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We present an algorithm to determine the averaged time evolution of the probability amplitude
for a nonstationary state in a quantum mechanical system. The algorithm is based on a low-
frequency expansion of the probability amplitude and is related to the generalized moment
expansion method which has been applied successfully to the description of dynamic
correlation functions in stochastic systems. It is shown that the proposed algorithm gives
excellent results for the description of quantum beats in the time evolution of the occupation
probability for a nonstationary state in model systems. The relation of the algorithm to other
theoretical approaches and the relevance for the description of intramolecular energy transfer

processes is discussed.

I. INTRODUCTION

Despite the already considerable complexity of a quan-
tum Hamiltonian describing an isolated polyatomic mole-
cule, the experimentally observed behavior of the time evolu-
tion of an initially prepared vibrational or vibronic state in
such a system is often very simple. In experiments pioneered
by Zewail and co-workers' either an oscillatory time behav-
ior of the occupation probability, i.e., “quantum beats,” * or
an approximately exponential decay,” or both,'? were en-
countered. The former behavior corresponds to an oscilla-
tory flow of energy between the prepared state and the rest of
the molecule, and the latter to a quasidissipative redistribu-
tion of energy within the molecule. The relative simplicity of
the physical situation—an isolated polyatomic molecule—
and the relative simplicity of the observed behavior, which
are in contrast to the complexity of dynamics when many
states are involved, pose a particular challenge for the theo-
retical description of the quantum dynamics of a nonstation-
ary state in such systems.?

In the present paper we concentrate on the situation
where an oscillatory flow of energy between an observed
state and the remaining states of the molecule occurs and
present a simple method to describe these quantum beats
quantitatively starting from a given Hamiltonian. The phys-
ical situation and the method are described in Sec. II. In Sec.
IIT we consider several model systems and compare the ex-
act solution with the present approximation method. In Sec.
IV we discuss the quality of the method and compare it with
the other approaches. In the Appendices several equivalent
formulations of the method are given: continued fracton ex-
pansion, an equivalent reduced Hamiltonian description, a
related simpler eigenvalue problem, and the method of inner
projections.

il. THEORY

It is a well-known quantum mechanical text book prob-
lem to determine the evolution of a nonstationary state. Nev-
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ertheless, it is useful to repeat it here in order to clarify the
idea of our method.

A quantum mechanical system can be prepared, for ex-
ample by a pulse of light, in a state |##(0)) which is not an
eigenstate of the Hamiltonian H. The time evolution of
|#(2)) is determined by the Schrédinger equation

d
 — =H 2.1
ldt [¥(8)) [¥(2)) (2.1)
and can be described through a spectral expansion
W) =3 (g, |¢(0))e™ g, (2.2)
J

with the |@;) being eigenstates of H with energy ;. From
Eq. (2.2) all temporal properties of the quantum system can
be derived. In pump-probe experiments* one is frequently
interested in the projection of |¢(¢)) on some other wave
function, e.g., on a dipole operator which, in turn, is operat-
ing on some particular vibronic state. In the present paper, to
illustrate and test the method, we shall consider the prob-
ability amplitude for the system being observed in the initial
state |¢(0)),

b(2) = (Y(O) (1)) = 3 be™ ™. (2.32)
J

This projection is also of experimental interest."? The expan-
sion coefficients b, are the square modulus of the overlap
between the initial state and the eigenstate |@; ), i.e.,

b; = [{@;[¥(0)) > (2.3b)

In a subsequent paper more general projections than that in
Eq. (2.3a) will be treated. We note that the quantity actually
observed is not the probability amplitude (2.3a) but the oc-
cupation probability itself,

PO =[P =3 b2+ Y bib; cos(wyt),
Fi ik
jr
with w, = |E, — E,|. (2.4)
The spectral expansion (2.2) of the wave function and,
consequently, the occupation probability (2.4) of the non-
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stationary state can be determined numerically from a dia-
gonalization of the Hamiltonian H. However, for the case of
an,actual polyatomic molecule this poses some practical
problems. Even for an approximate matrix Hamiltonian
with the dimension of the Hilbert space truncated to a finite
but large number of functions, the numerical task of the dia-
gonalization is quite considerable. A number of methods
have been developed to deal with such a problem. From the
numerical side come methods for the determination of the
eigenvalues of large (possibly sparse) matrices on high
speed parallel computers by employing the Lanczos algo-
rithm,” which is also employed implicitly in the recursive
residue generation method.® Other approaches represent
simplifications of the problem by reducing the function
space to include only such functions that appear relevant, a
property to be determined by, e.g., artificial intelligence
methods.” A further reduction can be achieved by concen-
trating on a still smaller subset of (possibly resonant) states
where the self-energy and the interactions of these states are
renormalized by the neglected states, giving rise to effective
coupled equations based on an effective Hamiltonian.?

An approach to determine the spectral expansion (2.2)
as correctly as possible seems to provide more information
than is actually needed. What can be observed reliably in an
experiment is some average behavior, e.g., the low-frequency
quantum beats inherent in Eq. (2.4). An approximation that
describes mainly the low-frequency behavior of p(¢) is desir-
able, therefore, and it should, in appropriate cases, be achie-
vable in a way computationally easier than through a dia-
gonalization of the full Hamiltonian H.

