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1. INTRODUCTION

In recent years there has been an increasing use of laser spectroscopic and
other techniques to investigate unimolecular dissociations of molecules, both
to initiate a dissociation and to measure the formation of the individual
quantum states of the immediate reaction products. This chapter is concerned
with a description of statistical theories used to calculate the rates of such
dissociations, for example, of a molecule AB,

AB— A + B, (1.1)

and to calculate the distribution of the quantum states of the fragments 4 and
B. Typically, reaction rates in the literature have been calculated using RRKM
theory, while distributions over various quantum states of products have been
calculated mostly with phase-space theory and other models described subse-
quently.

Upon excitation of AB with a laser pulse, the molecule may be excited to
a high vibrational state of the lowest electronic state of ABortoa vibrational
state of an excited electronic state 4B*, depending on the method and on the
molecule. More specifically, a wave packet of vibrational states is typically
formed in each case. When the excitation is to AB*, the subsequent dissocia-
tion may proceed either directly from that electronic state or, after an internal
conversion, from the ground electronic state. We concentrate on the dissocia-
tion itself, and so, in the case of an internal conversion,-on the behavior

subsequent to the conversion. -

One topic of interest is the comparison of the measured rates with those
calculated using statistical theory. Commonly, the initial vibrational excita-
tion is a nonstatistical one, as for example in the excitation of a high CH
overtone of the molecule (a wave packet), which is then followed by a tendency
to energy redistribution as well as by reaction. Infrared multiphoton excita-
tion and chemical activation can be expected to be nonstatistical. If the
redistribution is sufficiently rapid, the observed time decay of AB in Eq. (1.1)
will be a single exponential, according to statistical theory, when the energetic
AB has been formed with a sufficiently narrow range of energy E and of
angular momentum J, both of which affect the dissociation rate. When the
redistribution is not sufficiently rapid, a more complicated time evolution for
the formation of A and B is expected. Indeed, the assumption of a kinetic
model!® for the redistribution (involving a subdivision of the phase space into
coupled subspaces) and for the reaction leads to the result that under certain
conditions the long-time behavior can still be described by statistical (RRKM)
theory.?

The study of unimolecular reactions was originally confined to thermal
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studies as a function of pressure and, later, owing particularly to the pioneer-
ing work of B. S. Rabinovitch, to chemical activation studies.>* In the past
two or so decades a wide variety of other methods have also been introduced,?
including the study of translational and vibrational energy distnbution of
products of chemical activation reactions in molecular beams, energy distri-
butions of products of infrared multiphoton dissociation in bulk and in beams,
use of high CH or OH overtone excitation to initiate unimolecular reactions,
study of the angular distribution of reaction products of unimolecular reac-
tions in molecular beams, use of picosecond techniques to study umimolecular
reaction rates and quantum states of products, and the Investigation of mole-
cular 1on dissociations using a variety of techniques, including coincidence
measurements.

We describe several statistical approaches for calculating rates and product
quantum state distributions in the following section. Illustrative applications
are given in Section III, and dynamical aspects and statistical behavior are
considered in a concluding Section IV. -

1. OUTLINE OF STATISTICAL THEORIES

A. RRKM Theory

The expression for the rate constant k., for dissociation of a molecule as a
[unction of its energy E and of any other constants of the motion, such as J,
the total angular momentum quantum number, is given in RRKM theory as®
N3
kpy = —L (2.1)
& hpul

where N}, is the number of accessible quantum states of the transition state
for the dissociation and py, is the density of states of the parent molecule at
the same E and J.

In treating isomerizations or dissociations, two limiting forms of the transi-
tion state were identified—loose and tight, or rigid, as it was termed then.%®
In the former the separating fragments rotate freely in the transition state,
while in the latter their motion is more or less similar to that in the parent
molecule. In the case of reactions with a marked maximum of the potential
encrgy along a reaction coordinate R, the position of the transition state R}
was taken to occur at that R. In some dissociations there is little or no such
maximum, and another criterion is needed for the determination of R*. When
the reactants are assumed to rotate freely at R?, that is, when the transition
slate 1s loose, the reaction coordinate R has been chosen to be the distance
between the centers of mass of the separating fragments, and R* has then been
¢quated, approximately, to the separation distance in a van der Waals’ com-
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plex of the fragments, for example, as in the Gorin model’ described in the
next section. When the orbital angular momentum (quantum number {) is the
domihant contribution (as it frequently is) to the total angular momentum
(quantum number J), that is, when [ = J, the orbital contribution to Ni s
simply 2! + 1, that is, 2J + 1.* The remaining contribution to N}, is also
simple, when the various remaining coordinates, apart from R, can be approxi-
mated by free rotations and vibrations.

The choice of the location of the transition state R? has been generalized
by choosing it to correspond to the position of the minimum of the reactive
flux along R (now often called microcanonical variational transition state
theory!®). Combining this choice with a method for caiculating N}, for
any transition state (loose, tight, or in between), Eq. (2.1) has recently been

implemented for such more general systems."
In the case of a loose transition state, the distribution function for the

quantum states of the separated products is the same as that in the transition
state, since there is no coupling between R and the internal coordinates. Thus,
if the number of states in the transition state that have a given quantum
number n, for the ith coordinate is Né sn, the probability Pg,, that the frag-
ments have the quantum number n, for this coordinate is

Peyn, = Niju/Nis. 2.2)

. Ideas analogous to this, together with a model for the distribution of J's
due to the energetic dissociating molecule being formed in a bimolecular
collision, have been used to treat translational energy distributions® and other
properties® of products of bimolecular reactions involving molecular com-
plexes as intermediates. In further work® we extended this type of calculation,
with some added approximations, to tight transition states in the exit channel.

In general, except when the transition state is loose, the calculation of the
distribution function Pg,, of excess energy among the quantum states of the
reaction products involves an additional approximation over and above those
needed to calculate kg,. Examples are given in Section III.

B. Loose Transition State and Angular Momentum Conservation (PST)

In a loose transition state there is no interaction of the radial coordinate with
the internal degrees of freedom, and the reaction coordinate R is chosen to be
that coordinate. The effective potential V,; for motion along R is then given
(in units of i = 1) as the sum of the actual potentialand a centrifugal potential,

I(l + 1)

SR 2.3)

Vere(R) = V(R) +
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where V(R)is the R-dependent part of the potential energy and u is the reduced
mass of the separating fragments. The position of the transition state is
assumed to be at the maximum of ¥, (R),

3V,urlR) _

= R} 4
R 0 atR = R}, (2.4)

and so this R* depends on [. Equations (2.3) and (2.4) were used in an early
calculation of Gorin’ for the recombination of methyl radicals.

If N}, is the number of states for which, for the given |, the maximum of
V..c is less than or equal to E, the N}, in Eq. (2.1) equals

N}, = >.3 N, (2.5)

If the approximation [ ~ J is introduced, the sum in (2.5) consists only of one
term.

