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The determination of a quantum correction factor for the transitional modes of a unimolecular
dissociation/free radical recombination reaction having a transition state of varying looseness
is described. The quantum correction factor for the high pressure canonical rate constant is
calculated via Monte Carlo path integral evaluation of partition function ratios, and is applied

to the recombination reaction 2CH, — C,H,.

i. INTRODUCTION

In RRKM theory the (microcanonical) unimolecular

rate constant k, is given by’

NL
kgy=——,
hpes
where N 1, is the number of states of the transition state with
energy equal to or less than E, and with a given total angular
momentum J; p, is the density of states for the reactants at
the given E and J. In the case of a unimolecular dissociation
of the parent molecule into two particles, the coordinates
which contribute to N}, are largely of two types: (i) vibra-
tional modes, usually of high frequency, whose characteris-
tic motion does not change appreciably from the parent mol-
ecule to the transition state, and (ii) the remaining modes
whose characteristic motion does change. The latter consist,
typically, of coupled degrees of freedom which are fragment
bending plus overall rotational motions, and which subse-
quently become hindered relative rotations plus overall rota-
tional motion in the transition state. In the fragment mole-
cules these modes are typically the free rotations and relative
translation of the two fragments. The fragment-fragment
stretching in the parent molecule typically becomes the reac-
tion coordinate itself.

Wardlaw and Marcus*~’ separated the modes into these
“conserved” and “transitional” modes, respectively. In this
separation the conserved modes were treated quantum me-
chanically and the transitional modes were treated classical-
ly. Their result for the number of states of the transition state
for a given energy and total angular momentum J was, there-
by, given as the convolution

(1.1)

E
NL,:I N, (E—€)Q,(e)de, (1.2)
(4]
where N, (E — €) is the number of states in the conserved
modes with energy less than or equal to E — ¢, and 2, (¢€) is
the number of states in the transitional modes with total
angular momentum equal to J, and with energy in the range
e€to€ +de. N, (E — €) was calculated via a direct quantum
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count, while Q, (¢) was obtained by transformation to ac-
tion angle coordinates followed by ‘“‘crude” Monte Carlo
evaluation of the phase space integral. Purely classical
Monte Carlo phase space volume calculations are described
in, e.g., Refs. 8-17.

Many other approaches to the treatment of the transi-
tional modes have been given previously. (See, e.g., Refs.
18-26.) However, the only treatment which has included all
of the couplings within the transitional modes, while main-
taining a quantum treatment for the conserved modes, ap-
pears to be that of Wardlaw and Marcus.*” In a recent arti-
cle, Pacey”’ has discussed and applied many of the
approaches to the two-dimensional hindered rotor motion
on a model sinusoidal potential. Comparison of the results
obtained for the partition function from the various ap-
proaches with that determined from the exact quantum par-
tition function for the same model potential shows the differ-
ences between the various approaches can be significant. In
another recent study on the bending/rotation problem, Hase
et al” have compared rate constants for the
H + CH,—CH, recombination reaction with the transi-
tional modes treated as either classical hindered rotors or
harmonic oscillators (quantum or classical). They find that
the partition functions and rate constants can vary by about
10% depending on how these modes are treated.