The low-frequency behavior of p(¢) in Eq. (2.4) is de-
termined by those states |@;) of H whose energies E; lie close
to each other. In addition, in order to give rise to noticeable
low-frequency quantum beats, those states should have an
appreciable overlap with the initial state |#(0)) in the pres-
ent problem, so that they can give a noticeable contribution
top(t). A good first guess is that such states are energetically
near to the energy of the initial state, given by

(H) = ($(O)H|$(0)) = ¥ b,E;, (2.5)

J
since the larger terms in the distribution b; determine (H).
Hence, our working hypothesis is that the low-frequency
behavior of p(t) is given mainly by the spectral properties of
b(#) around (H). We desire, therefore, an approximation to
b(t) that reproduces the exact spectral properties of b(¢)
around (H).

To accomplish such an approximation we first separate
a time-dependent phase factor with frequency (H) from
b(t) and obtain a transformed probability amplitude

C(t) = &™p(r). (2.6)

This transformation amounts to a shift of the zero of the
spectrum of b(z) to (H). For the actual observable, p(1),
this shift is of no relevance and the p(¢) in Eq. (2.4) is equiv-
alently given as the square modulus of the C(#)in Eq. (2.6).
Employing the shifted Hamiltonian

SH=H- (H), 2.7)
the probability amplitude C(¢) can be written formally as
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the matrix element of an exponential operator
C(1) = (¥(0) |e = "™ [1(0)). (2.8)
Upon using Laplace transformation in the form
Clw) = limif dte= e+ miC(1), (2.9)
70" Jo

where_n>0 is introduced to ensure convergence, we can
write C(w) in a form comparable to Eq. (2.8), as a matrix
element of the resolvent operator [@ + §H] !

C(w) = ($(0)|[w + 5H] |3 (0)). (2.10)
A formal expansion for C(w) around w = 0 yields
C@)~ Y (—0)U_ i (2.11)
n=0

with the expansion coefficients x _, given as matrix ele-
ments of the inverse shifted Hamiltonian §H,

H—n = ($(0)|6H ™ "(4(0)).

A method for calculating these low-frequency moments
M _ , for an actual shifted Hamiltonian §H is given below
[Egs. (2.20) to (2.22)]. The low-frequency moments are
employed as follows for the construction of an N th-order
approximation ¢, (@) to C(w) that reproduces the low-fre-
quency properties of the exact function C(w):

For the functional form of the approximation we choose
Cx (@) to be meromorphic:

(2.12)

N C:
, (2.13a)
1@ +E€

EN(Q) =

which is equivalent to an [(N — 1)/N]-Padé approxima-
tion® to C(w). In the time domain this form corresponds toa
finite number of exponentials,

N .
(=3 ce 'Y, (2.13b)

j=1
a truncated version of Eq. (2.3) signifying that we are only
interested in a few frequencies. The approximation ¢y (@)
has to reproduce the low-frequency moments iz, tou _,y
to have the correct low-frequency properties of the exact
function C(w). This property requires that the parameters ¢
and ¢; of Eq. (2.13) satisfy the nonlinear relations

N
S ¢ "= _, n=1..2N. (2.14)

j=1
Parenthetically we note that Eq. (2.13a) for ¢y (@) can be
written also as a truncated continued fraction (as in Appen-
dix A), and so an alternative method for the determination
of the parameters ¢; and ¢; could have been based on that
approach.

From the form of the approximation (2.13b) one can
well imagine that there exists some “equivalent Hamilto-
nian” form whose eigenvalues are the ¢€;’s. This equivalent
formulation is established in Appendix B, where an equiva-
lent reduced symmetric Hamiltonian is derived with real
eigenvalues ¢; and eigenvectors leading to real positive val-
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ues for the ¢; (Appendices B 1 to B 3). In Appendix B 4, €,=p_/f_y (2.15a)
several properties of the equivalent “reduced” initial state
for this reduced Hamiltonian are discussed. e =pr e, (2.19b)
For N =1 and N =2, the algebraic solution of Eqgs.
(2.14) is straightforward and the results are given by for N = 1, and by
]
1 1 [
€2 =— (o B_s—p o 3)
v 2 (ﬂ—2#—4“#2~3)
(e —p s ) = A — ) (B —uts3) ] , (2.16a)
P
(Bt — €21 Y&, lized, in effect, the equivalence between a real-time evolution
€= % . e ; (2.16b)  ofa stochastic equation and the imaginary-time evolution of
17 %2

for N = 2. These two approximations to C(¢), ¢,(¢) and
¢,(2), are the simplest ones and we shall discuss their proper-
ties and the consequences for the approximate observable
pn (2) shortly.