We consider next phase-space theory (PST), which was designed princi-
pally to calculate energy distributions of the reaction products.!? In PST a
loose transition state is assumed and, rather than using the approximation of
[~ J, lis chosen so as to satisfy angular momentum conservation, namely,
the triangle inequality,

J—klgl<J +k, (2.6)

where k 1s an integer, a quantum number, corresponding to the vector sum of
the rotational angular momenta of the two fragments (qQquantum numbers ii
and j,); k, itself, satisfies the triangle inequality

s = jal S k <jy + o (2.7)

The various states contributing to N}, contain as quantum numbers J, I, J1s
Ja,k, xy, x5, together with the vibrationat quantum numbers of each fragment.
Here, , is the quantum number which, in addition to ji (i = 1, 2), specifies the
rotational energy of fragment i. (There are 2j, + 1 values of x;, for any j. If
[ragment i is a symmetric top, x, i1s the component of j; along the symmetry
axis.) The absence of coupling terms between the radial motion R and the
remaining coordinates in Eq. (2.3) reflects the fact that the separating frag-
ments rotate freely in a loose transition state. The calculation of each Né qls
relatively straightforward albeit numerical because of the constraints (2.6) and
(2.7). The quantity of major interest in applications of PST is the distribution
lunction P, sn» Which 1s given by Eq. (2.2).

The assumption of a loose transition state provides only an upper bound
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to the dissociation rate constant, apart from possible tunneling effects, which
are usually quite minor for dissociations into polyatomic fragments. Fre-
quently, the R-motion in the exit channel is coupled to the other coordinates,
for example to the developing rotations of the fragments, and the latter are
coupled to each other, resulting in a hindered rather than free rotational
motion of the separating fragments in the transition state. The resulting
quantum states contributing to NE ; in Eq. (2.1) are then more widely spaced
than when the fragments rotate freely, and so the states are fewer in number.
The actual kg, is then less than the PST value, a result well known for many
reactions.!3

Again, in the case of a dissociation reaction in which the transition state
was not loose (e.g., the reverse reaction of methyl radical addition to an olefin
had a steric factor), PST did not adequately describe the translational energy
distnibution of the products, and resort was made to a more general treatment
that made some allowance for hindered motions.”

We turn in the next section to a recent treatment that allows for these
coupled hindered rotational motions.!!

C. General Transition State and Angular Momentum Conservation (RRKM)

We consider here the implementation of Eq. (2.1) for more general transition
states. When the transition state is loose, it occurs at the maximum in V., as
in Eq. (2.4). However, when the rotational motion of the separating fragments
is hindered, owing to their coupled behavior, a more general criterion for R?
1s needed. Often in dissociations into free radicals there is no appreciable
potential energy maximum to suggest an R?, and the criterion (2.4) is also
clearly inadequate for the more general case. An appropriate criterion arises
from Wigner’s and Keck’s classical version of variational transition state
theory,'* where the transition state, a hypersurface in phase space now, is
chosen so as to have the minimum flux from reactants to products passing
through it. In this case, there are the fewest recrossings of the transition state
hypersurface by classical trajectories and the transition state calculated rate
becomes an increasingly better bound to the actual rate.!4?

When the motion along the reaction coordinate is treated classically and
the remaining coordinates quantum mechanically, it is convenient to define
Ng,(R), the number of states with energy equal to or less than E for the given
J and for that R. The flux along R at any point R is proportional to Ng(R),
as can be seen, for example, from Eq. (2.1), since kg, is proportional to the
flux. Thus, the location R* of the transition state along R (loose, tight, or in
between) is determined as the R that minimizes Ng,(R):'°

ONg,(R)

- R =Rt 28)
Y 0 at |
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Recently, we described a method for implementing Eq. (2.1) using (2.8) in
a way in which Ng,(R) is calculated so as to satisfy the angular momentum
triangle inequalities (2.6) and (2.7) for any prescribed potential energy function
in the exit channel.!! There is at least one price to pay for this generalization:
While the expression for Ni, in the case of a tight transition state, or in the
case of a loose transition state with ! ~ J, was evaluated analytically,® the
expression in this more general implementation of Eq. (2.1) is evaluated
numerically. In applications to dissociations thus far, we have chosen the
reaction coordinate R to be the distance between the centers of mass of the
separating fragments.

The complexity of evaluating Ng,(R) and, by its minimization N:  in the
case of transition states that are neither loose nor tight, arises because of the
coupled bending and rotational motion of the parent molecule, motions that
become free rotations and orbital motion of the separated fragments.'’ A
quantum calculation of the energy eigenvalues of these typically six or so
coordinates (termed “transitional coordinates™) at each R, for the given poten-
tial energy surface, would permit the determination of all such states contri-
buting to Ng,(R), for the given E and J. When these states of the transitional
coordinates are convoluted with N,, the number of states from the more
simply treated remaining coordinates, the total number of states Ng,(R) would
then be obtained.

We have adopted the following procedure.!! Ng,(R)is written as a convolu-
tion for each R,

E
Ng,(R) = J’ Ny(E — €)Q,(¢) de, (2.9)

0

where Q,(¢) is the density of states of the “transitional” (coupled bending
vibrational-rotational) degrees of freedom in the energy interval (g, ¢ + dg),
and N, (E — &) is the number of quantum states for the coordinates not present
in Q,, when their energy is equal to or less than E — & The two types of
coordinates are taken to be uncoupled from each other, apart from their
dependence on R. The value of N,, in Eq. (2.9) is obtained by the usual quantum
count. The main approximation is in the evaluation of €2,(¢).

We have found it convenient to calculate Q,(¢) classically and to express
the coordinates contributing to Q,(¢) in terms of action-angle variables. (Ap-
proximate quantum corrections can be made.'!) The actions are the classical
counterparts of the quantum numbers j,, j,, Ky, K2, k, I, and J previously
mentioned, and we shall simply denote the actions by the same symbols to
simplify the notation. When the ith fragment is an atom the numbers j;, x;
and k are absent, while if one of the fragments is a linear molecule, its «;, is
absent. For two nonlinear fragments we have, in units of h = 1,'! for a
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particular electronic state, and apart from any electronic multiplicity factor,

Ngs(R) = (2J + 1)(2n) %0~

X J ‘ INV(E — H,)A(J,k, DAk, j,,j2)djy dj, dxy dic, dk dl da,
(2.10)

where da is the volume element for the angle variables conjugate to the six
action integration variables in Eq. (2.10). The ¢ denotes the symmetry number
for transformations involving these six angle coordinates.® Each angle is
integrated over the interval 0 to 2z, within the limits imposed by energy
conservation. The action variables are restricted both by energy conservation
and by the triangle inequalities (2.6) and (2.7), each A being unity when the
relevant inequality is fulfilled and zero otherwise. Each «; 1s restricted by the
condition |x;| < j,. (In practice, a symmetric top approximation will be typi-
cally used for fragment i, and then x; refers to the component of j; along the
symmetry axis.) H,, is the part of the Hamiltonian that refers to the coordinates
contributing to Q,(¢), for example, as in Eq. (I1.2) of Ref. 11c. Equations (2.1)
and (2.8)-(2.10) are used for the calculation of the rate constants kg,, the
integral in (2.10) being evaluated by a Monte Carlo method. The calculation
of the thermally averaged value of kg, is given later.

