an atomic fragment,
a linear fragment, and a nonlinear fragment are considered. In
section IV a particular phenomenon is discussed in which the
position of the transition state tends to move to shorter frag-
ment—-fragment separation distance with increasing total energy.
Its consequences are also described there. In section V a third
topic is considered: the case of two minima in the plot of the
number of states versus reaction coordinate curve, in particular
the results which we have obtained in a practical case. In section
VI the role (or nonrole) of repulsive potential energy curves in
the type of dissociation into two fragments that is being considered
is discussed, together with the corresponding question in phase
space theory® (PST). Concluding remarks follow in section VII.

(2) Marcus, R. A. J. Chem. Phys. 1966, 45, 2138, 2630. Miller, W. H.
J. Am. Chem. Soc. 1979, 101, 6810.

(3) Wardlaw, D. M.; Marcus, R. A. Chem. Phys. Lett. 1984, 110, 230.
Wardlaw, D. M.; Marcus, R. A. J. Chem. Phys. 1985, 83, 3462. Wardlaw,
D. M.; Marcus, R. A. J. Phys. Chem. 1986, 90, 5383. Wardlaw, D. M,;
Marcus, R. A. Adv. Chem. Phys. 1988, 70, 231.

(4) Klippenstein, S. J.; Marcus, R. A. J. Chem. Phys. 1987, 87, 3410.

(5) Klippenstein, S. J.; Marcus, R. A. J. Phys. Chem. 1988, 92, 3105
(hereinafter referred to as part 1).

(6) Pechukas, P.; Light, J. C. J. Chem. Phys. 1965, 42, 3281. Pechukas,
P.; Rankin, R.; Light, J. C. J. Chem. Phys. 1966, 44, 794. Klotz, C. J. Phys.
Chem. 1971, 75, 1526. Klotz, C. Z. Naturforsch, A 1972, 27, 553. Ches-
navich, W.; Bowers, M. J. Chem. Phys. 1977, 66, 2306.
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H. Theory

Conventional coordinates were introduced in part 1 instead of
the action-angle coordinates used earlier? in calculating Ng;. The
reaction coordinate R in part 1 was again taken to be the cen-
ter-of-mass to center-of-mass separation distance between the two
fragments. The approximate separation of variables into the
conserved modes and the transitional modes, which was the basis
of the previous method,? results in the number of states being given
by the convolution

E
NesR) = f NAE - 9osle) de ()

where N(E — ¢) is the number of quantum states for the conserved
modes with an energy less than or equal to E — ¢, and p,(e) is the
density of states for the transitional modes at the given energy
e and total angular momentum quantum number J for the given
R.

The evaluation of p;(¢) involves the choice of a coordinate
system. The appropriate coordinate system depends upon whether
the fragments have zero, two, or three rotational degrees of
freedom. However, in all cases the rotation of the line of centers
connecting the two centers of masses of the fragments is a two
degree of freedom rotation and so may be described by the co-
ordinates 6, and ¢,, defining the spatial orientation of this line
of centers. For the other coordinates, the case of two nonlinear
polyatomic fragments (i.e., each a three-dimensional rotor) was
considered in part | and the coordinates chosen were for the
absolute orientation in space of fragment i/ and were the con-
ventional Euler angles.” If fragment i is, instead, linear, and so
is a two-dimensional rotor, the appropriate coordinates for this
fragment are the angles 8; and ¢; which describe the absolute
orientation in space of the axis of this linear species. When
fragment i is an atom, no orientational coordinates are needed
for it. The coordinates describing the orientation of fragment i
are denoted Q; and their conjugate momenta by p;, regardless of
which type of fragment is being referred to.