As noted in the studies of Wardlaw and Marcus, the
question arises, what are the quantum corrections for the
contribution of the transitional modes to the overall rate.
When the transition state is nearly “loose” such a correction
is expected to be minor. One direct approach to calculating
the correction would be to determine the number of quan-
tum states for the transitional modes as a function of energy
and total angular momentum, and convolute that result with
the quantum result for the “conserved” modes. This ap-
proach is currently under study. In the present manuscript,
however, rather than looking at individual k.,’s, we have
chosen to consider first the cumulative effect of the transi-
tional modes by determining their quantum mechanical con-
tribution to the high pressure canonical rate constant
k_, (T) defined below. The position of the transition state is
determined variationally,”®->! namely, as that value (the
“transition value”) of the reaction coordinate for which the
calculated k _ (7T is a minimum.
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In the present study we note that £ (T) is given by a
ratio of partition functions and so the quantum mechanical
corrections, aside from quantum corrections due to tunnel-
ing along the reaction coordinate, may be determined by
considering the Monte Carlo path integral evaluation of par-
tition function ratios. The correction factor can thus be ob-
tained for any potential energy surface and is for the canoni-
cal rate constant. In Sec. II, for comparison, the canonical
rate constant is determined using quantum partition func-
tions for the conserved modes and classical partition func-
tions for the transitional modes. The determination of the
quantum correction for the transitional modes is presented
in Sec. II1. In Sec. IV results for the methyl radical recom-
bination reaction: 2CH,—C,H; are presented and dis-
cussed. The correction proves to be relatively small for the
temperatures investigated.

Il. DETERMINATION OF £_ (7) USING CLASSICAL
CANONICAL TST FOR THE TRANSITIONAL MODES

The canonical rate constant k _ (7)) is given in terms of
Nt by32
EJ

koD =—E—|"aE S I+ DN exp(—BE),
0 =0

hQ"(T) J
(2.1)

where Q7(7T) is the partition function for the reactants (in
the center-of-mass system and excluding electronic degrees
of freedom), g, is the ratio of the electronic partition func-
tion for the transition state to that for the reactants, and
B =1/kyT. In a comparative study Wardlaw and Marcus
have evaluated £ (T) at several levels.b In the first method
they determined the location of the transition state varia-
tionally for each E and J and then evaluated the sum and
integral in Eq. (2.1) numerically. In a second calculation,
which represents an approximation to the first, they deter-
mined the transition state location for each E by minimizing
aJ-sampled integrand, and in a third calculation, which rep-
resents still a further approximation, they found the transi-
tion state location of an ensemble which sampled over E and
Jatagiven 7. They noted that the three k _ (7')’s are related
by k! (T)<kT (D) <k™(T),k' (T) being the correct

|

=1

one. This last calculation, k ''( T), is equivalent’* to deter-
mining k _ (T variationally from the expression

kyT Q1

h QF
where Q7 is the partition function for the transition state.
The Q' and Q" in Eq. (2.2) are calculated relative to the

same energy zero. Separating the modes into the conserved
modes (c) and the transitional modes (¢) implies that
ksT Q1 Q1
hoQror’
where Q! and Q7 are the partition functions for the con-
served modes at the transition state and at the reactant con-
figuration, respectively. They can be evaluated using quan-
tum oscillator partition functions. Q7 and Q7 are the
partition functions for the transitional modes at the transi-
tion state and at the reactant configuration, respectively.
For a free radical recombination reaction, the classical
partition function for the transitional modes of the reactants
Q7 separates into the translational partition function for a
particle of mass i ,,, where it is the reduced mass of the two
fragments, and the product of the classical free-rotor parti-
tion functions for the two reactant fragments,
I _ 07 ' [m(2k, T/#YL Il ] 2, where I, I, and I,
are the moments of inertia of reactant fragment /, and g; is
the symmetry number for reactant fragment i. The classical
partition function for the transitional modes of the transition
state is given by

1
Qf= ; f dpe,, dpy,, d6,, dd,,

k (T)=g, , (2.2)

k,(T) =g, (2.3)

2
X( 11 dpo,dps, dpy, 46, 46, Jexp( — BH,),
i=1
24)

where o' is the symmetry factor for the transition state,
6,,4;, and ¢, are the Euler angles** for the absolute orienta-
tion in space of fragment 7, and 8,, and ¢,, describe the abso-
lute orientation in space of the line of centers. H, is the classi-
cal Hamiltonian for the transitional degrees of freedom and
is given by