A calculation of the distribution function Pg, for the quantum states of
- the reaction products requires an additional approximation over and above
that needed for k.,. One approximation is to assume an adiabaticity in the
exit channel, wherein the lowest states in N}, correlate adiabatically with the
lowest states in the products.? The relative probability Pg,, that the quantum
state of the ith coordinate is n, is then given by*

Pesa, = NE-ga/ Nrt:.n (2.11)

where E’ is defined by the condition
Né; = NZ,, (2.12)

NZ, being the number of quantum states of the products at R = oo with energy
less than or equal to E’, Ng_g , is the corresponding number at R = o when
there is an energy E, in the ith coordinate (or set of coordinates) of the products
and the quantum number for this coordinate (or totality of quantum numbers)
is n,. When states of different symmetry are involved along the entire reaction
coordinate, a suitable classification of the states in (2.11) by symmetry is first
made. A variant of (2.11) assumes that [ is a constant in the exit channel; this
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variant reduces to PST in the limit that the hindered rotations at R* become
frec.2 However, when | >~ J, | becomes essentially a constant of the motion
automatically, and so even Eqgs. (2.11)—(2.12) reduce approximately to PST in
the limit that the rotations at R? are free. Otherwise, Egs. (2.11)—(2.12) reduce
to PST only on the average in the free rotation limit.

D. Vibrationally Adiabatic Transition State and SACM

Adiabatic, or as it has been termed vibrationally adiabatic,!* transition state
theory has its origin in a paragraph in an article by Hirschfelder and Wigner.'®
The treatment was developed further by a number of authors.!” In this type
of transition state theory the eigenvalues of the system at each R, which are
the vibrationally adiabatic eigenvalues, are plotted versus R. The Né, in Eq.
(2.1) then becomes the number of such states whose maximum energy on this
plot does not exceed E, that is, N}, now denotes the sum of all open adiabatic
reacttion channels.

In principle, this N}, can be determined if the potential energy surface is
known: For the given J value and for each value of the reaction coordinate
R (e.g., the bond length of the dissociating bond or the distance between the
centers of mass of the two separating fragments), the vibrational-rotational
quantum eigenvalues E (R) are obtained. The result is a set of nonintersecting
adiabatic channel curves that smoothly connect, and hence correlate, the
reactant (parent molecule) and product (separated fragments) vibrational-
rotational energy levels. Each curve E (R) has a maximum E_,, at some R in
the exit channel. N2, is then the sum of all open adiabatic channel curves, that
is, those curves for which E_,, < E. In practice, the full potential energy
functions are usually unavailable and, even if they were, obtaining the quan-
tum eigenvalues (perhaps by matrix diagonalization) at all relevant values of
R is simply not practical at present for most systems. The intermediate region
between reactants (R = R,) and products (R = oo) presents the greatest com-
putational difficulties for both the potential energy function and the eigen-
values, and this region often determines the reaction rate of the bond fission
process.

The model of Quack and Troe,!® the statistical adiabatic channel model
(SACM), is an approximate prescription for calculating the number of open
adiabatic channels. A universal function g(R) is assumed for interpolating
between all eigenvalues of reactants and products,'®

g(R) = exp[—a(R —- R,}], (2.13)

with a being treated as an adjustable parameter. In fitting SACM to thermal
rate data, typically a ~ 1 A~1.2° Even with this approximation, as indicated
in the original presentation'® of SACM, direct numerical count for N,
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becomes exceedingly time consuming for large molecules, owing to the large
number of reactant and product energy levels to be correlated and the corre-
spondingly large number of channel maxima to be located (usually numeri-
cally). Various additional approximations have been postulated to simplify
the calculation.?!

The distribution (relative probability) of products havmg a quantum num-
ber n, for mode i is again given by Eq. (2.2), where NE sa, DOW denotes the
number of open adiabatic channels leading to products in state n, and N,f 418
the total number of open adiabatic channels at the given E and J.22

III. APPLICATIONS

In this section several recent applications of the methods previously described
are summarized for some selected bond fissions or for the reverse reactions.
No attempt is made to provide a comprehensive review of all such applica-
tions. Applications to ion—molecule reactions**:24 have also been omitted.
Some specialized statistical models have been developed?? for this topic.

A. CH; Recombination

The recombination of methyl radicals to form ethane
2CH, - C,H, ~ (3.1)

has been widely studied experimentally under various conditions, the recom-
bination rate constant k, being defined by

~ d[CHj]

- 2
= = 2,[CH, 1" (3.2)

Many statistical models have been applied to reaction (3.1), and it might be
considered a test case for theoretical treatments of the rate constant. The
process inverse to (3.1), the dissociation of ethane, has also been extensively
studied experimentally?3-26 and theoretically.!!®-22:27 The theoretical predic-
tions for the rate of dissociation are, of course, quite sensitive to the value of
the bond dissociation energy. On the other hand, recombination rates depend
only weakly on that quantity. In the present review, attention is focused on
the prediction of the recombination rate using the transition state theory
outlined in Section Il C. First, the high-pressure limit of k,, denoted by k. 1
considered, particularly its temperature dependence. This is followed by a bricf
description of some results for the pressure dependence of k, and for the
dissociation of a vibrationally excited C, H molecule.
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1. High-Pressure Rate

In the following the salient features of the general transition state theory of
Sections ITA and 11 C, as applied to methyl radical recombination, are sum-
marized. Details, where omitted, are given in Ref. 11c.

The high-pressure recombination rate constant k_ is given as a function of
the temperature T by?2®

Ge

=D = 5o,

J TdE ¥ (2 + )N, (RheERT (33)
0 J=0 |

where E is the total energy in the center-of-mass frame, J and N,,(R) were
defined earlier, and R* was defined by Eq. (2.8); Q, is the partition function,
in the center-of-mass frame, for the pair of reactants at infinite separation and
is evaluated in a standard fashion?9; g, is the ratio g*/g,g, of electronic
partition functions for the transition state and separated radicals and is taken
o be %, corresponding to a common situation that only systems initially on
the singlet potential energy surface lead to recombination products.

The main ideas in the calculation of N;, were described earlier (Section
I1C). For the specific case of reaction (3.1), Eq. (2.10) is used for Ng,(R). The
classical Hamiltonian H,, in (2.10) is written as

!2

Hrl = Z Erl + + Vt(rm'leliel)i (3-4)

i=1,2 2#R2

where E,, is the rotational energy.obtained from a rigid oblate symmetric top
model of methyl radical i(i = 1,2) with R-dependent moments of inertia; u is
the reduced mass for relative motion of the two fragments; V, is the potential
energy function for the transitional modes (specifically, for variation in the
scparation distance and in the orientation of the CH, groups): I denotes a
4 x 4 set of interfragment distances between atom n(n = 1 to 4) of fragment
| and atom m(m = 1 to 4) of fragment 2; 6, is the angle between the carbon-
carbon displacement vector roc = r,, and the symmetry axis of methyl radical
i(i = 1,2). The internal coordinates r,,,, 0,, 8, that determine V,in Eq.(3.4) are
completely specified (using a transformation given in Ref. 11¢) by R, J and the
12 variables of integration in Eq. (2.10). The [ in Eq. (3.4) denotes an action,
the orbital angular momentum L, and is related semiclassically to the quan-
lum number [ in Eq. (2.3) by I, ~ (I + 4) (in units of # = 1) and so the I? in
Eq. (3.4) denotes I3, that is, (I + 3)?, which is the semiclassical ( Langer)
approximation to the /(! + 1) in Eq. (2.3). The potential V, 1s intended to be
physically reasonable, and can be constructed from ab initio points when they
become available. It is to be emphasized that the present method can be used
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regardless of the explicit form of the potential energy surface for the transi-
tional modes (or for the conserved modes) and regardless of whether or not |
is a constant of the motion.

