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two quanta of the bend or stretch. With these assignments, it was 
impossible to reproduce all of the peak intensities within the 
uncertainties of the experiment. Thus, the assignment of the 
vibrational origin is unambiguously confirmed. 

C. Comparison with Previous Experiments and Theory. Table 
IV compares the present result with other experimental and 
theoretical molecular geometries for NO2-. Ab initio self-con- 
sistent-field (SCF) calculations for NO2- give bond lengths in the 
range 1.22-1.26 8, and bond angles of 1 17-1 18O. These values 
agree well with the present results. The geometric constants of 
NOz- in crystalline environments differ from our determination 
for gas-phase NO2- by only a few percent. This result is consistent 
with the ab initio results of Goddard and Klein,16 who calculated 
the structure of NOz- interacting with one or two sodium ions 
and found only modest changes in the NO2- geometry. Ozone, 
which is isoelectronic with NOz-, has a bond length of 1.278 8, 
and a bond angle of 1 16.8°,53 quite close to the geometry found 
for here for NO2-. 

Our conclusions regarding the anion geometry suggest a rein- 
terpretation of the results of Woo et aL5 They modeled photo- 
detachment threshold data for NO< at photon energies up to 2.8 
eV using a Franck-Condon analysis, in which the Franck-Condon 
intensities were derived from the increase in the photodetachment 
cross section at  the threshold for each transition. The magnitude 
and behavior of the photodetachment cross section beyond the 
threshold region were fixed by a fit to their data in the ultraviolet, 
3.5-4.8 eV. Woo et al. found two possible fits, r” = 1.25 A, CY” 

= 116O and r ” =  1.15 %.,CY” = 119.5’, corresponding toopposite 
directions of the displacement in the u, symmetric stretch normal 
coordinate. The latter geometry gave a better least-squares fit 
to the threshold data (by a factor of IO in the sum of squared 
residuals of Franck-Condon factors), and it was chosen by Woo 
et al. primarily on that basis. Our observations provide intensities 
for individual transitions directly, which should be more sensitive 
to small difference in Franck-Condon intensities than threshold 
measurements, and we also observe higher vibrational transitions. 
We find no direct experimental basis for determing the direction 

(53) Herzberg, G .  Molecular Spectra and Molecular Structure. I I I .  
Electronic Spectra and Electronic Structure of Polyaromic Molecules; Van 
Nostrand Reinhold: New York, 1966; p 604. 

of the geometry displacements. We believe the molecular orbital 
considerations and comparisons to a b  initio calculations, above, 
argue convincingly in favor of the configuration with longer bond 
length and smaller bond angle. In particular, it seems unlikely 
that the SCF calculations of the bond lengths (Table IV) are in 
error by 0.07-0.1 1 8, (6-10%). Therefore, we suggest a rein- 
terpretation of the data of Woo et al. in favor of their alternative 
NO, geometry ( r ” =  1.25 A, a” = 116’), which agrees well with 
the present work and with theoretical values. A possible source 
of the discrepancy is photodetachment to electronically excited 
states of NO2 at the higher photon energies in the study of Woo 
et al., which could alter the shape and magnitude of the cross 
section and therefore the fitting parameters used for the threshold 
data. 
V. Conclusion 

We have measured the 351-nm photoelectron spectrum of NO,. 
The electron affinity of NO2 is 2.273 f 0.005 eV. 

The vibrational spectrum of the ground electronic state of NO2 
is observed within 1 eV of its ground vibrational state. There is 
no evidence of electronic excited states in this region. In contrast 
to the highly complicated visible spectrum of NO2, the vibrational 
structure in the energy range studied here is completely described 
by simple overtone and combination progressions in the two totally 
symmetric vibrational modes of the ground electronic state. 
Franck-Condon analysis of the vibrational band intensities pro- 
vides an estimate of the molecular geometry of the anion: r” = 
1.25 f 0.02 8, and a” = 117.5 f 2’ for NO2-, compared to r’ 
= 1.194 8, and a’ = 133.9’ for N02.40 The large increase in the 
bond angle upon removal of an electron from NOT is responsible 
for the extended progression observed in the bend vibrational mode. 
The symmetric stretch progression is also active due to a decrease 
in the N-0 bond length from NO2- to NO2. 
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A method for using conventional coordinates in the implementation of RRKM theory for unimolecular dissociations was 
described in part 1 of this series, for the case where both fragment molecules are nonlinear. The corresponding formalism 
for all possible types of fragments, atomic, linear, and nonlinear fragments and their combinations, is presented here. Also 
discussed analytically is the tendency, in a unimolecular dissociation, for the position of the transition state to move to shorter 
fragment-fragment separation distances with increasing total energy E. This tendency has marked consequences, including 
increasing deviation of rate constants from those of phase space theory with increasing E and, in the case of fragment-fragment 
recombination, a corresponding tendency for high-pressure rate constants to decrease with increasing temperature. Two 
other topics considered in this paper are the case of two minima in the variational calculation and the role of the repulsive 
potential energy curves in the unimolecular dissociations under consideration. 