For the first-order approximation, N = 1, Eq. (2.13b) is
a single complex phase factor and, hence, it does not lead to
any dynamic information about the occupation probability
p(2). However, it gives already a first estimate for the time-
averaged probability p of finding the system in the initial
state,

P1(1) =po

T
~ p= lim 1 dt p(t) 2.17)
T Jo

T—
with p, = ¢?. To obtain some dynamic information one has
to go to the second-order approximation, NV = 2, which s the
lowest order of an approximation that can describe quantum
beats. The corresponding approximation to the occupation
probability is

DP2(t) = po + p, cos{w,?), (2.18)

withw, = |€, — €,| being the frequency of the quantum beat,
Po=C1 + ¢, and p; = 2¢c,.

For N> 2 an algebraic solution of the nonlinear equa-
tions (2.14) becomes complicated. We then employ an
equivalent eigenvalue problem, related to the reduced Ham-
iltonian form of Appendix B and described in Appendix C,
for the actual numerical determination of the €; and c;. High-
er-order approximations to C(¢) lead to forms for p, (¢)
more complicated than Eqs. (2.17) and (2.18), and for
those we will use the notation, corresponding to Eq. (2.18):

N(N—1)/2

pv(®) =po+ Y P, cos(w,),

v=1

(2.19)

where the w, are assumed to be ordered, i.e., ®,<@w,< " .
With increasing V the approximation ¢y (@) converges
to the exact function E‘( ®), as discussed in Appendix D, and,
hence, p,, (#) will ultimately converge to the exact p(#), too.
We note at this point that the approximation method
presented above is very similar to the generalized moment
expansion method.'® This method has been applied success-
fully for the description of various correlation functions in
stochastic systems.'%!" In the above treatment, we have uti-

a Schrédinger equation.'?

In the remaining part of this section we discuss the actu-
al determination of the generalized moments g _,. Al-
though, as we shall see, the method employed is very simple
in principle, it should be noted that the main numerical task
encountered in the application of the present method is a
numerically correct determination of the low-frequency mo-
ments.

We first introduce auxiliary functions g _, ) through

le_,) =8H~"|$(0)). (2.20)

These auxiliary functions can be calculated successively for
increasingly higher n by solving the equations

SHlu _ ) =|u_n_1))- (2.21)

for |p _, ) with |u,) = |(0)) as starting rhs function.

For the Hamiltonian of a polyatomic molecule Eq.
(2.21) is a high-dimensional elliptic differential equation.
Either by a discretization of this Hamiltonian!®¢>"!? or, and
this seems more appropriate for actual applications, by a
suitable expansion in orthogonal functions, one can usually
get a very good description of the exact Hamiltonian in terms
of a high-order matrix Hamiltonian. For a matrix Hamilto-
nian, Eq. (2.21) constitutes a set of linear equations the nu-
merical solution of which is straightforward.'> We have
solved Eqgs. (2.21) using standard linear equation solvers
available on every computer. In case the linear equations are
determined by large sparse matrices, appropriate numerical
routines also available on modern large memory high speed
computers can be used [see related references in Ref.
10(c)]. We note that probably also the powerful Lanczos
method® of tridiagonalizing a matrix may be used to solve
the linear equations (2.21).

The actual moments i _, are then calculated from the
such determined auxiliary functions |z _, ) simply through
their scalar products, i.e.,

By, =B _@m_nle_,) (2.22a)
B_gn =yl (2.22b)

In the examples to be considered in the next section our
starting point is always already a matrix form of the Hamil-
tonian H.

lil. APPLICATION TO MODEL SYSTEMS

The first model we shall discuss is a 13-state system with
a four-state resonant subspace which includes the initial
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nonstationary state. This model was considered in Ref. 8(a),
Sec. II B, and we refer the interested reader to Table I of this
reference for the exact Hamiltonian. We also consider the
related model discussed there, where the four-state resonant
subspace is replaced by a three-state resonant subspace
(which includes the initial state) plus one off-resonant state,
the Hamiltonian having been given in Table II of the above
reference. The time dependence of the probability of the ini-
tial state p(¢) for these systems is shown in Fig. 1, calculated
by the present approximation, with ¥ = 2, and by the exact
solution of the system via a spectral expansion. The numeri-
cal results for the parameters of the approximation {the p,,
Py, and @, in Egs. (2.17) and (2.18)] are given in Table 1.
One sees from Fig. 1 that in both cases a second-order ap-
proximation is already sufficient to reproduce the low-fre-
quency quantum beats in each model. As Table I also dem-
onstrates, the third-order approximation gives only
negligible corrections to the amplitude and the frequency of
these oscillations.

In Fig. 2 it is shown how higher-order approximations

model la
1 T T T T
3 l
-t il
T 08 “ ‘
2 ‘ | “ AT
2 i
g 06 i mw \ 1
i
S ” “ i | 7y ‘
> 04t 2
=
3
0 0.2 ]
8,
O 1 1 | 1
] 50 100 150 200 250
time (ps)
model 1b
1 . ———
3 3 AN
s 08 ; y -
7 A / %
3 \\ : i \ A ' 3
g 06} A ': —
“6 II N ,’ \\
2 oal | \ \ ]
2 / '
g 02f 2 / .
\} N \
0 1 1 —
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time (ps)

FIG. 1. Probability p(¢) for the initial state {#(0)) vs ¢ for the 13-state
model system given in Ref. 8(a), Sec. II B: (a) Table I of that reference, (b)
Table I of that reference. (—) is the exact solution, (~-) is the second-
order approximation, i.e., N = 2.