The transitional mode potential was assumed to arise from nonbonded and
bonded interactions

Vi= Vs + Vs, (3.5)

where V5 is a sum of Lennard-Jones potentials between all nonbonded C---H
and H---H pairs and Vp is a Morse function modified by an orientational factor
to include in an approximate way to the now bent C---C bond. The explicit
forms of Vyp and Vj are given in Ref. 1lc.

In the absence of a current precise knowledge of the potential energy
surface, interpolations were used to obtain approximate normal mode fre-
quencies for the conserved modes and methyl radical moments of inertia at
intermediate R values, as described in Ref. 11c, using the interpolation g(R)
specified by Eq. (2.13). The number of quantum states for the conserved modes
[N, in Eq. (2.10)] was obtained at each value of R by a direct count of the
approximately harmonic levels. Calculations were made for two values of a
in Ref. 11¢, as reported below. The potential energy and structural parameters
that determine V,, the conserved mode frequencies, and the moments of inertia
are given in tables in Ref. 11c.

Three related approaches to the calculation of the recombination rate
- constant are described subsequently, the second two being approximations to
the first. In each case the integral over E and the sum over J in the numerator
of Eq. (3.3) are approximated by N-point Laguerre and 2M-point extended
Simpson’s rule quadratures,’® respectively, yielding |

g kT AJ N M
hQ(T) 3 ,; ,Z;, ww N, (R}), (3.6)

ko(T) =

where E, = kTx;, w, and x, are Laguerre weights and points,’® AJ is the
constant step size for the J-quadature, J; = jAJ, with j being an integer, not
to be confused with the js in Eq. (2.10), and w; = 1 for j = 0 and 2M, w; = 2
for j even w, = 4 for j odd.

The transition state location R} was determined for each (E,, J;) pair in Eq.
(3.6) by minimizing Ng ; with respect to Ron a 0.1 A grid over an appropriate
range of R values. The variation in Rf with energy is depicted in Fig. | for
several of the J values employed in the evaluation of Eq. (3.6). The integral
appearing in the expression for Ng,(R) in Eq. (2.10) was evaluated by the
Monte Carlo method described in Ref. 11b and is not discussed here. The
Monte Carlo approximation to N¢,(R) was denoted by N, + M€, where oM
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Figure 1. Plot of the transition state location versus the energy in excess of the total zero-point
encrgy of separated methyl radicals for several values of the total angular momentum J. The solid
curves result from smoothly connecting R} values for discrete values of the energy E. Each R}
was obtained for a particular (E, J) pair by minimizing N, , with respect to R on a 0.1 A grid over
an appropriate range of R values.

is one standard deviation. Estimates of the upper and lower bounds on k! (T)
were obtained by using (Ng ;, + 0¥€) and (Ng,; — o™©), respectively, in Eq.
(3.6). Convergence of the quadratures m Eq. (3 6) was ascertained by the
agreement (within upper and lower bounds) of k! values obtained with
diflerent values of N and 2M.%!¢ Since the model potential ¥V, for the transi-
tional modes admits, for sufficiently small values of R and E, disjoint regions
of energetically accessible classical phase space, an ad hoc restriction in
the Monte Carlo sampling procedure was introduced!!c to account for this
feature.

The symmetry factor ¢ in Eq. (2.10) deserves special consideration. A loose
transition state will be characterized by large values of R} and, hence, will have
essentially planar methyl radicals. In this case each of the identical fragments
has both C,, and C,, axes, resultmg ina o= (3 x2)* x2 =72 The results
given in Table I were obtained using this value of ¢. Results obtained by an
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TABLE I
High-Pressure Recombination Rate Constants®

Rate Constants (10'3 cm® mol ™! sec™!)
S e etet sl L

Temperature (K) k! 4+ 67 kil 4 8" k! 4 gt
300 433 1+ 0.12 4.28 + 0.10 508 4+ 0.13

500 367 + 008 3.58 + 0.08 4.38 + 0.06

1000 2.37 1+ 0.06 2.29 4 0.06 279 + 006

2000 1.09 +£ 0.04 1.08 £ 0.03 1.32 4003

* All rate constants calculated with a value of 1.0 A~! for the potential energy surface
interpolation parameter a; kg = $[(kp)max + (k)min] 20d & = [ (kg )mes — (k2 )miade Where
(ke )mex 8Nd (kz,)in are estimated upper and lower bounds obtained by using N, , + ™€ and
Ngs, — 0 M€, respectively, in Eq. (3.6); analogous expressions define (k.’, 5'') and (k1",5'"").

approximate interpolation taking into account the umbrella shape of the
methyl radicals at smaller R values are also reported in Ref. 11c and are
discussed briefly here. Motivation for use of an R-dependent symmetry cor-
rection is provided by Fig. 1 in which the decrease in R} with increasing E is
evident.

In the process of evaluating kI in Eq. (3.6) it was found!!¢ that Rf was
approximately independent of J for a given E. Accordingly, as an approxima-
tion to k!, a quantity kI was introduced as follows: A J-averaged Ng,(R) was
first defined, for use in (3.3),

J

N.(R) = J‘ " dJ Noy(R), (3.7)

0

where J,,, is the maximum J for a rigid symmetric top model of C;Hg when
all of the available energy appears as overall rotation of the C, Hq. The integral
over E in Eq. (3.3) was then replaced by an N-point Laguerre quadrature, as
for k! , and the resulting approximation to Eq. (3.3) became

KT N
hg' 3 w N (R?)). (3.8)

kp (T) =
In constrast with k., the transition state location R}, is now determined for
cach E, in Eq. (3.8) by minimizing Ng, with respect to R on a 0.1 A grid. The
integral for Ng(R) in Eq. (3.7) was evaluated by extending the Monte Carlo
method described in Ref. 11b to include the additional integration over J.
k!I(T) will equal k. (T) when Rf is independent of J. The advantage of using
Eq. (3.8) instead of Eq. (3.6) lies in the elimination of individual Monte Carlo
calculations for each of the discrete J;'s in Eq. (3.6) and a concomittant 3-5-fold
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reduction in the total number of required Monte Carlo points; the precise
reduction factor varied with temperature. Agreement of the k! and k! values
was found! ' for the particular model of methyl radical recombination under
consideration.