With the above choice of coordinate system for the appropriate
fragment cases p,(¢) is given, as in part 1, by

o) = = fole - HOIAUA - 0] dr - (3)

where 7 denotes the orientational coordinates Q;, 8,5, and ¢, and
their conjugate momenta and dr denotes the corresponding phase
space volume element. The quantity Jy in eq 3 is the magnitude
of the total angular momentum as a function of the coordinates,
whereas J in the second delta function in eq 3 is the total angular
momentum quantum number. The quantities n, and n, are the
number of rotational degrees of freedom for fragments 1 and 2;
g is the electronic degeneracy factor. ¢ is the usual degeneracy
factor for the fragment pair, and o equals 20,6, or 0,05, according
as the fragments are or are not identical; o; denotes the symmetry
number of fragment i. The Hamiltonian H is given by H = T°
+ ¥, where V is the potential energy and 7° the total kinetic energy
for the transitional modes. 7° in turn is given by the sum of T,°,
the kinetic energy for the line of centers rotation and the kinetic
energies T, and T, of the two fragments. The former is given
by

4)

with I! being the diatomic moment of inertia for the line of
centers, i.e., Iy equals M, M,R?/(M, + M,), where M, and M,
are the masses of fragments 1 and 2, respectively. The kinetic
energy T? is given in section III for each of the separate fragment
cases.

(7) Goldstein, H. Classical Mechanics, 2nd ed.; Addison-Wesley: Reading,
MA, 1980. The “y convention” given there in Appendix B is used here. There
is a typographical error in the last row of the rotation matrix A there, namely,
the ¥'s should be replaced by ¢’s.
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Substituting the above expression for py{¢) into eq 2 and per-
forming the integration over e yields

gh
NeAR) = =  NE = HOWLIR = Ix(n)] dr (5)

Equation 5 provides an expression for Ng;. Next, the dimension
of the phase space integral in eq 5 is reduced as in part 1.
First, the angular momentum is fixed along the z direction by
introducing a delta function in Jy - Jy,, multiplying by the range
of Jr, (2J + 1)A, and then transforming from the line of centers
coordinates and conjugate momenta to the Cartesian components
of the orbital angular momentum (/,, /,, /,) and the line of centers
coordinate ¢,,. This transformation is specified by®

I, = —pg,, Sin @13 — Py, COS ¢y, COt By,
I, = pg, COS §13 — py, sin gy cot by5, L,=p,.  (6)
with the Jacobian of the transformation being given by
[8(61296,05,,) /0L, 1)| = [sin® 612/ Py,
= |1|/[(cos ¢yal, + sin ¢12l,)2 + 17] M
With these results the expression for Ng,(R) becomes
g.(2J + )h?

ohm+n+2)
h = Jr()]8[Jr(7) = Jr()]IE

o
NylE - H(+ d+ (8
f ¢ () (cos ¢zl + sin ¢3l))? + 1.2 v ®)

NgjR) =

where 7/ now denotes the coordinates Q;, p;, ¢12, /s, £, I, and d7’
is the corresponding volume element.

Next, a transformation is made from /,, /,, and /, to Jg, 6, and
¢, where the 8 and ¢ are the polar coordinates of Jy:

Iy+ k,=Jrsinfcos ¢, I, + k,=Jrsinfsin ¢,
L+ k,=Jrcosd (9)

Here, k,, k,, and k, are the Cartesian components of the sum of
the space-fyixed rotational angular momenta of the individual
fragments j; (e.g., k; = j;, + ji,), which in turn are specified in
section III for each of the fragment types. The Jacobian of the
transformation in eq 9 is given by |3(/,/,/,) /8(J10)| = J4? sin
6.

Integration in eq 8, using the deita functions, over J; and § and
then over ¢, and ¢, after considering the dependence of the
resulting integral on the ¢, ¢;, and ¢,, coordinates, yields

g.(2J + 1)
NeAR) = == [ NY[E = H(@upp12* Th,0=0)] X

chim
VA - kjJh
Izldﬂ,- dp; (10)
(cos ¢p*k, + sin ¢*k,)2 + (Jh - k,)? i=1

The quantity ¢,,* defines a fixed azimuthal angle for the line of
centers orientation and can be set equal to zero (i.e., ¢, = ¢1o*
= 0), as was shown in part 1.