TABLEI Parameters for the lowest mode in the low-frequency approxima-
tion for p(¢) of model 1.

Po P o, (ecm™")

(a)

N=1 0.038

N=2 0.6268 0.1644 0.1391

N=13 0.6261 0.1644 0.1391
(b)

N=1 1.8x10~¢

N=2 0.466 0.387 7.732

N=3 0.477 0.387 7.755

describe the more complicated features in the time evolution
of p(t) in the above models. It can be seen that the high
frequency oscillations superimposed on the dominant quan-
tum beats are described reasonably well by a fourth-order
approximation, though some details are still missing. That
one has to go to a higher- (here fourth-) order approxima-
tion to get results for these higher-frequency beats can sim-
ply be attributed to the fact that the higher-frequency oscilla-

model la

T T T

0.4 % :

deviations from lowest mode

-04r N
! L L |
0 50 100 150 200 250
time (ps)
model 1b
— 7

o

-~
—T
1

o
fas)
T
1

deviations from lowest mode
(=)

time (ps)

FIG. 2. Deviation of the probability p(#) from the second-order approxima-
tion for the models shown in Fig. 1(a) and 1(b). (—) is the exact solution,
(- =) is the third-order approximation, i.e., N = 3, (- - -) is the fourth-order
approximation, i.e., N = 4.
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tions are determined by modes of the exact Hamiltonian that
are relatively far from the states that contribute to the lowest
dominant quantum beat mode. Hence, a low-frequency ex-
pansion to an appropriate order is necessary to take into
account these contributions. This feature may also explain
the observation that the fourth-order approximation in mod-
el 1b is somewhat better than in model la: the frequency of
the superimposed oscillations in model 1b is relatively lower
than in model la.

A common property of the above models, seen from the
values for p, in Table I, is that the first-order approxima-
tions, N = 1, give erroneous values for the long-time aver-
aged probability j of the initial state. This property may well
be related to the fact that both models feature subspaces with
states resonant or almost resonant with the initial state.
Since there are two classes of bath states that influence the
time evolution, the resonant and the nonresonant states, one
has to take into account more complicated features of the
internal dynamics that cannot be accounted for in a first-
order approximation. However, as we have seen in Fig. 1, a
second-order approximation is already sufficient to repro-
duce both the dominant low-frequency quantum beats and
the time-averaged behavior.

In our last example we shall consider a model system
with no resonant subspace of states. We choose a 21-state
random Hamiltonian with diagonal elements H,, =0,
10.0<|H,;|<100.0 cm~"' (i#1), and off-diagonal elements
0.0<|H;|<2.0cm™" (i%)). In Fig. 3 the time dependence of
the probability of the initial state, p(¢), for this model is
plotted, calculated by our approximation, with N = 2, and
by the exact solution of the system via a spectral expansion.
The numerical results for the parameters of the approxima-
tion ( py, py, and @,) are given in Table II. In this case, even
the first-order approximation is seen to reproduce the long-
time average p,, of the probability of the initial state, correct-
ly. The result for the low-frequency quantum beats in the
second-order approximation is also excellent. These results
support the above considerations concerning the influence of
resonant subspaces on the quality of the first-order approxi-
mation.

It is seen that in the last example, unlike the systems in
Fig. 1, the probability oscillates between values (~0.92,
~0.99) that are close to unity. Near-resonant states or a
strong coupling to off-resonant states is needed to allow this
probability to become small. Both properties are absent, by
construction, in the model system that led to Fig. 3.

In closing this section we note that an application of the
present algorithm to very small systems proves to be ineffec-
tive. For example, for a four-state system one may well have
to go to a third-order approximation to obtain reasonable
results for the dominant low-frequency quantum beats. In
contrast, in systems with a large number of contributing
states the particular contributions from individual states are
more or less averaged out and a second-order approximation
is already sufficient to reproduce the dominant quantum
beats.

IV. DISCUSSION
The above examples illustrate that quantum beats in the
time evolution of the occupation probability for an initially
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FIG. 3. Probability p(z) for the initial state |##(0)) vs ¢ for the 21-state
random model system described in the text. (—) is the exact solution, (- -)
is the second-order approximation, i.e., N = 2.

prepared nonstationary state can be described by the present
method with an approximation of very low order. Thereby,
the method provides a useful tool to determine in a simple
way the frequency and amplitude of such quantum beats
from a known molecular Hamiltonian or its matrix represen-
tation. By proceeding to higher-order approximations one
can also tailor the accuracy of the approximation to the ac-
curacy of the data available, e.g., when the superimposed
high frequency oscillations are distinguishable experimen-
tally.