I. Introduction 
The number of states NEAR) for a given excess energy E,  total 

angular momentum auantum number J. and oosition R along a 

quantity and of the density of states p E J  of the molecule itself, 
good agreement between theoretically and experimentally de- 

(1) Robinson P J. Holbrook, K. A. Unimolecular Reacfions; Wiley: New 
York, 1972, Academic: New 
york. 1973, Weston. R, E,: Schwarz. H, A, Chemical ~ j ~ ~ ~ j ~ ~ :  prentiCe-Hall: 

reaction coordinate enters into the RRKM theo;yl of unimolecuTar 
dissociations. With a sufficiently accurate determination of this $, Theory ofUnimolecular 

Englewood Cliffs, NJ, 1972. Marcus, R. A. J .  Chem. Phys.’1952, 20, 359. 
Marcus, R. A,; Rice, 0. K. J .  Phys. Colloid Chem. 1951, 55, 894. Marcus, 
R. A. J .  Chem. Phys. 1965, 43, 2658; 1970, 52 ,  1018. 
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termined rate constants kEj is anticipated, as long as the statistical 
assumption is valid. For kEj we have 

where Rt is variationally determined. (A correction for nuclear 
tunneling along the reaction coordinate, a rare circumstance in 
dissociations into two polyatomic fragments, may be found in ref 
2.) 

One facet of an accurate treatment of NEj(R) is the manner 
in which the “transitional” modes are treated. These transitional 
modes are those modes which undergo a considerable change in 
character during the transformation from reactants to products. 
In particular, these modes are typically the bending/hindered rotor 
and overall rotational modes of the reactant which change to free 
rotations and to translations of the products. The remaining modes 
(apart from the reaction coordinate) have been termed the 
“conserved” modes and are typically vibrations in both the reactant 
and product configurations. 

Recently, Wardlaw and Marcus3 described a method for 
treating the transitional mode interactions within a classical 
framework, while retaining a quantum treatment for the conserved 
modes. The method of ref 3 for determining NEAR) was based 
on the approximate separation of variables into the transitional 
modes and conserved modes described above, with a transfor- 
mation of variables to canonically conjugate action-angle variables 
being used for the transitional modes. That method also implicitly 
assumed a reaction coordinate defined by the center-of-mass to 
center-of-mass separation distance of the two fragments. Sub- 
sequently, the present authors calculated the effect of using a 
quantum mechanical treatment of the transitional modes on 
thermally averaged rate c o n ~ t a n t s . ~  This calculation was per- 
formed via a Feynman path integration of partition function ratios. 
It indicated, a t  least for the reaction studied, the C2H6 - 2CH3 
dissociation reaction, that the quantum mechanical correction for 
the transitional modes was negligible at the temperatures inves- 
tigated. 

The present authors have also shown in part l5 how conventional 
coordinates could be used to implement RRKM theory in a 
formalism based on the same separation of variables as that of 
ref 3. The formalism presented in part 1 was for the specific case 
of two nonlinear fragments. In the present article expressions are 
given for the determination of NEj for the various other possible 
fragment-fragment cases which arise in practice. In section I1 
a brief summary of the derivation of NEJ)s in terms of conventional 
coordinates is given. In section I11 the definition of certain 
quantities needed in the evaluation of NEj(R) and which are 
specific to the given fragment type are given. In particular, the 
detailed formulas pertaining to the cases of an atomic fragment, 
a linear fragment, and a nonlinear fragment are considered. In 
section IV a particular phenomenon is discussed in which the 
position of the transition state tends to move to shorter frag- 
ment-fragment separation distance with increasing total energy. 
Its consequences are also described there. In section V a third 
topic is considered: the case of two minima in the plot of the 
number of states versus reaction coordinate curve, in particular 
the results which we have obtained in a practical case. In section 
VI the role (or nonrole) of repulsive potential energy curves in 
the type of dissociation into two fragments that is being considered 
is discussed, together with the corresponding question in phase 
space theory6 (PST). Concluding remarks follow in section VII. 

(2) Marcus, R.  A .  J .  Chem. Phys. 1966, 45, 2138, 2630. Miller, W. H. 
J .  Am. Chem. SOC. 1979, 101, 6810. 

(3) Wardlaw, D. M.; Marcus, R.  A .  Chem. Phys. Lett. 1984, 110, 230. 
Wardlaw, D. M.; Marcus, R. A. J .  Chem. Phys. 1985,83, 3462. Wardlaw, 
D. M.; Marcus, R. A. J .  Phys. Chem. 1986, 90, 5383. Wardlaw, D. M.; 
Marcus, R. A. Adv. Chem. Phys. 1988, 70, 231. 