The integration over the delta functions also results in ex-
pressions for the quantities /,, /,, and /, in terms of the coordinates
and momenta ©; and p; (or alternatively the k’s). These ex-
pressions, in turn, specify the quantities 6,5, ¢, py,,, and p,,, in
terms of the &’s, ¢,,*, and Jr. More specifically, the coordinates
for the orientation of the line of centers (8, ¢;,) and their
conjugate momenta are specified to be

o ky cos ¢* + k, sin ¢;,* .
612 = cot JT iy y ¢12 = ¢12

Do, = ki sin ¢2* — ky cos ¢pp*, py, =Jr—k, (11)

The expressions given in eq 11 are used in all terms in the final
integral involving these quantities, e.g., in Ty,° and in the ex-

(8) Levine, I. N. Molecular Spectroscopy, Wiley: New York, 1975.

Klippenstein and Marcus

pressions for the determination of the potential energy given in
section III.

With these definitions eq 10 for Ng; provides an expression
which can be used for all possible fragment types. By combining
eq 10 with the definitions of the various fragment-dependent
quantities given in section III, we obtained an explicit expression
for Ng; for each fragment case. The integral in eq 10 may be
evaluated through Monte Carlo importance sampling by intro-
ducing the weighting function exp(-87,°%) exp(-8T°%). The in-
tegral over this weighting function, divided by A"*™, is given by
the product Q,°Q,° of the free-rotation canonical partition functions
for each fragment, 1 and 2. The result of the introduction of this
weighting function and a transformation of momenta variables
to p;, defined in section III for each of the different types of
fragments, yields Ngyin the form

227 + 1)Jh
NgiR) = —O_—QIOQZO X

NWE - H)(Jh - k,) exp[B(T\° + T)")] 1
(COS (b]z*kx + sin ¢12*ky)2 + (Jh - kz)2 ( )

where (f) denotes an average with respect to the free-rotation
weight function

= ; - 0 ) ’ 2’_
O = o § S lame + To)fla, dp;‘ 5o
(13)

Ineq 13 |9p;/ap/| is the Jacobian of the transformation to be given
in section III. The explicit definitions of the partition functions
Q. and fragment kinetic energies T} for the specific cases are
also given in section III.

The 8 in eq 12 and 13 equals 1/kgT, where T is a sampling
temperature and kg is Boltzmann’s constant. In the calculation
this T is chosen to ensure that the maximum kinetic energy
sampled is about 2-3 times the maximum available energy.

Ng; may now be straightforwardly evaluated from eq 12 by
using, as in part 1, crude sampling over all space for the orien-
tational coordinates and importance sampling® for the momentum
coordinates, with exp[-8(T;° + T,%)] as the weighting function.
In the importance sampling over the momentum coordinates step
sizes which gave a roughly 50% acceptance ratio were typically
used in the applications in part 1 and ref 10.

III. Properties of Different Fragments

(@) General Formulas. We consider here the calculation of
the potential energy V(r;;), where r;; denotes the space-fixed
position of atom j in fragment i, in terms of the orientational
coordinates Q,, 6,,, and ¢,, and the reaction coordinate R. The
position r;; of atom j in fragment i/ may be written in terms of
its position in space relative to the center of mass of fragment i
and in terms of the position of the center of mass of fragment {
in space. This latter position is determined by the orientation of
the line of centers connecting the two fragments and by the
center-of-mass to center-of-mass separation distance. In particular,
this position may be written as A;y1(6,2,¢,2)1/, where’

cos 85 cos ¢y —sin ¢y,  sin G5 cos ¢y
Cos 012 sin P12 CoS ¢y3 sin 012 sin b12
-sin 6, 0 cos 4,

A (612:612) =

(14)

and r;/ is the body-fixed position of the center of mass of fragment
i

) = OOLR = 00__y_l__R (15)
r s Vs M1 + M2 » I » Yy Ml + Mz

(9) Valleau, J. P.; Whittington, S. G. In Statistical Mechanics; Berne, B.
J., Ed.; Plenum: New York, 1977; p 137. Valleau, J. P,; Torrie, G. M. In
Statistical Mechanics; Berne, B. J., Ed.; Plenum: New York, 1977; p 169.