1 7 2 1 o
H,=————(2 +—.—L-)+ ————— [ (py, — Py COs B;)cos ¢, — p, sin O, sin 1, ]°
ars, o T int g py 21, sin® 6, [ s, =Py )c0S 3, — p, sin 6, sin ¢ ]

1 . . 1
2 sl e, [ (P, — Py, cos 6;)sin ¢, + pg, sin §; cos ¢; ] 2+ EI_T-pi"] + V(R 1,6,,,6,,,0,9,¥), (2.5)
B, i c
I
Where eE (01702)! d)E (¢1)¢2)9 ‘I’E('ﬁp'/'Z)) and V(R Ty ¥ _1_ Z”I;kBT 2 trt rt 2y371/2
6,2:6,,,0,9,¥) is the potential energy for the given separa- Q= ot h? ‘.1;[1 [811—’IA’_I sl c(ksT/h%) ]

tion R ¥, and orientation of the rigid rotor fragments. I}, is
the “diatomic” moment of inertia for the centers of mass of
the two fragments and equals 4 ,,R *. I, I} ,and I}, are the
principal moments of inertia of the rigid body fragments
with their transition state structure.

Evaluation of the integral over the momenta yields

2
xf db,, dp,, sin 9.2( [146. dé, @y, sin 9,.)

i=1

xexp[ _ﬁV(R 1‘:0129¢12!e,¢"1’)] . (2-6)

Upon integration over the 8,,4;, and ¢, for a fixed 6,
and ¢,,, the result, by symmetry, is independent of the actual
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orientation in space, 6,, and ¢,,, of the two fragments, and so
the integral over 8,, and ¢,, may be immediately evaluated
to give

1
Q! ='0'_—1.QIdQI,hr’

where Q] is the usual classical diatomic partition function
2 5k, T /#, and

2.7)

2
ol =[ [ [87 LT85k T/H2 ]
i=1

xf ( .Ij, d6, dg, dy, sin a,.)

Xexp[ _B V(R 1‘907019y(b"l’)] s

with 8,, and ¢,, having been set equal to zero.

For the case of a reasonably loose transition state Q],,
can be evaluated via crude Monte Carlo integration.>* For a
tight transition state many of the configurations sampled
will not contribute to the integral and one might revert to the
calculation method of Wardlaw and Marcus*” or else use
some form of stratified sampling such as that discussed by
Farantos et al.'' for microcanonical RRKM determina-
tions. In the present application to the methyl radical recom-
bination reaction crude Monte Carlo integration sufficed.
The final Monte Carlo result for the rate constant for the
case of free radical recombination is

k<(T)

(2.8)

010y o of 8Tk T\ Mo sinh( 2kBT)
apzy] )
i=1

) M2 . ( hV:r )
sinh
2k, T
1 Nuc

—BV1,
N '_Z,I exp[ —BV]
(2.9)

o'

2 JLILIL \'?
X T 1 i
il;ll LIl )

where N, is the number of conserved vibrational modes for
the two fragments, and v, and v/ are the vibration frequen-
cies for the ith conserved mode of the reactants and of the
transition state, respectively. V; is the value of the potential
for the ith randomly selected configuration, and Ny, is the
number of random points.

11l. DETERMINATION OF THE QUANTUM PARTITION
FUNCTION FOR THE TRANSITIONAL MODES

The primitive P-point discretization of the path integral
expression for the quantum transitional mode partition
function is given by

Qj=fdA'---dAPdnl---an

P
X l‘I po(As+ l,As;B/P)po(ns+ l,ﬂs;ﬁ/P)

s=1

Xexp[ —_ % V(As,()’)] R (3.1)

where A’ refers to the line of centers orientations

A= (cos 81,,4%,), (3.2)
and £ refers to the Euler angles
2 2
o= H Q= H (cos 03,65,45). (3.3)
i=1 i=1
In Eq. (3.1), AP*'=A' and Q°+'=Q! while

Po(A° T LASB /P) and po(Q°+ Q%8 /P), the “free density
matrices,” are the density matrices for the free-rotor system
at a temperature PT. [The latter has V(A,Q)=0.]