We consider next the computational expense of the pres-
ent method as compared with that of other approaches.
When the full Hamiltonian is expanded in suitably chosen
orthogonal functions to construct a matrix Hamiltonian,
there are mainly two other methods: (i) the diagonalization
of the full Hamiltonian matrix and (ii) the derivation of an
effective Hamiltonian for a reduced subspace. An interesting
feature of the present method is that the computation time
grows only linearly with the order N of the approximation,
the time-limiting step being the determination of the low-
frequency moments. To determine the properties of the low-
est frequency quantum beats in the time evolution of the
occupation probability a second-order approximation (or a
third-order approximation for a check of the result) was
shown to be sufficient. For these approximations the deter-
mination of the auxiliary functions |x_,) to |z_,) (or to
[ ~3)) is necessary, which amounts to the solution of two
(or three) sets of linear equations. The computation time is,

TABLE II. Parameters for the lowest mode in the low-frequency approxi-
mation for p(¢) of model 2.

Po 41 @ (cm™")
N=1 0.9534
N=2 0.9549 0.0373 12.61
N=3 0.9549 0.0372 12.74
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therefore, much smaller than for the determination of all
eigenvalues, even if one takes into account that the (itera-
tive) solution of linear equations is usually slower than the
iterative determination of a single eigenvalue. Details, how-
ever, depend on the actual numerical routines employed.
The computation time would be also smaller than for the
determination of effective Hamiltonians when for the latter
task inversions of a large portion of the full Hamiltonian
matrix are necessary. We note that in suitable situations an
iterative determination of these inverse submatrices is pos-
sible.2®-8()

One could argue that a specific evaluation of eigenvalues
in a particular part of the spectrum of §H, say around zero, is
equivalent to our approach. However, we note that also in
such an approach the eigenvalues and eigenvectors are deter-
mined irrespective of how relevant they are for the descrip-
tion of the particular observable, the probability amplitude
C(?) in the present case. The computational strength of the
present method lies in the fact that it samples the specific
spectral properties already of C(¢), and not of SH. Thereby,
a satisfactory description of C(#) can be reached already at a
low-order approximation, whereas in the above eigenvalue
approach a large number of eigenvalues may have to be sam-
pled to find the relevant ones.

The main advantage of the present method lies in the
simple determination of the dominant low-frequency quan-
tum beat mode. In addition, the present method treats all
Hamiltonians on an equal footing, independent of their re-
spective structure, and is therefore model independent. It is,
for example, unnecessary to inspect the Hamiltonian to de-
termine a suitable subspace for which, in turn, an effective
Hamiltonian can be determined.® In a sense, the present
method chooses itself a suitable reduced space with the di-
mension N given by the order of the approximation (cf. Ap-
pendix B), i.e., given by the desired accuracy of the approxi-
mation.

We note that the present approach does not in itself elu-
cidate the pathways of intramolecular energy flow. This is an
area where the effective Hamiltonian approach in Ref. 8 pro-
vides information of a complementary nature. A given Ham-
iltonian may be analyzed first by the present method to ob-
tain information about the dynamics of the initial
nonstationary state. This information on whether or not sig-
nificant quantum beats exist, and the information present in
the parameters and structure of the reduced space spanned
by a set of vectors |k}, described in Appendix D, can then
also be utilized for an inspection the Hamiltonian matrix
elements to determine the principal states contributing to
these beats. Employing this result, an effective Hamiltonian
for the relevant subspace can be formulated by the method of
Ref. 8., so adding to the physical insight into the origin of the
beats for the particular system. For example, after obtaining
the results in Fig. 3 subsequent (unpublished) calculations
by Voth showed that the effective Hamiltonian of Ref. 8
could be used to treat the behavior of model 2, using a partic-
ular two-state subspace and treating the remaining states as
bath states.

We are currently working on an extension of the present
method to describe more complicated observables than the

probability amplitude in Eq. (2.3). By considering time-de-
pendent probability amplitudes for the transition between
different states as observables, this extension could also pro-
vide a further answer to the above question about intramole-
cular pathways of energy transfer.

The present method does not attempt to describe the
quasidissipative decay encountered also in experiments. We
are exploring the possible extension of the method also for
this purpose, taking into account the specific experimental
situation.
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APPENDIX A: CONTINUED FRACTION EXPANSION

For a function /(@) with a known formal expansion for
large w,

1 & 1\"
I(w) ~— (— —) n Al

(@) ~— ,;o o L (A1)

a corresponding continued fraction
C(h)(w) —_ a, (A2)

o+ %2
14—
14+

can be constructed!* with C ¥’ (@) fulfilling the requirement
that its expansion coefficients in powers of 1/ are equal to
the moments x4, in Eq. (A1l). The coefficients a,, are given
through the moments g, by

a; = Hlo, (A3a)
ay = py/ o, (A3b)
oy = (fiofta — 11)/to o1 (A3c)

(A3d)

oy = (fiy s — 3o/ (o o2 — 141 2y,

which can be verified by comparison of the respective expan-
sion coefficients.