(10) Klippenstein, S. J.; Khundkar, L. R.; Zewail, A. H.; Marcus, R. A.
J. Chem. Phys., in press.
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CHART I

< —sin y; sin ¢; + cos §; cos ¢; cos ¥,
A7N(Q) = | sin y; cos ¢, + cos 8, sin ¢; cos ¥,
—cos y; sin §;

and the axis of the body in space is defined by 6,, and ¢,,. The
position of the center of mass as a whole, as seen from eq 15, is
chosen to be at the origin.

The position of atom j of fragment i in space relative to the
center of mass of fragment i can be written as A7 (Q))r;/, where
the r;/ are the body-fixed coordinates which describe the initial
position (prior to any rotations) of atom j in fragment i/, relative
to the center of mass of fragment i. The orientation of the
body-fixed axes of fragment i relative to the space-fixed Cartesian
axes is defined by the @, coordinates. The specific form of the
inverse rotation matrix A;"(Q,) describing this orientation of the
body-fixed axes is discussed later for different types of the frag-
ment.

Thus, finally we have

ry = AR + ARTI(B1,81)r/ (16)

In sections IIIb to I11d the detailed expressions involved in the
determination of N, for the different types of fragments are given.

(b) Atomic Fragment. When fragment i is an atom rather than
a molecule, there are no orientational coordinates or rotational
momenta for this fragment and so the quantities 72, j.., jy,» jz,
and n; are all replaced by zero. The matrix A;! is replaced by
the 3 X 3 identity matrix. Also, the free-rotation canonical
partition function Q0 is replaced by unity and the differentials
dQ;, dp;, and dp; do not appear. The body-fixed coordinates for
the atomic fragment i, r;’, are just the coordinates of the origin
(the center of fragment i), i.e., r;;’ = (0,0,0).

(¢) Linear Fragment. When fragment i is linear, the orien-
tational coordinates are chosen to be the spherical polar angles
6, and ¢;. Their conjugate momenta are denoted by p; and p,,
respectively. The transformed momenta are given by p/ = (p,,
Ps) With p, = — p, /sin 6, and p,, = ps. The Jacobian |dp;/dp/|
is thus equal to sin 6;.

The kinetic energy for fragment i is given in terms of these
transformed momenta by

TP = (0’ + ps2) /21 17

where ! is the moment of inertia for fragment i in its transi-
tion-state structure. For a diatomic fragment we have, for ex-
ample, I' = mymyr 2(R)/(m, + m,), where m, and m, are the
masses of the two atoms in the diatomic fragment and r(R) is
the equilibrium separation distance between the two atoms for
the given separation distance R between the centers of masses of
the two fragments,

The Cartesian components of the space-fixed rotational angular
momentum for fragment i, j, j,, and j,, are now given by?

Jx; = —Dy, CO8 @; cos 8;/sin 0; — pg sin ¢;
Jy, = —Pg, sin ¢; cos 8;/sin 6; + py, cos ¢,
Jz = Py, (18)

The inverse rotation matrix A;1(Q,) used to determine the
transformation from orientational coordinates to space-fixed co-
ordinates is given by’

cos 6, cos ¢; —sin ¢; sin 6; cos ¢;
A7'Q) = cos §;sing, cos¢; sinf;sing; | (19)
—sin §; 0 cos §;