(4) Klippenstein, S.  J.; Marcus, R. A. J .  Chem. Phys. 1987, 87, 3410. 
(5) Klippenstein, S. J.; Marcus, R. A. J .  Phys. Chem. 1988, 92, 3105 
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(6) Pechukas, P.; Light, J .  C. J .  Chem. Phys. 1965, 42, 3281. Pechukas, 

P.; Rankin, R.; Light, J. C. J .  Chem. Phys. 1966, 44, 794. Klotz, C. J .  Phys. 
Chem. 1971, 75, 1526. Klotz, C. Z .  Naturforsch, A 1972, 27, 553. Ches- 
navich, W.; Bowers, M. J .  Chem. Phys. 1977, 66, 2306. 

11. Theory 
Conventional coordinates were introduced in part 1 instead of 

the action-angle coordinates used earlier3 in calculating NEj. The 
reaction coordinate R in part 1 was again taken to be the cen- 
ter-of-mass to center-of-mass separation distance between the two 
fragments. The approximate separation of variables into the 
conserved modes and the transitional modes, which was the basis 
of the previous method? results in the number of states being given 
by the convolution 

where N d E  - 6 )  is the number of quantum states for the conserved 
modes with an energy less than or equal to E - e, and p J ( t )  is the 
density of states for the transitional modes at the given energy 
t and total angular momentum quantum number J for the given 
R. 

The evaluation of p J ( t )  involves the choice of a coordinate 
system. The appropriate coordinate system depends upon whether 
the fragments have zero, two, or three rotational degrees of 
freedom. However, in all cases the rotation of the line of centers 
connecting the two centers of masses of the fragments is a two 
degree of freedom rotation and so may be described by the co- 
ordinates 012 and 412  defining the spatial orientation of this line 
of centers. For the other coordinates, the case of two nonlinear 
polyatomic fragments (Le., each a three-dimensional rotor) was 
considered in part 1 and the coordinates chosen were for the 
absolute orientation in space of fragment i and were the con- 
ventional Euler angles.’ If fragment i is, instead, linear, and so 
is a two-dimensional rotor, the appropriate coordinates for this 
fragment are the angles Bi and q$ which describe the absolute 
orientation in space of the axis of this linear species. When 
fragment i is an atom, no orientational coordinates are needed 
for it. The coordinates describing the orientation of fragment i 
are denoted Qi and their conjugate momenta by pi, regardless of 
which type of fragment is being referred to. 

With the above choice of coordinate system for the appropriate 
fragment cases p J ( t )  is given, as in part 1, by 

ge 1 6 [ t  - H ( r ) ] h s [ J h  - J T ( r ) ]  d r  ( 3 )  = uh(nl+n2+2) 

where r denotes the orientational coordinates Qi, O I 2 ,  and c $ ~ ~  and 
their conjugate momenta and d r  denotes the corresponding phase 
space volume element. The quantity JT in eq 3 is the magnitude 
of the total angular momentum as a function of the coordinates, 
whereas J in the second delta function in eq 3 is the total angular 
momentum quantum number. The quantities nl and n2 are the 
number of rotational degrees of freedom for fragments 1 and 2; 
g, is the electronic degeneracy factor. u is the usual degeneracy 
factor for the fragment pair, and u equals 2ulu2 or u1u2, according 
as the fragments are or are not identical; ui denotes the symmetry 
number of fragment i .  The Hamiltonian His given by H = 
+ V, where Vis the potential energy and 70 the total kinetic energy 
for the transitional modes. 70 in turn is given by the sum of TI?, 
the kinetic energy for the line of centers rotation and the kinetic 
energies T I 0  and TZo of the two fragments. The former is given 
by 

(4) 

with Id? being the diatomic moment of inertia for the line of 
centers, i.e., Id? equals M1M2R2/ (M1 + M2), where Ml and M2 
are the masses of fragments 1 and 2, respectively. The kinetic 
energy Ti“ is given in section 111 for each of the separate fragment 
cases. 

(7) Goldstein, H. Classical Mechanics, 2nd ed.; Addison-Wesley: Reading, 
MA, 1980. The “y  convention” given there in Appendix B is used here. There 
is a typographical error in the last row of the rotation matrix A there, namely, 
the $‘s should be replaced by 4’s. 
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Substituting the above expression for pr (e )  into eq 2 and per- 
forming the integration over e yields 

Equation 5 provides an expression for NE> Next, the dimension 
of the phase space integral in eq 5 is reduced as in part 1. 

First, the angular momentum is fixed along the z direction by 
introducing a delta function in JT - JTz, multiplying by the range 
of JT , (W + 1)h,  and then transforming from the line of centers 
coordinates and conjugate momenta to the Cartesian components 
of the orbital angular momentum (l,, l,,, 1,) and the line of centers 
coordinate 412. This transformation is specified by8 

1, = -PeI2 sin 412 - P + ~ ~  cos 412 Cot 4 2  

l y  = POl2 cos 4 1 2  - P+12 sin 412 cot 8129 4 = POl2 (6) 

with the Jacobian of the transformation being given by 

l d ( 8 1 2 p 6 , 9 + ~ , ) / 8 ( 1 x l , , 1 z ) l  = bin2 812/P+,zI 

= I~,l/[(cos 4121, + sin 4121y)2 + 1z21 (7) 

With these results the expression for NEj(R) becomes 

where f now denotes the coordinates Q ,  pi, 412, l,, ly, lZ, and dr' 
is the corresponding volume element. 