In a third approach, a canonical rate constant, denoted by k!!f, was
obtained in order to assess the error introduced by neglecting the dcpcndencc
of the transition state location on E and J. This rate constant k!'f is given by

g kT X
70, % "iMe B

where the sum is evaluated at the transition state location Rt , which is
determmed by mimimizing that sum with respect to R on a 02 gnd; this
value of R}, is thereby independent of E,. The evaluation of Ng, in Eq. (3.9)
is as described above. k!!f equals k! when Rt 1s independent of both E and J.
The procedure of using k’ T [though not using Eqs. (2.10) and (3.7) specifically]
has often been employed in some of the earlier literature on reaction rates,
where the procedure is referred to as a maximization of free energy of activa-
tion and, more recently, as canonical variational transition state theory.

Results for kJ,, ki, and kJ!' are given in Table I for the temperatures 300,
500, 1000, and 2000 K, which approximately span the temperature range
studied in the collective experimental work on the high-pressure limit of the
methyl radical recombination rate. All results in Table 1 were obtained with
a=1 A" [Eq. (2.13)]. The k., and k!/ values are seen to agree, within the
numerical uncertainty (denoted by & in Table I), for the four temperatures
studied. The canonical rate constant k./! is seen to be greater than k. or k!’
by about 20%, at each temperature. Since at each R, Ng,(R) > Ng,(R}), k!
should indeed be an upper bound to k.. For the Monte Carlo method in Ref.
l1¢c the computational effort used to obtain k!'f via the energy quadrature in
Eq. (3.9) was approximately the same as that for the preferred k!! [Eq. (3.8)].
(An attempt to include the energy integral in the most straightforward way in
the Monte Carlo procedure in Ref. 11¢ substantially increased the required
computer time. However, an improved weighting factor for the Monte Carlo
sampling may be available.)

Of particular interest both theoretically and experimentally is the tempera-
ture dependence of k.. Much of the available experimental data on k_ is
displayed in Fig. 2 of Ref. 11c. These data span the temperature range 250
2500 K and were published over a period from 1951 to 1985. A comprehensive
review of pre-1980 experimental work on methyl radical recombination has
been published by Baulch and Duxbury.2® The large scatter in the data is
evident in Fig. 2 of Ref. 11¢ and some of the experimental uncertainties (not
shown in that figure) are large. Nevertheless, it appears that k_ may exhibit

klﬂ(n o
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Figure 2. Plot of the high-pressure rate constant for CH, recombination versus reciprocal
temperature. Theoretical results are presented as solid curves 1 through 4 and are discussed in
the text: (1) generalized RRKM with a = 0.8 A-t: (D) generalized RRKM with a =1 A-; (3)
generalized RRKM with a = 1 A~! and an approximate symmetry correction; (4) a simplified
SACM treatment. The open circles are the experimental results of Ref. 33.

a negative temperature dependence, that is, a decrease in k_ with increasing
temperature. In their survey Olson and Gardiner?? judged that “the consensus
value of the recombination rate constant near 1000 K is seen to be a factor of
3 lower than the room-temperature consensus value.” The present theoretical
calculation yielded a similar result.! ' However, accurate experimental deter-
minations of k, require an extrapolation of results at vanous pressures,
yielding some uncertainty in the quantitative temperature dependence, parti-
cularly at high temperatures, where a large extrapolation was needed.

Some of the present flexible transition state theory results for methyl radical
recombination are given in Fig. 2, a plot of k, versus 1/T. Curves 1 and 2
depict kXf for @ = 0.8 and 1 A, respectively,* curve 3 depicts the results,
denoted by kX', of a k!’ calculation with a = 1 A~! in which the anticipated
deviation of the symmetry number from its loose value was included in an
approximate way.!!¢ Each curve was obtained by smoothly connecting the
calculated values of k, at T = 300, 500, 1000, and 2000 K. Plots of kL', rather
than the correct k!, were presented because the k!! calculations involved
significantly less computation time and yielded results in close numerical
agreement with those of the corresponding k! calculations. As might have
been expected, the rate constant decreased when a was decreased from 1 to
0.8 A%, in this case the decrease being about 10% at all four temperatures
studied. At T = 300 K, k!” (curve 3) agrees with kI! (curve 2) but does not

decrease as rapidly with increasing T and is about 40% greater than k;, at
T ~ 2000 K. In terms of the present model, the trend of decreasing k,, with
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increasing T is attributable to the decrease in R? with the increasing available
energy E associated with increasing temperature (Fig. 1). As the transition
state becomes tighter deviations from a loose symmetry number become more
pronounced.

A noteworthy feature of all three curves in Fig. 2 is the distinct negative
temperature dependence. A number of other statistical models have been used
to obtain k,, values for this system. Many of these results are displayed in
Fig. 2 of Ref. 11¢c and are discussed in the text accompanying that figure. Only
two other models displaying a negative temperature dependence have been
reported: a simplified SACM treatment'® displayed a very small negative
temperature dependence (curve 4 in Fig. 2). For a Gorin model loose transition
state, modified by the ad hoc inclusion of geometrically derived steric factors
for each radical (not given in Fig. 2), qualitative considerations indicated a
rough estimate of T™' for the temperature dependence of k_.>?

Comparison with expenment in the present Fig. 2 is given for the 1985
results of Macpherson et al.>? whose data appear as open circles. There
is agreement with the general transition state theory calculations over the
experimentally studied temperature range 296-577 K for curve 1. A feature
of the data in Ref. 33 1s the accurate determination of the absorption cross
section g, for the CH, absorption at 216.36 nm. This determination was
important since most experimental studies of the CH, recombination rate
accurately measure the ratio k /o,. In many earlier determinations of k_,, one
source of error appears to lie in the absorption cross section, a case in point
being an earlier work of Macpherson et al.>*

From a theoretical perspective, it 1s clear that a knowledge of the full
potential energy surface is needed for the improved application of a detailed

statistical theory to this system, particularly at high temperatures, thereby
avoiding the use of any interpolation parameter a.