The initial body-fixed coordinates r;/ of atom ; in fragment i must
be aligned in agreement with the definition of the Cartesian
components of the angular momenta given in eq 18. For this
reason the axis of the linear fragment for these initial coordinates
r;/ is aligned along the space-fixed z axis, and the center of mass
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—cos ; sin ¢; — cos §; cos ¢, siny;  sin 6, cos ¢,
cos y; €os ¢; — cos 8; sin ¢; sin ¥; sin 6; sin ¢; (25)
sin ; sin 6, cos §;

of r;/ is placed at the origin. For the specific case of a diatomic
fragment the body-fixed coordinates r;;/ are thus given as

=00, —2—r(r
Iy = s 'm1+mzr°()

(00 5 25rm)
rx',2, =10,0, —-re(R) (20)

m1+n12

The free-rotation canonical partition function for use in the
averaging in eq 12 is!!

00 = ;11—2 f exp(-BT) sin 6, d9, dpy/ 1)

= 2tk T/ 2

where no degeneracy factor need be included in a partition function
used purely for averaging.

(d) Nonlinear Fragment. When fragment | is nonlinear, the
treatment is analogous to that given previously in part 1, where
the dissociation into two nonlinear fragments was treated. The
results are given here for completeness. The orientational coor-
dinates are taken to be the Euler angles 8, ¢, and ;. Their
conjugate momenta are then denoted by py, p4, and py, respec-
tivel%l. The transformed momenta are given by p; = (p,, ps, Pc)
with

Da, = —CO08 Y; csc Bp, + cos Y; cot G,py, + sin Yp,,
Py, = sin y; csc O;p,, — sin ¢, cot O;p,, + cos Ypy,
pq = p\h (22)

The Jacobian |9 p;/d p/| is then equal to sin 6,
For the kinetic energy of fragment i the specific expression
depends on whether the fragment is an asymmetric top, a sym-
metric top, or a spherical top. Since all cases are included in the
asymmetric top expression, we employ it. In terms of the

transformed momenta p; this kinetic energy is given by®
| S TS %

Tio = — b +
21,0 2apt o2t

(23)

where I}, I', and I, are the principal moments of inertia of
fragment i for the transition-state structure.

The Cartesian components of the space-fixed rotational angular
momentum for fragment i, j,, j,, and j, are given in terms of the
transformed momenta p; by

Jx; = (c0s 8; cos ¢; cos ¢; —sin ¢; sin ¥,)p,, —
(cos 6; cos ¢; sin ¥; + sin ¢; cos ¥;)py, + sin 6; cos ¢p,,

Jy, = (cos 8, sin ¢, cos ; + cos ¢, sin ¥;)p,, +
(cos ¢; cos ¥, — cos §; sin ¢; sin Y;)py, + sin §; sin ¢p,,

Jz, = —sin 6; cos Y;p, + sin 6, sin Yipy, + cos Op,  (24)

The inverse rotation matrix A;7}(Q;) used to determine the
transformation from orientational coordinates to space-fixed co-
ordinates is given by eq 25 of Chart I.” The initial body-fixed
coordinates r;/ must be aligned in agreement with the definition
of the Cartesian components of the angular momenta given in eq
24, Thus, the principal axes a, b, and ¢ for these body-fixed
coordinates r;/ are aligned along the space-fixed x, y, and z axes,
respectively. Additionally, the center of mass of r;/ is at the origin.

(11) McQuarrie, D. A. Statistical Mechanics; Harper and Row: New
York, 1976.
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The definition of the free-rotation canonical partition function
for use in the averaging is'!

Q°= -}-Ilsfexp(—BT,-o) sin 6, dQ; dp/
= BrIA BN Y ky )32/ 13 (26)

IV. Trend of R with Increasing Energy E

In several calculations®*1%1213 we and others have noticed a
tendency of RY, the fragment—fragment separation distance in the
transition state, to decrease with increasing energy E. This effect
has certain important consequences, which we describe after first
considering its origin analytically.