Next, a transformation is made from I,, I,, and 1, to JT, 8, and 
4, where the 8 and 4 are the polar coordinates of JT: 

1, + k,  = J T  sin 6 cos 4, 1, + ky = JT sin 8 sin 4, 
1, + k ,  = JT cos 8 (9) 

Here, k,, k , and k, are the Cartesian components of the sum of 
the space-dxed rotational angular momenta of the individual 
fragments ji (e.g., k,  = j , ,  + jx2) ,  which in turn are specified in 
section I11 for each of the fragment types. The Jacobian of the 
transformation in eq 9 is given by 18(/#,)/8(JT84)1 = JT2 sin 

Integration in eq 8, using the delta functions, over JT and 8 and 
then over #q2 and 4, after considering the dependence of the 
resulting integral on the 4, &, and 412 coordinates, yields 

e. 

IJh - k,lJh 
h d Q i  dp, (10) 

The quantity 412* defines a fixed azimuthal angle for the line of 
centers orientation and can be set equal to zero (Le., 412 = 412* 
= 0), as was shown in part 1. 

The integration over the delta functions also results in ex- 
pressions for the quantities I,, l,, and 1, in terms of the coordinates 
and momenta Ql and pi (or alternatively the k's).  These ex- 
pressions, in turn, specify the quantities 4 2 ,  d12, pol2, and p+12 in 
terms of the k's, dI2*, and JT. More specifically, the coordinates 
for the orientation of the line of centers (el2, 412) and their 
conjugate momenta are specified to be 

(cos dI2*k,  + sin 412*k,,)2 + ( J h  - k,)2 i = l  

pressions for the determination of the potential energy given in 
section 111. 

With these definitions eq 10 for NEj provides an expression 
which can be used for all possible fragment types. By combining 
eq 10 with the definitions of the various fragment-dependent 
quantities given in section 111, we obtained an explicit expression 
for NEj for each fragment case. The integral in eq 10 may be 
evaluated through Monte Carlo importance sampling by intro- 
ducing the weighting function exp(-PTI0) exp(-PT20). The in- 
tegral over this weighting function, divided by hnI+"2, is given by 
the product Q,"Q," of the free-rotation canonical partition functions 
for each fragment, 1 and 2. The result of the introduction of this 
weighting function and a transformation of momenta variables 
to pi, defined in section I11 for each of the different types of 
fragments, yields NEj in the form 

N d E  - H)(Jh - k,) exp[P(T,O + T2O)I 

(cos 412*k, + sin 412*k,,)2 + ( J h  - k,)2 

where (f) denotes an average with respect to the free-rotation 
weight function 

(13) 
In eq 13 Idpi/c3p,'l is the Jacobian of the transformation to be given 
in section 111. The explicit definitions of the partition functions 
QP and fragment kinetic energies Ti0 for the specific cases are 
also given in section 111. 

The @ in eq 12 and 13 equals l/kBT, where T i s  a sampling 
temperature and kB is Boltzmann's constant. In the calculation 
this T is chosen to ensure that the maximum kinetic energy 
sampled is about 2-3 times the maximum available energy. 

NEj may now be straightforwardly evaluated from eq 12 by 
using, as in part 1, crude sampling over all space for the orien- 
tational coordinates and importance sampling9 for the momentum 
coordinates, with exp[-P(Tlo + T 2 ) ]  as the weighting function. 
In the importance sampling over the momentum coordinates step 
sizes which gave a roughly 50% acceptance ratio were typically 
used in the applications in part 1 and ref 10. 

111. Properties of Different Fragments 
( a )  General Formulas. We consider here the calculation of 

the potential energy V(rij), where rid denotes the space-fixed 
position of atom j in fragment i ,  in terms of the orientational 
coordinates Q ,  O I 2 ,  and 412 and the reaction coordinate R.  The 
position rij of atom j in fragment i may be written in terms of 
its position in space relative to the center of mass of fragment i 
and in terms of the position of the center of mass of fragment i 
in space. This latter position is determined by the orientation of 
the line of centers connecting the two fragments and by the 
center-of-mass to center-of-mass separation distance. In particular, 
this position may be written as A12-1(812,412)r,', where' 

1 cos 612 cos r#JI2  -sin r#JI2  sin O I 2  cos bI2 
cos O I 2  sin bI2 cos bI2 sin O I 2  sin b12 
-sin 4, 0 cos e,2 

(14) 

and r: is the body-fixed position of the center of mass of fragment 
i 

M2 R )  (15) 
MI + M2 MI + M2 

The expressions given in eq 11 are used in all terms in the final 
integral involving these quantities, e.g., in T 1 2  and in the ex- 

(9) Valleau, J. P.; Whittington, S. G. In Statistical Mechanics; Berne, B. 
J., Ed.; Plenum: New York, 1977; p 137. Valleau, J. P.; Torrie, G. M. In 
Statisrical Mechanics; Berne, B. J., Ed.; Plenum: New York, 1977; p 169. 