An N th-order approximant to I(w) is a truncated con-
tinued fraction C {"’ (w) where the coefficient a , , in Eq.
(A2) has been set to zero. Of particular interest in our case
are even approximants C ¥ (») which can be cast into the
form™

h
CR(w)
a,
a,a;,

o+ a, — o
45

w+(a5+a6)—(---

o+ (a;+ay) —
A4)
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and constitute [ (N — 1)/N]-Padé approximants to /(w)."?
Padé approximants of the continued fraction form (A2) and
determined according to the scheme provided by Eqs. (A1)
to (A4) have had a widespread application in various phys-
ical situations, e.g., in the well-known Mori-Zwanzig pro-
jection operator method'® for the description of dynamical
correlation functions.

By employing the above results it is now easy to con-
struct a similar continued fraction for a function with a
known formal expansion for small arguments, as is the case
in Eq. (2.11). We note that the replacement J(w)— (1/
@)I(1/w) and u, -4 _ (, .1, in Eq. (A1) gives the formal
expansion

iI(i)“’i (=) _(ninys (A3)
n=0

(2] @

co@) == c® (=)

@

w
= % (A6)
14 a,w
14 aw
14 a0
1+

The coefficients a, in Eq. (A6) are calculated from Egs.
(A3) simply by the above replacement 1, > _ ,,, 1y, Te-
sulting in

a, =Hf_y (A7a)
a, =ﬂ_2/ﬂ_l, (A7b)
ay=(H_ oy — ) e iy (ATc)

ay=(H_2pb_s—H S/ (g oy — 25 s,

a form similar to Eq. (2.11). Hence, a continued fraction (A7d)

C (@), with its expansion coefficients in powers of w equal :

to the moments i _ ,, . ,, in Eq. (AS), is given by An even approximant C {5 (@) assumes the form

Ch@) = = (48)
1 + azw _ a2a3a)

A0

14 (a;+a,)o —

1+ (as+ag)o—

C % (w)isnowan [ (N — 1)/N]-Padé approximant'” to Eq.
(AS5) that reproduces the low-frequency moments @ _; to
1 _ - Hence, it is an equivalent functional form of the ap-
proximant ¢ (@) of Sec. II.

APPENDIX B: EQUIVALENT REDUCED HAMILTONIAN

The starting point of our considerations here is the de-
monstration that our approximant ¢, (@) can also be writ-
ten in a functional form which had previously been found for
a high-frequency expansion®:

oy(w) =ay [on+A1]_la1v9 (B1)
where A, and A, are N X NV matrices, a,, is an NV vector and
ay is its transpose. In our case, which is a low-frequency

expansion case, the elements of these quantities are given by
(i,j=0,..N — 1)

(a,); =g _3n4ny; With n=0,.,N, (B2a)
(Ao)y =;u'_2N+i+j, i'e~) A() = (aO9ap--°9aN_ 1 )’
(B2b)

ie, A; = (a,,8,...,ay).
(B2c)
Wefirst establish Eq. (B1) by showing it reproduces the

low-frequency moments u _,, n = 1,...,2¥, of a function
with the asymptotic expansion (2.11).'8

(ADy =K _onsivit1s

1. Equivalence of low-frequency moments

A straightforward calculation shows that the formal ex-
pansion of Eq. (B1) in powers of @ is

—
Cy (@)~ Z (—o)"[ag AT (A AT D"ay].  (B3)
n=0

Hence, by comparison with Eq. (2.11), the low-frequency
moments u”_, in Eq. (B3) are given by
U, =aF AT AA ) 1a,. (B4)

From the structure of A,, Eq. (B2c), one can deduce that a,
equals A,e, _ ,, with e, being the unity vector in direction v,

(e,); =06 (BS)
Hence,

A 'a, —=e,_, for O<v<N. (B6)
Employing these results one sees immediately that

(AA; ")ay =ay_, for OKv<N (B7)

holds. Since A, and A, are symmetric, Eqs. (B6) and (B7)
hold also in their transposed form, i.e.,

afAr'=e} | for O<v<N (B6")
and

ay (AT'Ag)"=ay_, for OKv<N. (B7)
Applying these relations one can deduce that

af AT (A AT ) =ed_(,,. for OKv<N. (B8)

Since every integer n with O < n<2N can be split into integers
v, and v, with n=v, + v, 4+ 1, v, lying in the interval
[0,N — 1] and v, lying in the interval [0,NV], we have
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B_n =87 AT (AAT )V (AA[ ) ay
=eN_(v+1) AN _,,
=u_, for n=1,.,2N,
which completes the proof.

(B9)

2. Positive definiteness of the matrix A,

We next show that the matrix A, is positive definite.
This property can be established by utilizing an equivalent
representation of the moments through a spectral expansion
of H, using Eqgs. (2.3) and (2.12),

/‘l‘—n=zbk(Ek—<H))_n' (B10)
3

Using Eq. (B10) we obtain for an arbitrary vector x,
N—-1

X" Agx = Z XX B _aN v
ij=o
N—1
=2bk(Ek —(H)) ™ E x,x; (B, — H))'*+/
3 ij=o

= 3 b (B — (H)) ~
k

N-1 2

x|'S %t — ] >0 (B11)
i=0

The inequality in the last line holds since all factors in the

sum are positive [e.g., b; is given by Eq. (2.3b) ], and not all

terms in the sum vanish simultaneously.'® We note that such

a property does not hold for the matrix A,: analogously to

Eq. (B11) one obtains

xtAx =Y b, (E, — (H)) " @V+D
k

N-—-1 . 2
X| Y xi(E— <H>)‘] , (B12)

i=0 .
and, since the term with the odd exponent can be negative,
the matrix A, is not positive definite, in general.