In the present treatment the quantity of interest is the
combined partition function for the hindered rotation of the
two separate fragments and for the rotation of the line of
centers. If the integrals over )’ at fixed line of centers orien-
tations A°® are performed first, the resulting expression is in-
dependent of A® because there is no external field acting on
the reacting pair. Thus, the integrals over the A* may be
evaluated separately to give the partition function for the
rotation of a diatomic molecule with point masses equal to
those of the two fragments. Expressions for the remaining
partition function for the hindered rotations are now easily
obtained from the analogous expressions derived by Ku-
harski and Rossky,*® who utilized some results of Schul-
man>®? and introduced a short-time (““fixed-axis”) method>®
to determine the quantum partition function for the hin-
dered translational and hindered rotational degress of free-
dom of liquid H,O and D,0. A brief review of their deriva-
tions, with application to the present two fragment case, is
presented below for clarity.

The quantum partition function may be expressed as in
Eq. (2.7) except thatnow Q ], and Q] ,, are to be evaluated
quantum mechanically. In particular,

14
QIhr =J‘dﬂl"'dﬂp H po(ﬂs+l’ﬂs;ﬁ/}))

s=1

Xexp[ —% V(Q‘)] s (3.4)

and Q1 ,, the quantum diatomic partition function, is given
(forT>2I k,/#=0©,"") by the expansion*®

T 1(9O 1 {6\
b= [+ (F) 5 ()
Qs e,[+3 7 )T\ T

(%) ]
s\ 7T '
Using the least action approximation to the sum over all
classical paths for the transition from the orientation Q° to

the orientation °* ! in the time period 8%/ P gives the free
rotation matrix as®’

(3.5)

2
P LB /P)=C II [Dca: L8 /P) ]
i=1
Xexp[ — Soi (1058 /P)/H]

(3.6)

where C is a constant, D(£;*!,Q5;8/P) is the Van Vleck

determinant*® associated with the transition from € to

Q:*!in a time period of /P, and S¢, (', Q5;8/P) is

the action along the least action classical path between the

two orientations. In the exact free rotation matrix there are
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contributions from multiple rotations. However, for suffi-
ciently large P (“sufficiently small times 8 /P ') these contri-
butions are negligible, and, in the limit of large enough P, Eq.
(3.6) becomes exact.

A fixed-axis approximation is next introduced to deter-
mine the Van Vleck determinant and the classical action.?®
This fixed-axis approximation, which is valid for short times
and is thus accurate at large P or high temperature, yields®®

LTI [ I3+ 1s/2 ]2
(BA/P)? | sin(T+1+/2)
(3.7)

D, ('} 38#/P) =

where I'; + 1, the arc length of the rotation from orientation
s to orientation s + 1 of fragment ;, is given by>®
it =2cos™(yi*t "), (3.8)

and y;* '~ is a quaternion parameter for the rotation from
orientation ¥ to orientation €+, the four of which, in

general, are given in terms of Euler angles as*!*?
¥+¢) cos ¥ —98) ¢)
= 0§ — €08 ~——1=, 7 =sin —
X T 1E 2 2
(3.9)
§‘—-s1n2 “’b ¢) §=cos—q—s1n~—-———-(¢-;¢).

The use of these quaternion parameters provides a conven-
ient set of parameters to describe the orientation after a rota-
tion has been performed on some initial orientation, and they
also provide a convenient method for determining the rela-
tive orientation of two orientations. (See, e.g., Refs. 41 and
42.)