(10) Klippenstein, S.  J.; Khundkar, L. R.; Zewail, A. H.; Marcus, R. A. 
J. Chem. Phys., in press. (8) Levine, I. N. Molecular Spectroscopy; Wiley: New York, 1975. 
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CHART I 
s i n  Gj sin 4j + COS 
sin +i cos 4j  + cos sin $J~ cos qj  
-cos + j  sin 4 

COS 4j COS + j  

and the axis of the body in space is defined by B12 and $q2. The 
position of the center of mass as a whole, as seen from eq 15, is 
chosen to be a t  the origin. 

The position of atom j of fragment i in space relative to the 
center of mass of fragment i can be written as A;l(Qi)rji, where 
the r,; are the body-fixed coordinates which describe the initial 
position (prior to any rotations) of atom j in fragment i ,  relative 
to the center of mass of fragment i .  The orientation of the 
body-fixed axes of fragment i relative to the space-fixed Cartesian 
axes is defined by the Qi coordinates. The specific form of the 
inverse rotation matrix A;'($) describing this orientation of the 
body-fixed axes is discussed later for different types of the frag- 
ment. 

Thus, finally we have 

rij = A;'(Qj)rj: + A12-1(B12,412)r: (16) 

In sections IIIb to IIId the detailed expressions involved in the 
determination of NEJ for the different types of fragments are given. 

(b) Atomic Fragment. When fragment i is an atom rather than 
a molecule, there are no orientational coordinates or rotational 
momenta for this fragment and so the quantities TF, j,,, jyl ,  j,,, 
and ni are all replaced by zero. The matrix A;' is replaced by 
the 3 X 3 identity matrix. Also, the free-rotation canonical 
partition function Q? is replaced by unity and the differentials 
dQi, dp,  and dp,' do not appear. The body-fixed coordinates for 
the atomic fragment i ,  rj,l', are just the coordinates of the origin 
(the center of fragment i ) ,  Le., ri,l' = (O,O,O). 

( c )  Linear Fragment. When fragment i is linear, the orien- 
tational coordinates are chosen to be the spherical polar angles 
Bi and Qi. Their conjugate momenta are denoted by Po, and poi, 
respectively. The transformed momenta are given by p,' = (p,,, 
pb,) with pa, = - p?,/sin Or and Pb, = Po,. The Jacobian Id pi/d p,'l 
is thus equal to sin B i .  

The kinetic energy for fragment i is given in terms of these 
transformed momenta by 

(17) 

where Z> is the moment of inertia for fragment i in its transi- 
tion-state structure. For a diatomic fragment we have, for ex- 
ample, Z; = mlm2r>(R) / (ml  + m2),  where ml and m2 are the 
masses of the two atoms in the diatomic fragment and r,(R) is 
the equilibrium separation distance between the two atoms for 
the given separation distance R between the centers of masses of 
the two fragments. 

The Cartesian components of the space-fixed rotational angular 
momentum for fragment i, j,,, jy,, and j , ,  are now given by8 

TP = (pa: + pb:)/21> 

j,, = -p+, COS 4j COS Bj/sin B i  - pel sin 4i 

j,,, = -p+, sin 4j cos Bi/sin 4 + Pa, cos 4i 

Jz, = P+, (18) 

The inverse rotation matrix A;'(Qi) used to determine the 
transformation from orientational coordinates to space-fixed co- 
ordinates is given by7 

) ( -sin Bi 0 cos Bi 

cos 4 cos $i -sin $ j  sin 4 cos bi 
A;'(Q,) = cos Bj sin d j  cos di sin Bj sin $i (19) 

The initial body-futed coordinates rj/ of atom j in fragment i must 
be aligned in agreement with the definition of the Cartesian 
components of the angular momenta given in eq 18. For this 
reason the axis of the linear fragment for these initial coordinates 
rjJ is aligned along the space-fixed z axis, and the center of mass 
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(25 )  
-COS qj  sin $i - cos Oi cos 4j sin +i 

cos + j  cos $ j  - cos Bi sin $ j  sin + j  

sin +i sin Bj 

sin 4 cos @ j  

sin 0, sin 4j 
cos 4 

of riJ is placed at  the origin. For the specific case of a diatomic 
fragment the body-fixed coordinates riJ are thus given as 

The free-rotation canonical partition function for use in the 

(21) 

averaging in eq 12 is" 

Q? $-exp(-BT:) sin Bi dQj dp,' 

= 2Z>kBT/h2 

where no degeneracy factor need be included in a partition function 
used purely for averaging. 
(d) Nonlinear Fragment. When fragment i is nonlinear, the 

treatment is analogous to that given previously in part 1, where 
the dissociation into two nonlinear fragments was treated. The 
results are given here for completeness. The orientational coor- 
dinates are taken to be the Euler angles Oi,  &, and $i. Their 
conjugate momenta are then denoted by Po,, p4,, and p+,, respec- 
tively. The transformed momenta are given by p,' = (pa,, pb,, p,)  
with8 

pol = -cos $j csc Bp+, + COS $i cot 0p+, + sin $pel 

Pbl = sin +bi csc $pol - sin $i cot Bp+, + cos $pel 

PC, = Pq, (22) 