The position R' of the transition state is the solution of

ONg/R" /6R" = 0 27

which yields, implicitly, R' as a function of £. We may write
the left-hand side as a function f{R",E) and note that in the
standard way the ordinary derivative dR'/dE is given by

dR'/dE = -(8f/9E)/(8f/6R") (28)

But f/4R" equals 3*Ng,(R") /4R", and this quantity is positive
since Ng/{(R) is a minimum at R = R'. Further, upon inter-
changing the order of partial differentiation, f/dE can be written
as (3/0R")(ANgAR')/E), i.e., (8/dRpg, (R"), where pg,'(R")
is the density of states, dNg,(R)/AR, of the transition state at R
= R'" and at the energy E. It has usually been the case that since
the hindered rotations at smaller R become free rotations at larger
R and, hence, that the states become more closely spaced as R
increases, (3/0R")pz, (R tends to be positive. One circumstance
could modify this. As R increases, there will be somewhat less
energy available for distribution among the transitional modes,
since the bonding potential energy of the fragments is less negative.
This factor above would make 9 oz, (R")/dR" negative, but ap-
parently the first factor is the dominant one in the few cases we
have considered thus far and for the limited energy range for which
the model potential energy surfaces used are valid. At higher
energies (e.g., above about 3000 cm™! for the study of ref 10) the
model potential energy surfaces are not accurate enough and so
no conclusions may be drawn as to which of the above factors is
the dominant one.

This result on dR'/dE has some major implications: At very
low energies E the R’ occurs at the R — « limit and phase space
theory® (PST) and the variationally implemented RRKM theory
become rather similar. However, with increasing energy the
overall minimum in the number of states Nz, (R") occurs at R’s
which are less than the PST R/’s, where the latter denote the
location of the orbital angular momentum (/)-dependent effective
potential energy barriers. As a result, at these energies, when
dR'/dE is negative, there is increasing deviation between PST
and variationally implemented RRKM theory; i.e., the transition
state under these conditions becomes increasingly “tight”. Again,
in the case of fragment—fragment recombination this effect, when
thermally averaged to yield a high-pressure rate constant, yields
an R! which decreases as the temperature increases. Such an
effect causes the high-pressure recombination rate constant to
decrease with increasing temperature 341213

V. Case of Two Minima in the N;;,(R) Plot

From our previous calculations we have found that in a certain
energy range there may be two local minima in the number of
states. In particular, we have observed the following change in
the plot of the number of states versus R as the energy E is
increased above the dissociation limit: At low excess energies there
is basically only one minimum (or smallest value) which occurs
at Rt = =, At slightly higher excess energies an inner minimum

(12) Rai, S. N,; Truhlar, D. G. J. Chem. Phys. 1983, 79, 6046.

(13) Hase, W. L. Chem. Phys. Lett. 1987, 139, 389, and references cited
therein. Quack, M.; Troe, J. Ber. Bunsen-Ges Phys. Chem. 1977, 81, 329.
Smith, G. P.; Golden, D. M. Int. J. Chem. Kinet. 1978, 10, 489. Benson, S.
W. Can. J. Chem. 1983, 61, 881.

Klippenstein and Marcus

appears with this inner minimum being very shallow and having
a much larger number of states than the R' = « one. At still
higher energies the number of states at the inner minimum begins
to approach the number at the R" = » minimum. Our potential
energy surface needs improvement at smaller R"s to see how the
trend changes as E is increased further.

In the energy region where there are two transition states it
is useful to consider the modified formalism resulting from the
two transition states which act in series. In the case of the recently
studied NCNO dissociation reaction,'® NE#* typically proved to
be a small maximum relative to the larger value of the number
of states occurring at each of the two minima, i.e., Np3* =~
max {N%;,N%;), where N&, and N2, are the number of states for
the two minima. Thus, the various two-transition state theories!4!s
largely reduced almost everywhere to eq 1, where Ng;(R") now
denotes the smaller of N.; and N%; In particular, we found that
the rate constants calculated from the lower bound formula given
below differed by at most a factor of 0.5 from those calculated
with eq 1, using in the latter the global minimum for Ng;(R").
Additionally, the rate constant obtained from the “unified sta-
tistical theory” discussed below differed by at most a factor of
0.8.