The least classical action for the rotation from orienta-
tion s to orientation s + 1 of fragment /, in the fixed-axis
approximation, is given by

([3* )P

Sea (i LQ58/P) = 7T

(ﬁ;H— lv"I.ﬁ?-% l,s) ,

(3.10)

where, using the quaternions, the rotation axis fi; * ' is given
in the prinicpal axis frame by>®

s+ 1Ly 1

s+ls
' sin(5*14/2) O

§s+1 +§s+lsk)
(3.11)

and the last term in parenthesis in Eq. (3.10) is a tensor
product, I being the moment of inertia tensor in the principal
axis frame. Equation (3.10) has the form which parallels the
usual one for a free translational coordinate: a distance
squared (here an arc length squared), multiplied by a mass
(here amoment of inertia), and divided by twice a time, £/
P.

The final expression for the quantum partition function
for the hindered rotation of two rigid rotor molecules is thus

2 IT,IT‘ITl 1/2
th, =C[ H A" B, C.]
¢ i=1 (BA/P)?

2 Fs+1,s/2
1, f
fdﬂ da I;I { I;I sin(T5+/2)

L, (nf-* Lo —"—’} )”

B o }
— V().
Xexp[ 7 )

X exp[

(3.12)

As discussed by Doll and Myers,** quantum partition
functions may be obtained from Monte Carlo evaluation of
an appropriate partition function ratio. In the present article
two alternative partition function ratios were used to deter-
mine the quantum partition function. One alternative in-
volves the determination of the ratio of the quantum parti-
tion function relative to that for two free rotors:

Qlw, _fdT dexp[ — (B/P)ZL., V(@] 3.13)
Qrtfro j‘drA
where
Qs =de‘A, (3.14a)
dT =d Q' -dQF, (3.14b)
and
P
A= ] po .8 /P). (3.14¢c)

s== ]
The quantum partition function for the free rotation of the
two fragments in their transition state configuration, @7, >
is given by the high temperature expansion*

2 # 2 1}
T i
117, ¥ + IY ILIt ’
0, =Qlpg ~I=I; [ 24kBTc%c(1§f LIt )]
(3.15)
where

2
QL;C, = H gﬂ'z[Sﬂslelg‘I&]l/2(kBT/h 2)3/2‘
i=1
(3.16)

Thus, Q},,, may be obtained from Egs. (3.13)-(3.16) with
Monte Carlo evaluation of the ratio givenin Eq. (3.13). This
alternative is once again restricted to reasonably loose transi-
tion states.

The other alternative is to calculate the ratio of the
quantum to the classical partition function. The classical
partition function for the hindered rotor degrees of freedom

may be written as
§dQ exp[ — V(D]
Q””'C) = Qtjrc, fd ﬂl

Multiplying both sides of Eq. (3.17) by Q}},Q/Q § ey and
using Eq. (3.14a), yields

§dT A 5d Q! expl
a9

3.17)

—BV(Qh)]

t,frg
Q t,hrey =

Ql,fr
- (3.18)
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where d I and A are given by Egs. (3.14b) and (3.14c), re-
spectively. Since f4 d Q- - -dQFisindependentof ', fd T A4
can be written as(fd Q') (§4 d Q*---dQ"), and hence Eq.
(3.18) may be written as

Q I,frg
Q tfra

Thus, using Egs. (3.13), (3.14a), and (3.19), the ratio of the
quantum to classical partition functions for the transitional
modes may be written as

Q .tr,th
Q I,hrc,

Qe (3.19)

—-JdI‘A exp[ —BV(QH].

_ Q,J,Q §dT A exp| — (B/P)2I_ V(@) ]
Q,J,C, §dT A exp[ — BV (Q")] '

(3.20)

The Monte Carlo calculation of this ratio is feasible regard-
less of how tight or loose the transition state is. On the other
hand, the determination of k € (T') (the quantum free radi-
cal recombination rate constant) from the Q} hrg in Eq.
(3.13) requires only a single Monte Carlo integration, rather
than, as in Eq. (3.20), the Monte Carlo evaluation of both
the ratio Q7 Lhrg! Q1. and the quantity Q,, .