3. Equivalent reduced Hamiltonian

Since A, is symmetric and positive definite there exists a
unique symmetric and positive definite matrix Ay"> which is
a square root of A,. This property leads to the following
symmetric form for Eq. (B1):

EN(&)) —_ (AO— l/zaN)+ [w + Hred ] —l(AO— l/ZaN)

(B13)
with

H,y =Aq l/zAle_ vz, (B14)
Because of the properties of Ajand A, the matrix H_, is real
and symmetric and has, therefore, real eigenvalues. Using a
spectral expansion of H,_; we regain the form Eq. (2.13a) of
cy(w),ie.,

Ty () i 5 (2.13a)
Cy\D) = 5 .
N =1 @+E€
with
+ — 172 2
Cf=—————-—(hj Ao zaN) , (B15)
[k |

and the ¢; and h; being the eigenvalues and eigenvectors of
H,.4. Equation (B15) shows that the parameters c; are real
and positive. Hence, the approximation presented in Sec. 11
always leads to a regular form and no spurious divergencies
or negative probabilities can occur.

The above results provide the possibility of calculating
the parameters ¢; and ¢; of the present approximation nu-
merically by determining the eigenvalues and eigenvectors
of H,.,. However, it turns out that this process is still some-
what complicated since one has to determine first the square
root matrix Ay? and its inverse. By a further transformation
of Eq. (B1) we can arrive at a still simpler eigenvalue prob-
lem presented in Appendix C, which is the method used in
this paper to determine the ¢;’s and €;’s.

Equation (B13) leads also to an interpretation of our
approximation in terms of an equivalent reduced Hamilto-
nian given by the matrix H, .4, Eq. (B14). H_, governs the
evolution of an equivalent “reduced” nonstationary state
|#:ea (2)) that is coupled to a system of (N — 1) virtual
states which describe the influence of the rest of the quantum
system. ¢, (¢) is the probability amplitude for |¥,.4 (£)) to
have still its initial value |¢,.4 (0)), i.e.,

e (1) = (Preq (0) |Yhrea (1)) = (Yo (0) e ™ |94 (O)),
(B16)

The virtual states and their interactions in H,,, are tailored
in such a way that the low-frequency properties of the exact
C(¢) are reproduced.

4. Properties of the reduced initial state

The reduced initial state |#,., (0) ) is represented in the
reduced Hamiltonian description (B13) by the vector

|00 (0)) = Ay ay. (B17)

We note that this state is not necessarily normalized to unity,
ie.,

[¥rea (0 = a7 Ag 'ay<1. (B18)

A proof of the inequality is given in Appendix D. Equation
(B18) is related to the fact that in the original problem,
averaged over long times, probability is lost into the remain-
ing states of the quantum system. The present low-frequency
approximation, represented by c, (¢) in Eq. (2.13b), takes
this property already into account by giving the effective
initial state a probability that can be less than unity. In the
effective Hamiltonian approach of Ref. 8, this property has
been taken into account by use of additional phenomenologi-
cal correction factors.®®

For N = 1, the initial value, given by Eq. (B18), is al-
ready an estimate for the time-average p, Eq. (2.17), of the
occupation probability of this state. It can be shown to as-
sume a particularly simple form. To do so we write the Ham-
iltonian §H in the form

SH (0 vt )
“\v O6H,

with v denoting the interaction of the nonstationary state

with the other states of the quantum system (which can be

viewed as bath states). 6H is the Hamiltonian of this bath.
In the notation of Eq. (B19) the initial nonstationary state is

(B19)
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the vector given by |¢(0)) = (g). After determining the
moments in terms of 6H, we obtain for the initial probabil-
ity

1
rea (0 = —————.
Weea OO =7 +v*6H; %
This result can be related to the phenomenological correc-
tion factor f; derived in Ref. 8(b). For the partitioning
(B19) of the Hamiltonian this correction factor assumes the
form

(B20)

fo=1—v"6H; %, (B21)

which follows also from Eq. (B20) upon expanding the de-
nominator and neglecting higher-order terms.

The examples presented in Sec. III show that the N = 1
approximation (B20) to the initial probability gives good
results for the time-average p of the occupation probability,
Eq. (2.17), in cases where no states resonant with the initial
state are present. It fails, however, when resonant states are
present. Nevertheless, already the second-order approxima-
tion determines p reasonably well so that the long-time aver-
age of the occupation probability is reproduced correctly
together with the amplitude of the low-frequency quantum
beats. We note that the generalization of Eq. (B21) for reso-
nant subspaces derived in Ref. 8(b) cannot be compared to
the present higher-order approximations, since f; deter-
mines the total probability of the full resonant subspace,
whereas in our case only the reduced probability of the initial
state is considered.