The Jacobian Idp,/dp,.'l is then equal to sin Bi. 
For the kinetic energy of fragment i the specific expression 

depends on whether the fragment is an asymmetric top, a sym- 
metric top, or a spherical top. Since all cases are included in the 
asymmetric top expression, we employ it. In terms of the 
transformed momenta p,' this kinetic energy is given by8 

where la:, ZBJ, and are the principal moments of inertia of 
fragment i for the transition-state structure. 

The Cartesian components of the space-fmed rotational angular 
momentum for fragment i, j,,, jyl, and j,, are given in terms of the 
transformed momenta p,' by 

j,, = (cos Bi cos 4i cos $i - sin 4i sin $j)pal - 

jy i  = (cos Bi sin di cos qi + cos 4j sin $i)pal + 
(cos Bi cos 4i sin $j  + sin 4i cos $j)Pb, + sin Bi cos 4pc, 

(cos q$ cos $i - cos Bi sin 4j sin $Jpbl + sin Bi sin 4pc, 

j,, = -sin 4 cos $,pal + sin Bi sin +bipbi + cos Opcl (24) 

The inverse rotation matrix A;'($) used to determine the 
transformation from orientational coordinates to space-fixed co- 
ordinates is given by eq 25 of Chart I.7 The initial body-fixed 
coordinates ri/ must be aligned in agreement with the definition 
of the Cartesian components of the angular momenta given in eq 
24. Thus, the principal axes a, b, and c for these body-fixed 
coordinates ri/ are aligned along the space-fixed x,  y ,  and z axes, 
respectively. Additionally, the center of mass of rd is at the origin. 

(11) McQuarrie, D. A. Sfatistical Mechanics; Harper and Row: New 
York, 1976. 
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The definition of the free-rotation canonical partition function 
for use in the averaging is” 

Klippenstein and Marcus 

appears with this inner minimum being very shallow and having 
a much larger number of states than the Rt  = m one. At still 
higher energies the number of states a t  the inner minimum begins 
to approach the number at the Rt  = m minimum. Our potential 
energy surface needs improvement a t  smaller Rt’s to see how the 
trend changes as E is increased further. 

In the energy region where there are two transition states it 
is useful to consider the modified formalism resulting from the 
two transition states which act in series. In the case of the recently 
studied N C N O  dissociation reaction,l0 G y  typically proved to 
be a small maximum relative to the larger value of the number 
of states occurring at each of the two minima, Le., G y  = 
max (NLJ,NiJ),  where NLJ and N i J  are the number of states for 
the two minima. Thus, the various two-transition state t h e ~ r i e s ’ ~ J ~  
largely reduced almost everywhere to eq 1, where NEJ(Rt)  now 
denotes the smaller of NLJ and N i J ,  In particular, we found that 
the rate constants calculated from the lower bound formula given 
below differed by at most a factor of 0.5 from those calculated 
with eq 1, using in the latter the global minimum for NEJ(Rt) .  
Additionally, the rate constant obtained from the “unified sta- 
tistical theory” discussed below differed by at  most a factor of 
0.8. 

A treatment of the typical situation in chemical reactions when 
there are two values of R where the reactive flux may be reflected 
and/or transmitted was first given by Hirschfelder and Wigner.16 
Subsequently, MillerI4 introduced into that formalism expressions 
for the reflection probabilities in terms of statistical flux ratios 
(or equivalently in terms of the number of states) and obtained 
a “unified statistical theory” (UST). As noted by Chesnavich et 
al.,” when these ideas are applied to a unimolecular dissociation 
reaction the rate constant is given by” 

1 
QY lexp(-PTY) sin Bi dQi dp,’ 

IV. Trend of R t  with Increasing Energy E 
In several  calculation^^^^^^^^^^^^^ we and others have noticed a 

tendency of Rt,  the fragment-fragment separation distance in the 
transition state, to decrease with increasing energy E. This effect 
has certain important consequences, which we describe after first 
considering its origin analytically. 

The position Rt of the transition state is the solution of 

dNEJ(Rt ) /dRt  = 0 (27) 

which yields, implicitly, Rt as a function of E. We may write 
the left-hand side as a function f (R t ,E)  and note that in the 
standard way the ordinary derivative dRt/dE is given by 

dRt/dE = -(a f / a E )  (af / a N )  (28) 