2. Pressure-Dependent Rates

The strengths and problems of studying the pressure-dependent recombina-
tion rates using a weak colliding gas is evident.®> A brief preliminary report
is given here of some calculations of Wagner et al.?> on methyl radical re-
combination. Experimental rates for a discrete set of temperatures ranging
from 295 to 1200 K were available as functions of Ar bufler gas concentration.
These rates are plotted in Fig. 3 (with associated error bars, if available) versus
the {Ar], which is seen to span one to three orders of magnitude, depending
on the temperature studied. The theoretical analysis of the rates in Ref. 35
followed that in an earlier analysis of a different reaction,>® except that a
standard RRKM treatment of the transition state was replaced by the general
transition state treatment for k;, described in the previous section. Specifi-
cally, the Ng,(R) as given by Eq. (2.10) was evaluated by the method mentioned
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Figure 3. Logarithmic plot of the rate constant for CH, recombination versus argon buffer gas
concentration at various temperatures. The solid curves are theoretical results obtained using
generalized RRKM theory with @ = 1 A~! and assuming an average energy transfer of —190
cm™! between bufler gas and metastable C,H, per up and down collision. Experimental rates
are indicated by various sysmbols with, in most cases, accompanying error bars; different symbols
indicate rates obtained independently by different workers. Details are given in Ref. 35.

after Eq. (3.6) and employed for the sum of states at the transition state. A
parameter {(AE) was varied from ~ —175 to —300 cm™! to obtain best
agreement, (AE) being the average energy transferred between buffer gas and
metastable C;Hg per up and down collision. (The quantity (AE) is related
to an efficiency factor chosen so as to empirically mimic a master equation
solution.?”) The stabilization rate constant was taken to equal the product of
the efficiency factor and a Lennard-Jones gas kinetic rate constant. For the
value & = 1 A™! used earlier (Fig. 2), a value of (AE) ~ — 190 cm™! provided
good agreement. The solid lines in Fig. 3 were computed with this value.
Comparing theory and experiment on pressure effects with a weak collider,
such as Ar, does introduce a new aspect, the unknown collision cross sections
for the various deactivation and activation steps.

3. Dissociation of Vibrationally Excited C,Hg

Growcock et al. determined the decomposition rate constant for vibration-
ally excited ethane produced by chemical activation, C,Hg* — 2CH;.>® The



ON THE STATISTICAL THEORY OF UNIMOLECULAR PROCESSES 249

reported® excitation energy of 114.9 + 2 kcal mol~! with respect to the
zero-point energy of ethane corresponds, for the molecular parameters used
in Ref. 11c, to an excess energy of 27.3 + 2 kcal mol™" with respect to the
zero-point energy of separated methyl radicals. Here, it was assumed that this
excitation energy was deposited in internal degrees of freedom and the overall
rotational energy of ethane was approximated by E; = J(J + 1)/2],, (in units
of h = 1) with a symmetric top moment of inertia I, , defined in Ref. 11b. For
J-dependent total energies E — E,, = 27.3 + E, and various J's, the Ng,(R})'s
were determined. In each case R} was found to be 2.9 + 0.1 A. The calculated
rate constants given by Eq. (2.1) were found to be kg, (in 10%sec™!) = 4.6,4.2,
44,69, 14, and 33 for J = 0-125 in increments of 25.11¢ (At the lower J's, E;
at this E is presumably too small to affect kg,.) These calculated kg,'s are
consistent, for J < 75, with the reported“ experimental value of (4.6 + 1.2) x
10° sec~". The experimental J distribution is not known. If J had its thermally
averaged value at room temperature (the temperature in the photolysis experi-
ment®® was not specified however), then the average J would be about 25. In
any event a J distribution in which the dominant J's are less than 75 is likely.

B. H,0; Dissociation

The unimolecular dissociation of isolated hydrogen peroxide in its ground
clectronic state

HOOH - 20H (3.10)

has recently been studied experimentally®®~*! in a detailed manner. Statis-
tical®®~*#! theories have also been applied and classical trajectory*? calcula-
tions have been made. In recent experiments the unimolecular decomposition
of HOOH has been initiated by excitation of different OH stretching over-
tones (€.g., Svou and 6voy), and limited résults for the partially deuterated
species HOOD have also been obtained.>*™*' The yields of the different
quantum states of the OH fragments were probed by time-resolved laser-
induced fluorescence.

A vibrational-torsional potential model, in which the high-frequency OH
vibration and the low-frequency torsional motion are adiabatically separated,
was fit to the observed excitation spectra,*® a model later modified to include
the excitation of the O-O stretching vibration.*! Peaks in the excitation
spectrum were then assigned on the basis of this model (a main band involving
pure OH stretching excitation, combination bands involving OH stretching
excitation and torsional excitation, and hot bands for OH stretching excita-
tion, in which the initial O-O vibration or torsional vibration was in an
excited state).

In the work described subsequently, comparisons of experimental product
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internal energy distributions to each other or to theoretical models, are given.
Complementary information is provided by the rate of product formation, a
quantity whose measurement is precluded in the experiments described herein
by the 10 nsec time resolution. The study of the direct time-resolved pico-
second measurements of HOOH decomposition and the rates of energy
relaxation or reaction has recently been done by Zewail and co-workers.*?
Furthermore, experiments have been reported using Doppler spectroscopy
and the laser-induced fluorescence technique to measure the translational
energy distribution and the angular distribution of OH products.**

Results have been obtained by Rizzo et al.** for HOOH excited to the
region of the fifth overtone (6voy) and by Ticich et al.*!* for HOOH excited
to the region of the fourth overtone (5voy). With six quanta in OH stretching,
there is a minimum of 4.6 kcal mol™" of energy available for disposal in the
products, when the molecule is in its lowest vibrational state initially. On the

other hand, five quanta of OH stretching fall 12.9 kcal mol™* short of the 0-O
bond dissociation energy, so that only reactant molecules that initially have
at least this much thermal energy can dissociate. Consequently, the resulting
product distributions are expected to reflect the influence of threshold effects
on the decay dynamics. For both the 6voy and Svoy cases, all excess energy
is observed to appear in translation and rotation of the products; there
is insufficient energy in the light quantum itself to produce a vibration-
ally excited OH. Measured product rotational distributions resulting from
HOOH initially prepared in the main band (6voy) and in a combination band
(6vgu + Vs), where one quantum of torsional motion, v,, is excited are com-
pared in Fig. 4 for both the R, and @, branches of the OH spectrum, N
denoting the rotational quantum number of an OH.

Statistical and experimental product distributions for excitation wave-
lengths in the region of HOOH (5voy) main and combination bands and in
the region of the HOOH (6voy) main and combination bands are given in Fig.
5. The statistical product distributions calculated in Ref. 41 are based on two
of the statistical models described in Section 1I: PST and the original SACM.
(PST corresponds to the limiting SACM case of « — oo, and in Ref. 41 the
PST results were essentially identical to the SACM product distributions
when « = 1.5 A1) In the application of PST to this system it was found that
the rather strong long-range attraction between OH fragments yielded centri-
fugal barriers at large separations and hence there were only small centrifugal
barrier heights for physically reasonable values of the orbital angular momen-
tum. The PST calculation was therefore found to be insensitive to the exact
form of the long-range radial potential. The SACM and PST calculations
included the initial distribution of the unexcited H,O, and the effect of
photoexcitation.*!*

The experimental product distributions arising from decomposition of
HOOH excited to the region of Svoy (Figs. 5a and 5b) are seen to be qualita-
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Figure 4. Relative rotational state distributions of OH products from overtone-vibration-
induced unimolecular decomposition of HOOH. The solid bars are populations for excitation of
the main local mode transition (6voy) and hatched bars are populations for excitation of the
combination transition (6vpy + v,). The quantum number N denotes the rotational OH angular
momentum. Figures 4a and 4b show results obtained probing the @, and R, branches, respec-
tively, of OH. The error bars in Fig. 4(a) show the maximum range of values obtained and are
typical of the uncertaintics for all states. (Reproduced with permission from Ref. 39.)

tively different from the corresponding 6voy, distributions (Figs. Sc and 5d).
The 5vg, distributions arise from decomposition of reactant states excited
from the high-energy tail of the initial Boltzmann distribution, and many
of these states therefore have energy near threshold. This is not the case for
the 6voy decompositions. In parallel with new picosecond measurements of
rates,*> PST calculations are under way,** and calculations with the general
transition state theory in Section II C are planned.