Importance sampling techniques*>*® may now be used
together with the fixed-axis approximation for 4 discussed
above, in the Monte Carlo evaluation of the path integral
ratios given in Eqs. (3.13) and (3.20). In particular, in the
evaluation of Eq. (3.20) a weighting factor

W, =4 exp[ V(Q’)] (3.21)
with A given by Eq. (3.14c¢), is used to determine whether to
accept or reject each random step generated in accordance
with the parameters described in the next section.

The integrand in Eq. (3.20) which is summed up is then

Y; =exp[ B [ > V) —

s=1

V(Q')P” , (3.22)

with the quantum to classical ratio being given by
Q Ith
Q thre

Multiplying the result of this Monte Carlo evaluation of Eq.
(3.13) by the quantum correction factor for the diatomic
term Q 1, [given by the quantity in brackets in Eq. (3.5)]
and then dividing by the quantum correction factor for Q7
[given by the term multiplying Q vy I EQ. (3.15), with the
transition state moments of inertia replaced by those for the
reactant configuration] yields the ratio k € (T)/k < (T).

For the quantum to free-rotor ratio given in Eq. (3.13)
the weighting factor is, instead,

Q Nmc
- t,er z I’j,

QIJ’Cl =1

(3.23)

W, = A, (3.24)
and the integrand in Eq (3.13) is now given by
Y, =exp| — = z Vo) (3.25)

s=1
The result of this Monte Carlo evaluation of Eq. (3.13) is
next multiplied by the quantum expression for @, given by
Eq. (3.5), to give the quantum resuit for Q. Substituting

this result into Eq. (2.3) and inserting the quantum correc-
tion factor for Q@ yields the quantum free radical recombin-
ation rate constant k € (T).

V. RESULTS AND DISCUSSION

The two formalisms described above were implemented
for the methyl radical recombination reaction using the po-
tential energy function employed by Wardlaw and Mar-
cus.>® The structure of the rigid body fragments for a given
R " were also taken to be as in Refs. 5, and 6. g,,0cy,, and ot
were taken to be 1/4, 6, and 72, respectively.

For the evaluation of the quantum to free-rotor ratio the
following procedure was followed: (1) One of the two frag-
ments / was chosen randomly and an absolute orientation in
space, which we will denote by s = 0, was chosen random-
ly.*” The subsequent points [the path integral points in Eq.
(3.1)] correspond to s = 1,...,P. The molecule correspond-
ing to fragment /, and path integral discretization point s will
be denoted as (i,s), and the molecule corresponding to the
s = 0 point is denoted by (7,0). For this method, this orienta-
tion has no effect on the weighting factor and so was always
accepted. (2) Next, one of the discretization points s was
chosen randomly, and then a rotation about a randomly cho-
sen axis*® of the old orientation of molecule (i,s) relative to
molecule (£,0) was performed. The magnitude of the rota-
tion was chosen as R 6{’, where R is a random number
between O and 1, and &7, the maximum magnitude of the
rotation, was chosen to give a roughly 50% acceptance ra-
tio*® of the rotations. (3) The new orientation of molecule
(i,s) relative to the zeroth order orientation (i,0) was then
calculated using the formula for the composition of quater-
nions given in Eq. (33) of Ref. 41. (4) The new orientation
of molecule (i,s) relative to that of (i,s + 1), and that of
(i,s — 1) was next calculated from the known orientations of
(is), (i,s + 1), and (i,s — 1) relative to that of (i,0), using
the formula for relative quaternions given by Eq. (38) of
Ref. 41. (5) The ratio of the weighting factor W, given in
Eq. (3.24), for this new orientation relative to W for the old
orientation was calculated. If this number was greater than a
random number between 0 and 1 then the rotation was ac-
cepted. Otherwise the rotation in step (2) was rejected and
the old relative orientations of (i,s) to (i,0), (i,s) to
(i,s + 1), and (i,s) to (i,s — 1) were restored to their old
values. (6) The absolute orientation in space of molecule
(Z,5) was then calculated, from Eq. (33) of Ref. 41 for the
composition of quaternions, using the orientation of mole-
cule (i,s) relative to that of molecule (7,0) and the absolute
orientation in space of molecule (i,0). The new value of the
integrand was then calculated from Eq. (3.25) using the new
absolute orientation in space of molecule (i,s). This process
was then repeated until the desired number of Monte Carlo
points was reached.