But df/aRt equals aZNEJ(Rt)/aRt2, and this quantity is positive 
since NEj(R) is a minimum at  R = Rt .  Further, upon inter- 
changing the order of partial differentiation, af/aE can be written 
as (d/aRt)(aNEJ(Rt)/aE),  Le., (d /dRt)pE)(Rt) ,  where pE](Rt)  
is the density of states, dNEJ(R)/dR, of the transition state at R 
= Rt and at the energy E. It has usually been the case that since 
the hindered rotations at smaller R become free rotations at larger 
R and, hence, that the states become more closely spaced as R 
increases, (a/aRt)pE)(Rt) tends to be positive. One circumstance 
could modify this. As R increases, there will be somewhat less 
energy available for distribution among the transitional modes, 
since the bonding potential energy of the fragments is less negative. 
This factor above would make apE] (Rt ) /aRt  negative, but ap- 
parently the first factor is the dominant one in the few cases we 
have considered thus far and for the limited energy range for which 
the model potential energy surfaces used are valid. At higher 
energies (e.g., above about 3000 cm-I for the study of ref 10) the 
model potential energy surfaces are not accurate enough and so 
no conclusions may be drawn as to which of the above factors is 
the dominant one. 

This result on dRt/dE has some major implications: At very 
low energies E the Rt occurs at the R - limit and phase space 
theory6 (PST) and the variationally implemented RRKM theory 
become rather similar. However, with increasing energy the 
overall minimum in the number of states NEJ(Rt)  occurs a t  R’s 
which are less than the PST R?s, where the latter denote the 
location of the orbital angular momentum (&dependent effective 
potential energy barriers. As a result, a t  these energies, when 
dRt/dE is negative, there is increasing deviation between PST 
and variationally implemented RRKM theory; i.e., the transition 
state under these conditions becomes increasingly “tight”. Again, 
in the case of fragment-fragment recombination this effect, when 
thermally averaged to yield a high-pressure rate constant, yields 
an Rt which decreases as the temperature increases. Such an 
effect causes the high-pressure recombination rate constant to 
decrease with increasing t e m p e r a t ~ r e . ~ ~ ~ J ~ J ~  

V. Case of Two Minima in the NEj(R) Plot 
From our previous calculations we have found that in a certain 

energy range there may be two local minima in the number of 
states. In particular, we have observed the following change in 
the plot of the number of states versus R as the energy E is 
increased above the dissociation limit: At low excess energies there 
is basically only one minimum (or smallest value) which occurs 
a t  Rt = m. At slightly higher excess energies an inner minimum 

(12) Rai, S. N.; Truhlar, D. G. J. Chem. Phys. 1983, 79, 6046. 
(13) Hase, W. L. Chem. Phys. Lett. 1987, 139, 389, and references cited 

therein. Quack, M.; Troe, J. Ber. Bunsen-Ges Phys. Chem. 1977, 81, 329. 
Smith, G. P.; Golden, D. M. Inr. J .  Chem. Kiner. 1978, 10, 489. Benson, S. 
W. Con. J .  Chem. 1983, 61, 881. 

Subsequently, studies by Pollak et al.ls showed that the as- 
sumption embodied in eq 29 of having statistically determined 
reflection probabilities is not a good one at all energies. For simple 
reactions such as H + H2 - H2 + H and F + H2 - FH + H, 
UST was shown to give substantially larger reaction probabilities 
at high energies than those determined from classical trajectories. 
Pollak et al.Is then presented a method for determining a lower 
bound for the reaction probabilities based on consideration of only 
those trajectories which cross the maximum flux surface 2 times 
or less. The dynamical results of ref 15 were shown to be in 
significantly better agreement with the lower bound probabilities 
than with UST for the cases examined. This result can once again 
be directly applied to the unimolecular dissociation case, and the 
rate constant is then given by 

(NE!! + NE; - X Y )  
k€J  = (30) 

However, as already noted, for the NCNO system we have studied, 
formulas 29 and 30 reduce in practice to eq 1, with NEj having 
now the smaller of the number of states at the two local minima. 

VI. Role of the Repulsive Curves in Unimolecular 
Dissociation 

Typically, in a unimolecular dissociation into two fragments 
there are two or more potential energy curves, for example the 
singlet and triplet curves in Figure 1. If phase space theory is 
applied,I8 the [-dependent effective potential energy barriers may 
occur at such large separation distances that these curves are 
almost degenerate at the barrier maximum, and the question arises 

hPEJ 

(14) Miller, W. H. J. Chem. Phys. 1976, 65, 2216. 
(15) Pollak, E.; Pechukas, P. J .  Chem. Phys. 1979, 70, 325. Pollak, E.; 

(16) Hirschfelder, J. 0.; Wigner, E. J. Chem. Phys. 1939, 7 ,  616. 
(17) Chesnavich, W. J.; Bass, L.; Su, T.; Bowers, M. T. J. Chem. Phys. 