C. NCNO Dissociation

Another unimolecular reaction that has been studied in great detail experi-
mentally*6=4? is the collision-free decomposition of nitrosyl cyanide:

NCNO - CN + NO. (3.11)
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Figure 5. Comparison of the observed product rotational state distributions (solid bars) and the
results of two statistical models: the statistical adiabatic channel model (SACM, open bars) and
phase space theory (PST, hatched bars). The distributions are an average of those observed, of
those calculated, at several excitation wavelengths in the region of () the 5voy main band, (b) the
Svou combination band, (c) the 6vo, main band, and (d) the 6voy combination band of HOOH.
(Reproduced with permission from Ref. 41.)

Using a pulsed free jet expansion the vibrational modes of the NCNO were
in their ground states and, with He as a carrier gas, the rotational temperaturc
of NCNO was about 2 K, corresponding to the symmetric top quantum states
J =0to 6and K = 0 to 1, where J is the total rotational angular momentum
and K is its projection on the symmetry axis. The excitation of NCNO was
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to a low-lying electronic state, which underwent internal conversion to the
ground electronic state. The subsequent dissociation to CN and NO was slow
on a rotational time scale.*? The yields of the different rotational-vibrational
quantum states of CN were monitored by laser-induced fluorescence. An
accurate estimate of the dissociation energy D, of the NC-NO bond was
obtained. Observation of the maximum value of N”, the rotational angular
momentum of CN, permitted by having all available product energy, E — D,,
in CN rotation, provided evidence that the dissociation occurs on S, with no
significant potential energy maximum in the exit channel.

Both CN and NO distributions were obtained, although the NO popula-
tions are considerably more difficult to measure.*® In contrast to the H,0,
experiments in the previous section, it was possible to pump NCNO with
sufficiently high-energy photons to obtain vibrationally excited CN or NO
products, although the majority of experiments were performed with excita-
tion energies below the thresholds for CN (v” = 1) or NO (v" = 1). Measured
rotational distributions for CN and NO, as a function of their respective
quantum numbers N” and J”, are given in Fig. 6 (open circles) for three values
of the photolysis wavelength, 1,. The peaks in the photodissociation spectrum
corresponding to the selected A,’s are indicated in the center panel of the figure.
None of the three wavelengths was sulfliciently short to result in vibrationally
excited products. The spin-orbit splitting (123 cm™")3° of the X2IT electronic
state of NO resulted in separate rotational distributions for the *I1,, and IT,
states at each excitation wavelength. There were no abrupt changes in the CN
distributions with increasing E — D,.*®

PST is compared with the data in Fig. 6. When the energy available to
products E — D, was below the product vibration excitational threshold, 1876
cm™! [NO at (v" = 1)], the agreement of PST (solid circles) with the experi-
mental rotational distributions in Fig. 6 was excellent. When E — D, was
increased beyond 1876 cm™, the PST description of the rotational distribu-
tions became somewhat poorer, although by some standards still very good
(e.g, Fig. 7). Wittig and co-workers obtain improved agreement by introducing
a modification (denoted by SSE) in which the vibrational distribution was
assumed to arise not from a sharing of energy among all coordinates (PST),
but [rom a sharing of energy among a slightly more restricted number, namely,
the vibrations of the products plus four one-dimensional translations in the
case of two diatoms (or plus five one-dimensional translations in the case of
a diatomic and a polyatomic product).*® For any specified vibrational state
of CN, the rotational state distribution of CN for each energetically accessible
NO vibrational state was then calculated using PST, weighting each such
distribution by the distribution of vibrational states of NO, calculated as
above. In SSE, as expected, the vibrational excitation is now enhanced slightly
and so the rotational excitation is decreased compared with PST. Below the
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Figure 6. A composite view of the NO and CN data for the unimolecular decomposition of
NCNO. The central trace shows the photodissociation spectrum of jet-cooled NCNO. The NO
and CN rotational populations result from dissociation at the indicated absorption maxima.
Experimental distributions for the CN rotational quantum number N” and the NO rotational
quantum number J” are given as open circles in the upper and lower pancls, respectively. The
theoretical results are from PST. For a discussion of the calculated versus experimental NO
spin-orbit population ratio see Ref. 49. (Reproduced with permission from Ref. 49.)

threshold for vibrational excitation, SSE and PST are identical. The results
are given in Fig. 7, where PST and SSE are compared to the CN (0" =0)
rotational distribution at E — D, = 2348 cm™. Figure 8 gives a comparison
of SSE and the data for both spin-orbit states of NO (v” = 1) at the same
excess energy. In order to compare theory with experiment it is necessary, in
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principle, to average the PST and SSE distributions over the appropriate
P(E, J) distribution. Here only a few rotational states were populated initially
(T ~ 2K;0 < J < 6) and, after photoexcitation, the ensemble of parent mo-
lecules had a rather narrow spread of E and J values. As the PST and SSE
calculations were found to be fairly insensitive to the J values over the range
(0, 10), averaging was deemed unnecessary and so product distributions and
product energy averages were determined only for J = 5. Further discussion
of this system was given recently in a pair of articles.*®® The RRKM plus
adiabatic treatment in Section I1 C is expected to qualitatively produce the
same effect as SSE, and it will be interesting to make a quantitative compari-
son with the data.

D. H,CO Dissociation

Laser-induced formaldehyde dissociation has been intensively studied experi-
mentally and theoretically in the last decade.>! ~34 Detailed calculations of
the potential energy surface have been reported and various studies have been
undertaken regarding the possibility of mode selective decay. The low density
of vibrational states at the typical energies studied make H, CO an interesting
candidate for possible non-RRKM effects, a point to which we return later.

Experiments on the laser photochemistry of formaldehyde®! indicate that
the probable mechanism involves the excitation of the ground state S, to a
ro-vibrational state of the first excited singlet state S,: .

H;CO (So) + hv — H;CO* (Sl ). (3.12)

At the usual energies the excess energy is too small for dissociation to occur
on the S, surface, and reaction (3.12) is followed instead by either fluorescence

H,CO* (§,) -» H,CO (S,) + hv’ (3.13)
or by int‘emal conversion to a vibrationally excited state of S,
H,CO* (S,) » H,CO! (S,), (3.14)
followed by the unimolecular decomposition reactions

H,CO!(S,) -+ H, + CO (3.15)
~+ H + HCO. (3.16)

The relative rates of processes (3.13) and (3.14) depend on the proximity
of the ro-vibrational state on the S, electronic surface to a highly vibrationally
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excited state on §,. The radiationless decay rate [Eq. (3.14)] will be maximized
when two vibronic states of S, and S, are in resonance, a condition exploited
in recent Stark tuning experiments,33:34

The threshold for decay to radical products [Eq. (3.16)] is higher than that
for molecular products [Eq. (3.15)]. At excitation energies sufficiently close to
the origin of the S, — S, transition only molecular products are observed
and Eq. (3.16) becomes more important with increasing excitation energy.’*
Whereas there is presumably no barrier maximum for the dissociation in the
simple bond fission process [Eq. (3.16) ], there is one for the molecular elimina-
tion channel [Eq. (3.15)]. Ab initio calculations®® and a fit to experimental
data®® put the barrier height (including zero-point energies) for reaction (3.15)
in the ~ 80-90 kcal mol™! range.