The evaluation of the quantum to classical ratio was
calculated in a similar manner except that now the weighting
factor W, given in Eq. (3.21) is used. In this case W, does
depend on the “zeroth” order orientation so that step (1)
now involves a rotation of random magnitude, within a max-
imum magnitude 85, of the zeroth order orientation about a
randomly chosen axis.*® The maximum magnitude of the
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rotation here was much larger than that of step (2) (labeled
8" in order to allow for an efficient sampling over configu-
ration space, as discussed by Kuharski and Rossky.>® The
other steps were identical to those in the quantum to free-
rotor case, except in the present case the old (/,0) absolute
orientation also had to be restored in step (5) whenever a
move was rejected. The overall acceptance ratio was once
again kept at about 50%* by varying the parameters 85" and
7.

All of the calculations discussed here were easily pro-
grammed and large computation times were not required.>
The results for kS(T), k2(T), and the ratio
k2 (T)/k € (T) obtained from these calculations are given
in Table I for the four temperatures 300, 500, 1000, and 2000
K. All of the quantum results reported in Table I were calcu-
lated using P = 6 discretization points, since it was found
that the results had converged by this value of P.*! In the
classical calculations the estimated error, oM, was evaluat-

f 2/ N MC

ed from
/NMC] ’
r—l

where fis the Monte Carlo result for the quantity being eval-
uated [in the present case k' (T) ] and f; is a particular
value of the integrand. In the quantum calculations, due to
the strong correlation between successive states, o™ was
instead calculated from the variance of sequences of esti-
mates to f [f being either k2 (7) or the ratio
k2 (T)/k S (T)] over blocks of 100 to 1000 Monte Carlo
steps. (See, e.g., Ref. 46.)

Comparison of the results for £ €' (7) given in Table I,
with those given in Table VII of Ref. 6, shows that within the
Monte Carlo error bars the two calculations give the same
result. One also sees from Table I that, within the Monte
Carlo error bars, the quantum correction for recombination
in the present case is negligible, and is at most about 1% to
29%, and its temperature dependence is, within the statistical
error, also negligible. At low temperatures one might expect
that there would be a larger quantum correction for these

oM = (4.1)

TABLE I. Quantum corrections from path integration.

Temp R™ A9 (N°+ouc® k2 (N +ouc® Ratic® +opyc©
(K) (A) (10" cm® mol ™) (10" cm® mol ")
300 4.2 5.06 + 0.02 4.99 +0.02 1,002 + 0.004
500 3.8 4.32 +0.03 4.31 + 0.04 0.999 + 0.006
1000 3.4 2.83 +0.03 2.75 + 0.04 0.997 + 0.007
2000 3.0 1.38 + 0.02 1.34 + 0.03 1.024 + 0.008

* As determined in Ref. 6.

® As determined by the present classical Monte Carlo calculation.

¢ omc refers to the Monte Carlo uncertainties determined as discussed in the
text.