APPENDIX C: EQUIVALENT EIGENVALUE PROBLEM
We define the matrix
F=A; ""H 4A;” = A; 'A,. (C1)
With this matrix, Egs. (B1) and (B13) assume the form
Cy(@) =25 [0 +F] " 'A; 'ay. (C2)

From the structure of A, we can deduce, similarly as for Eq.
(B6), that

AO_lav =ev+1 (C3)
holds, and we arrive at the result that F has Frobenius form°
F=(ep..en_1,Y)

for OKv< N

0 0 --- 0 Yo
1 0 - 0 Y

= 0 1 o 0 7’2 ’ (C4)
o 0 - 1 Vw1

a special form of an upper Hessenberg matrix."* The vector y
in Eq. (C4) is the solution of the linear equation

Ao‘Y = aN- (c5)

Due to its much simpler form the matrix F can be deter-
mined more easily than the reduced Hamiltonian H,.,. Be-
cause of therelation (C1) between F and H, ., both matrices
have the same eigenvalues ¢; and their (right) eigenvectors
are related by

W. Nadler and R. A. Marcus: intramolecular dynamics

Due to the specific form of F, its right eigenvectors f; can be
calculated in a particularly simple iterative way once the
eigenvalues ¢; are known,

(f;)o = 7’0/6‘1;

(), =[),_: +¥:)/e for i=1..N—1 (CT7)

Replacing the vectors h; in Eq. (B15) through f; via Eq.
(C6) we obtain

(@) ﬁ G (2.13a)
cylw) = N .
N j=1(0+€j
with
_ (aN't})z

¢ = . (C8)
(£ Af;)

Hence, for the actual determination of the parameters €; and

¢; the simplest way is to determine the matrix F first and

calculate its eigenvalues numerically. From this result the

determination of the eigenvectors f; via Eq. (C7) and of the

parameters ¢; via Eq. (C8) is straightforward.

This procedure is, in fact, the one used in the present
paper to determine the approximation in our applications for
all N, although Egs. (2.15) and (2.16) could have been used
also for N<2. The matrix F was determined by numerically
solving Eq. (C5) and then diagonalized numerically to de-
termine the ;. The parameters c; were determined from the
€; by Egs. (C7) and (C8).

APPENDIX D: INNER PROJECTIONS

A projection operator Q,, that projects onto the N-di-
mensional space spanned by the linearly independent set of
states |q) = (|g,),-..,|gy)) has the form

Qy =la)[{ala} ]~ (q| (D1)

with (q|q) denoting the metric matrix of this basis set. An
inner projection R, of a positive definite Hermitian operator
R onto this space is defined by

Ri =R1/ZQNR1/2. (D2)

Employing the substitution |q@) = R~/?|k), the inner pro-
jection R; of the operator R assumes the form

R, = [k) [(k|[R™'|k) ]~ (K|, (D3)

known also as Bazley projection.?? Inner projections of posi-
tive definite operators provide lower bounds to these opera-
tors, i.e., for arbitrary states |x) the relation

(x|R; |x) <{x|R|x) (D4)

holds.?! In particular, R, as given by Eq. (D3) is an optimal
lower bound to R in the subspace spanned by k).
Let now R be the resolvent operator in Sec. II,

R=[w+6H] . (D5)

For w > w,,;, withw_;,, = |min(0,E, — (H))|, E, being the
ground-state energy of H, this resolvent operator is positive
definite and Hermitian. Furthermore, we choose the
linearly independent set of states to be |k)
= [6H % |¢(0)),....,6H '[#(0))]. Then we obtain (see
also Ref. 9)
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(¥(0)|R,[¥(0)) = (¥(0) k)
X [{k|o + 6H|k)]~'(k|$(0))
=a7 [0Ag + A,] "ay, (D6)

i.e., the inner projection of the resolvent operator onto the
such chosen subspace leads to the present low-frequency ap-
proximation for the Laplace transformed probability ampli-
tude. From Eq. (D4) we see that the inequality

ay [wA, + A1 'ay <(¥(0)|[w + SH]~!|¢(0))
(D7)

holds in the domain where the resolvent operator is positive
definite, i.e., for @ > w,;,. In particular, upon multiplying
both sides with @ and taking the limit @ — » we derive the
inequality in Eq. (B18).

In Ref. 23 it was demonstrated that the inner projection
R; converges to R for N o if the space spanned by |q)
becomes complete. In our case, only the subspace of 6H
wherein |##(0)) evolves is of interest. It is anticipated that
|q) should become complete in this subspace when the oper-
ator SH is given by an irreducible matrix Hamiltonian. The
convergence property holds also for operators R not positive
definite, i.e., for ® <@, in our case, as long as R is nonsin-
gular.” R as given by Eq. (D5) is singular only for a finite
number of values w, corresponding to the negative eigenval-
ues of 6H. Hence, the convergence of our approximation to
the exact Laplace-transformed probability amplitude is
guaranteed for aimost all values of @. Although this conver-
gence can be only a pointwise convergence and not a uniform
convergence (which would have given the possibility of de-
riving error bounds), it nevertheless assures that the present
method is also reliable with respect to ultimate convergence
to the exact solution.
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