A treatment of the typical situation in chemical reactions when
there are two values of R where the reactive flux may be reflected
and/or transmitted was first given by Hirschfelder and Wigner.!¢
Subsequently, Miller!* introduced into that formalism expressions
for the reflection probabilities in terms of statistical flux ratios
(or equivalently in terms of the number of states) and obtained
a “unified statistical theory” (UST). As noted by Chesnavich et
al.,!” when these ideas are applied to a unimolecular dissociation
reaction the rate constant is given by!’

1 a2
1 JVE]

kgy= —
hop; NYYy + NE; - NENE / NES

Subsequently, studies by Pollak et al.!> showed that the as-
sumption embodied in eq 29 of having statistically determined
reflection probabilities is not a good one at all energies. For simple
reactions suchas H+ H, - H, + Hand F+ H, — FH + H,
UST was shown to give substantially larger reaction probabilities
at high energies than those determined from classical trajectories.
Pollak et al.!® then presented a method for determining a lower
bound for the reaction probabilities based on consideration of only
those trajectories which cross the maximum flux surface 2 times
or less. The dynamical results of ref 15 were shown to be in
significantly better agreement with the lower bound probabilities
than with UST for the cases examined. This result can once again
be directly applied to the unimolecular dissociation case, and the
rate constant is then given by

(VB + N - N
hog;

However, as already noted, for the NCNO system we have studied,
formulas 29 and 30 reduce in practice to eq 1, with Nk, having
now the smaller of the number of states at the two local minima.

(29)

kg (30)

VI. Role of the Repulsive Curves in Unimolecular
Dissociation

Typically, in a unimolecular dissociation into two fragments
there are two or more potential energy curves, for example the
singlet and triplet curves in Figure 1. If phase space theory is
applied,'® the /-dependent effective potential energy barriers may
occur at such large separation distances that these curves are
almost degenerate at the barrier maximum, and the question arises

(14) Miller, W. H. J. Chem. Phys. 1976, 65, 2216.

(15) Pollak, E.; Pechukas, P. J. Chem. Phys. 1979, 70, 325. Pollak, E.;
Child, M. S.; Pechukas, P. J. Chem. Phys. 1980, 72, 1669.

(16) Hirschfelder, J. O.; Wigner, E. J. Chem. Phys. 1939, 7, 616.

(17) Chesnavich, W. J.; Bass, L.; Su, T.; Bowers, M. T. J. Chem. Phys.
1981, 74, 2228. Calcultions using the unified statistical model are also de-
scribed in ref 12.

(18) For other discussions of which states to include in PST calculations
see, for example: Herbst, E.; Knudson, S. K. Chem. Phys. 1981, 55, 293.
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Figure 1. Schematic diagram of potential energy curves for typical
unimolecular dissociation into two fragments. S denotes the lower singlet
level, and T denotes the upper triplet level. V(R) is the minimum po-
tential energy for a given center-of-mass to center-of-mass separation
distance R.

whether both the singlet and triplet levels or just the singlet one
should be used in the PST calculation. In the variational RRKM
method, on the other hand, the Rt moves to shorter fragment—
fragment separation distances, even when the excess energy is quite
small (e.g., when E =~ 500 cm™ in both the C,Hg — 2CH; and
the NCNO — NC + NO cases). In particular, it moves to a value
where the singlet-triplet splitting becomes fairly large relative
to the excess energy. In this case the contribution of the triplet
state to Ng;' becomes relatively minor. Moreover, it is also
arguable whether there would be time between Rt and the PST
R, for the system to undergo an intersystem crossing from the
singlet to the triplet state.