9 Asdetermined by the quantum to free-rotor ratio path integral ratio calcu-
lation. [See Eq. (3.13).]

¢k 2 /k < as determined by the quantum to classical ratio path integral cal-
culation. [See Eq. (3.20).]

tion of the transition state moves to larger separation dis-
tances and so the partition function for the transitional
modes becomes more and more like the product of free-rotor
partition functions for which the quantum correction is rela-
tively minor (except at quite low temperatures in which case
one expects the quantum corrections for the transitional
modes of the transition state and for the transitional modes
of the reactants to cancel). Conversely, at high temperatures
one might expect a quantum correction due to the decrease
in R, causing an increase in the steepness of the potential
energy function. That this is not the case here must be be-
cause the increase in temperature causing more classical be-
havior balances out the increase in steepness causing quan-
tum effects. In other systems which are “tighter” in the tran-
sition state region (have stronger fragment—fragment bend-
ing forces there) there may be larger quantum effects and the
present method may be used to determine the quantum cor-
rection.

It is interesting to compare these results with those
which can be obtained from a generalized Wigner-Kirk-
wood expansion of the partition function.’>* For the pres-
ent system of two symmetric tops plus a linear rigid rotor

modes. However, when the temperature is reduced the loca- this expansion of the partition function is given by >
|
Qlu, _ Qls, 5d6,,dp, YI2_,d6; o, dy, exp( —BV)[1 — B*#Z, (V. V)*/24m, ] 42)
Qe Qlra §d,, dg 11} d6; dp, d; exp( —~BV) ’
where
1 1 d 2 1 a 2
Lot () e (57
m, (Ve P) I 1\ 86, sin? 6,, \ 9
d 2 1 d 21 a 2
vV +———(——V~—V) +—-(—V) . 43
+3 [ (ae ) I snio, \36 a0 ) TE\%, )

The derivation of the Wigner—Kirkwood expansion for sym-
metric tops and for diatomic rotors has been given previous-
ly (see, e.g., Refs. 54 and 55).

Results based on Eqs. (4.2) and (4.3) are presented in
Table II. The Monte Carlo evaluations in the calculation of
k 2 (T) have been performed in exact analogy to the classi-
cal calculations of Table I. The ratio calculations have been

performed along the lines of the quantum calculations in
Table 1. In both cases the derivatives given in Eq. (4.3) were
calculated numerically, and, as a result of the extra potential
calls thus required, the evaluation of Eq. (4.2) required
more CPU time than the exact calculations. However, this
would not be the case if the potential was given in a form
which was easily differentiated analytically. Comparison of
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TABLE II. Quantum corrections from generalized Wigner-Kirkwood ex-
pansion.

Temp R™ k2(T° +ope© Ratio® 4 oy,¢ €
(K) (A) (10" cm® mol ')
300 4.2 5.00 +0.03 0.990 4+ 0.001
500 3.8 4.22 4+ 0.05 0.980 + 0.001
1000 34 2.70 + 0.06 0.980 + 0.001
2000 3.0 1.29 + 0.05 0.982 + 0.001

2 As determined in Ref. 6.
bDetermined by the direct evaluation of k€ (T) from the generalized

Wigner-Kirkwood expansion.

€ omc Tefers to the Monte Carlo uncertainties determined as discussed in the
text.

9Determined by the direct evaluation of k2 /k<' from the generalized

Wigner—Kirkwood expansion calculation. The Monte Carlo error bars in
this calculation are negligible.

the results given for k € (T') in Tables I and I shows that the
Wigner-Kirkwood result is approximately within the error
bars of the nonperturbative result. The smallness of oy, in
the last column of Table II is presumably because in that
calculation of a ratio k€ (T)/k < (T) only a small correc-
tion term had to be averaged.

Although the results given in Table I indicate a very
small correction for the transitional modes of a relatively
loose transition state at reasonable temperatures, there may
still be a large correction to some of the k,’s at lower ener-
gies. For some experimental situations quantities of particu-
lar interest are these k,’s, and, for this reason, we are pres-
ently studying the possibility of obtaining accurate
microcanonical correction factors. When only microcanoni-
cal rate constants kK, are needed, they can be obtained by
inverse Laplace transformation of results at fixed R, pro-
vided one evaluates k_ , (T) over a wide enough range of
temperatures. However, the determination of the constant E
and J rate constants requires a different approach.
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