1981, 74, 2228. Calcultions using the unified statistical model are also de- 

Child, M. S.; Pechukas, P. J. Chem. Phys. 1980, 72, 1669. 

scribed in ref 12. 
(18) For other discussions of which states to include in PST calculations 

see, for example: Herbst, E.; Knudson, S. K. Chem. Phys. 1981, 55, 293. 
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VII. Concluding Remarks 

L 
R 

Figure 1. Schematic diagram of potential energy curves for typical 
unimolecular dissociation into two fragments. S denotes the lower singlet 
level, and T denotes the upper triplet level. V(R) is the minimum p- 
tential energy for a given center-of-mass to center-of-mass separation 
distance R. 

whether both the singlet and triplet levels or just the singlet one 
should be used in the PST calculation. In the variational RRKM 
method, on the other hand, the R f  moves to shorter fragment- 
fragment separation distances, even when the excess energy is quite 
small (e.g., when E i= 500 cm-' in both the C2H6 - 2CH3 and 
the NCNO - N C  + N O  cases). In particular, it moves to a value 
where the singlet-triplet splitting becomes fairly large relative 
to the excess energy. In this case the contribution of the triplet 
state to NE$ becomes relatively minor. Moreover, it is also 
arguable whether there would be time between Rt and the PST 
RI for the system to undergo an intersystem crossing from the 
singlet to the triplet state. 

Thus, in our past and current applications we have largely 
confined our attention to calculating NE$ from the singlet curve, 
rather than from any excited-state curves. We have examined 
in detail in ref 10 the case of N C N O  decomposition. Here, there 
is the ground-state singlet So and a weakly bound triplet T,, both 
leading to the quadruply degenerate asymptotic state (NO1/,CN). 
There are also the upper repulsive singlet SI and Tz curves, leading 
to an asymptote (N03&N) 120 cm-' higher in energy than that 
of (NO,&N). The upper two curves (ref 10) may be disregarded 
in the reaction rate calculation, for the reason described in the 
previous paragraph. We found, using an approximate potential 
energy function and assuming rapid singlet-triplet conversions, 
that the lower triplet TI state made a contribution to NEJ only 
a t  low E's. But even the inclusion of that contribution becomes 
uncertain if the singlet-triplet conversion rate is not high in the 
transition-state region. 

General formulas for determining NEAR), the number of states 
as a function of center-of-mass to center-of-mass separation for 
the various possible fragment cases, have been presented. From 
the specific formulas given for the three different possible types 
of fragments the overall computational expression for any com- 
bination of two fragments is immediately obtained. In particular, 
eq 12 and 13 are used with the combinations (sum, product, etc.) 
of the formulas given for the two separate types of fragments. This 
method is a general one and may be easily applied to a large 
variety of unimolecular dissociation reactions. The method can 
also be modified to treat unimolecular isomerizations, in which 
case there is only one fragment. It has been applied in recent 
papers to experimental data on the unimolecular dissociation 
reactions CzH, - 2CH35 and N C N O  - NC + NO." 

In the application of this method the uncertain quantity is the 
molecular potential energy surface. In previous  application^'^^-'^ 
model potential energy surfaces were used. At short separation 
distances the repulsive interactions between the nonbonded atoms 
are much too strong in these model potential energy functions. 
We found as a result that there appeared to be no local minimum 
in the NEJ(R) plot a t  energies above about 3000 cm-' for the 
N C N O  - N C  + N O  reaction. This disappearance of the local 
minimum in NEAR) indicates the need for more accurate potential 
energy surfaces. A further indication of just how strongly repulsive 
the model potential energy surface is a t  short distances is given 
by the comparison of NEAR) at R = Re with the number of states 
for the reactant (excluding the dissociation coordinate) as de- 
termined by Whitten-Rabinovitch type calculations. These two 
quantities are given by 0.1 X lo7 and 4 X lo7, respectively, for 
an excess energy of 2348 cm-' and a total angular momentum 
of 5, for the parameters in ref 10. One hope is that studies such 
as those of ref 10 will motivate the ab initio calculation of potential 
energy surfaces for the fragment-fragment hindered rotational 
motions at center-of-mass to center-of-mass separation distances 
near Rf (about 3.0-4.5 %r for the NCNO - NC + NO reaction). 

We have also presented here arguments providing some insight 
into the previously observed trend of Rt decreasing with increasing 
energy. This trend indicates a larger deviation with increasing 
energy of RRKM rates from those of PST. A discussion of the 
various formulas for considering the effect of two transition states 
in series has also been given, along with a consideration of their 
importance in unimolecular dissociation reactions. Finally, a 
discussion of which potential energy surfaces should be used in 
unimolecular dissociation rate calculations has also been given. 
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Rotationally resolved fluorescence excitation spectra are measured and assigned for vibrational bands 42, 2'4', 1'4', 9 ,  214261, 
2243, 2'5', and 214251 in the A'A2 state of DzCO in a cold supersonic molecular beam. The rotational constants and origins 
of each vibrational band are obtained. Several new vibrational bands are observed, and approximate band centers measured 
with 1-cm-' resolution. 

Introduction because it is large enough to undergo complex photochemistry4 
and small enou& to be ~he~reticall~tractable.~ * High-resolution 
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The history of formaldehyde spectroscopy, photophysics, and 
photochemistry is both long and interesting,'** and much of it has 
unfolded in the laboratories of E. K. C. Lees3 Studies on the 
forefront of chemical physics continue to focus on formaldehyde and references therein. 
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