Thus, in our past and current applications we have largely
confined our attention to calculating Ng,' from the singlet curve,
rather than from any excited-state curves. We have examined
in detail in ref 10 the case of NCNO decomposition. Here, there
is the ground-state singlet Sy and a weakly bound triplet T, both
leading to the quadruply degenerate asymptotic state (NOy;,,CN).
There are also the upper repulsive singlet S, and T, curves, leading
to an asymptote (NO;/,,CN) 120 cm™ higher in energy than that
of (NO,,,CN). The upper two curves (ref 10) may be disregarded
in the reaction rate calculation, for the reason described in the
previous paragraph. We found, using an approximate potential
energy function and assuming rapid singlet—triplet conversions,
that the lower triplet T, state made a contribution to Ng; only
at low E’s. But even the inclusion of that contribution becomes
uncertain if the singlet—triplet conversion rate is not high in the
transition-state region.

VII. Concluding Remarks

General formulas for determining Ng(R), the number of states
as a function of center-of-mass to center-of-mass separation for
the various possible fragment cases, have been presented. From
the specific formulas given for the three different possible types
of fragments the overall computational expression for any com-
bination of two fragments is immediately obtained. In particular,
eq 12 and 13 are used with the combinations (sum, product, etc.)
of the formulas given for the two separate types of fragments. This
method is a general one and may be easily applied to a large
variety of unimolecular dissociation reactions. The method can
also be madified to treat unimolecular isomerizations, in which
case there is only one fragment. It has been applied in recent
papers to experimental data on the unimolecular dissociation
reactions C,Hg — 2CH,* and NCNO — NC + NO.!°

In the application of this method the uncertain quantity is the
molecular potential energy surface. In previous applications510
model potential energy surfaces were used. At short separation
distances the repulsive interactions between the nonbonded atoms
are much too strong in these model potential energy functions.
We found as a result that there appeared to be no local minimum
in the Ng/(R) plot at energies above about 3000 ¢cm™ for the
NCNO — NC + NO reaction. This disappearance of the local
minimum in Ng{R) indicates the need for more accurate potential
energy surfaces. A further indication of just how strongly repulsive
the model potential energy surface is at short distances is given
by the comparison of NgAR) at R = R, with the number of states
for the reactant (excluding the dissociation coordinate) as de-
termined by Whitten-Rabinovitch type calculations. These two
quantities are given by 0.1 X 107 and 4 X 107, respectively, for
an excess energy of 2348 cm™! and a total angular momentum
of 5, for the parameters in ref 10. One hope is that studies such
as those of ref 10 will motivate the ab initio calculation of potential
energy surfaces for the fragment~fragment hindered rotational
motions at center-of-mass to center-of-mass separation distances -
near R' (about 3.0-4.5 A for the NCNQ — NC + NO reaction).

We have also presented here arguments providing some insight
into the previously observed trend of R' decreasing with increasing
energy. This trend indicates a larger deviation with increasing
energy of RRKM rates from those of PST. A discussion of the
various formulas for considering the effect of two transition states
in series has also been given, along with a consideration of their
importance in unimolecular dissociation reactions. Finally, a
discussion of which potential energy surfaces should be used in
unimolecular dissociation rate calculations has also been given.
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High-Resolution Fluorescence Excitation Spectroscopy of S; Formaldehyde-d,
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Rotationally resolved fluorescence excitation spectra are measured and assigned for vibrational bands 42, 2'4!, 1!41, 51, 214%6!,
2243, 2151, and 2'425! in the A'A, state of D,CO in a cold supersonic molecular beam. The rotational constants and origins
of each vibrational band are obtained. Several new vibrational bands are observed, and approximate band centers measured

with 1-cm™ resolution.

Introduction

The history of formaldehyde spectroscopy, photophysics, and
photochemistry is both long and interesting,!? and much of it has
unfolded in the laboratories of E. K. C. Lee.? Studies on the
forefront of chemical physics continue to focus on formaldehyde
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because it is large enough to undergo complex photochemistry*
and small enough to be theoretically tractable.’ High-resolution
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