The density of vibrational states in the S, state formed in the internal
conversion (3.14) is low at the usual photon energies used in (3.12), because
of the smallness of the molecule and the relatively high values of the vibration
frequencies, half the atoms being H’s and there being a C=0 bond. The
sparseness of these vibrationally excited levels of the S, state is evident in
recent work>>**4 in which the lifetime of a J, K, |M]-resolved S; state was
considerably altered by Stark tuning of the vibronic levels of the two states
in and out of resonance. The differences in lifetime in Ref. 53 were found not
to be due to symmetry or J effects in their case.>* The tuning was possible
because of the difference in dipole moments of the S, and S, states. For
D,CO(S,) excited in the vicinity of the 4! vibrational state, decay rates ranged
irregularly from 2 x 107 to 5 x 10® sec™!, when the applied voltage responsi-
ble for the Stark field was varied from 0 to 20 k V.

A variety of theoretical calculations have been performed, including classi-
cal trajectory studies of chaotic versus quasiperiodic motion.>” Approximate
tunneling corrections within the framework of RRKM (i.e., microcanonical
transition state) theory have been used, in which the one-dimensional barrier
along the reaction coordinate was represented by the generalized Eckart
potential and applied to the reaction (3.15) of J = 0 formaldehyde by Miller$2*
and Gray et al.>** In Ref. 52a ab initio transition state vibrational frequencies
were used and the ab initio potential energy function along the reaction path
was found to be fitted well by an Eckart function for energies up to 8 kcal
mol™ below the barrier maximum. The computed rates were sensitive to the
assumed barrier height and fairly insensitive to the transition state frequencies
as obtained from various levels of ab initio calculations. The RRKM tunneling
rates were found to agree with rates obtained from a “reaction path Hamilton-
1an model,” to within 20%, at energies for which the rate constant was greater
than 10° sec™. Best estimates of the statistical microcanonical rate in Ref. 52b
yiclded a rate constant of 5.9 x 10° sec™! at 6.4 kcal mol™! below threshold.
faster than the radiative decay rate (~2 x 10° sec™!). Possible symmetry
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effects for states symmetrical and antisymmetrical with respect to the H,CO
plane were also examined, and an RRKM plus tunneling model®®* was
applied to each irreducible representation to obtain J = 0 microcanonical rate
constants for formaldehyde decomposition. A factor of ~ 20 difference be-
tween them at J = 0 was predicted in the tunneling region, which became a
factor of 2 at 5—6 kcal mol™! above threshold, and unity as E —+ 00. Results
for nonzero total angular momentum revealed a diminished symmetry specifi-
city for J > (.38

Troe has calculated k., for the molecular elimination channel (3.15),%?
using an RRKM plus tunneling model, namely, a model analogous to that in
Ref. 57 but with slightly different molecular parameters and including approxi-
mate anharmonicity correction factors based on a coupled Morse oscillator
model. Using a simplified SACM for (3.16), the calculations led him to suggest
a channel switching of the two mechanisms at J ~ 35, channel (3.15) being
more important than (3.16) when J < 35, this being reversed for J > 35,

IV. DYNAMICAL ASPECTS AND STATISTICAL BEHAVIOR

In the preceding sections several statistical approaches for calculating reaction
rates and distributions of quantum states were described and illustrated using
recent studies. We conclude with some remarks on the dynamical aspects
leading to and creating deviations from statistical theories.

A dynamical basis for statistical theories is a matter of much current in-
terest.5% We consider first the case where the vibrational or really vibrational -
rotational quantum states of the molecule are those of a bound system, that
is, where there is no dissociation. The Hamiltonian H can be regarded as a
perturbation (parameter 1) from some integrable Hamiltonian Hy(4 = 0), for
example, from a collection of normal modes or Morse oscillator modes to,
say, A = 1. The eigenvalues in H, occur in sequences, sequences which can
have spacings slowly varying with the quantum numbers (as in a collection of
Morse oscillators, for example).%°® If the spacings of the eigenvalues are
sufficiently large, the perturbation from Hy to H produces no avoided cross-
ings of the eigenvalues in the vicinity of 4 = 1 and so the wavefunctions of H
at A = 1, like those of H,, can be expected to be “mode selective,” %°*°! and
the eigenvalues can be expected to occur in sets of regular sequences.®% If, on
the other hand, the levels are sufficiently closely spaced, they may approach
each other closely at 4 = 1, and one obtains then a “mixing” of states. If a
particular such level participates in many such avoided crossings simultane-
ously (overlapping avoided crossings®?), the wavefunction takes on a statisti-
cal character (highly irregular nodal patterns), and its behavior will differ only
randomly from that of nearby states.5* Such then are two limiting dynamical
pictures of the vibrational eigenstates of H. .
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If now the states of H are coupled to a continuum via a nuclear tunneling
through a potential energy barrier, the same two limiting pictures as given
previously, can be expected to occur, but now each state of H is broadened
by the coupling to the continuum. A case in point may be H, CO, whose states
in the tunneling regime showed, as noted earlier, considerable differences.

The next case in increasing complexity is where the predissociative states
of H do not involve a nuclear tunneling. Here, a suitable choice for an H, may
not be evident.®* (One possibility is for H, to consist of a Morse oscillator for
the dissociating mode and normal modes for each fragment, but this would
need to be supplemented by coupled R-dependent hindered rotations of the
fragments.) Indeed, the difficulty in finding such an H, may be consistent with
a considerable “mixing” of the states as a whole in such systems. As before,
the more widely spaced the states, the less the extent of “mixing” and the
greater the opportunity for observing a mode-selective behavior.

Regardless of whether the H has “mode-selective” or “highly mixed™ eigen-
states, the excitation process can involve, when the eigenstates are sufficiently
closely spaced, the formation of a wavepacket of states: Many states whose
energies lie within the width of the laser pulse may be optically active. An
example of mixed and mode-selective behavior is seen in recent work on
infrared fluorescence after excitation by a single infrared photon.®® Here,
depending on the number of coordinates, the infrared excitation of a molecule
by a single vibrational quantum yielded infrared fluorescence from many parts
of the molecule, when the molecule was sufficiently large. Examples of “mode
selectivity” in vibrational states, that is, nonstatistical behavior, include the
observation of vibrational quantum beats in some organic molecules at low
energies,®® the behavior of some van der Waals’ complexes,®” and perhaps the
studies in H,CO mentioned earlier.>*3* Experiments on “mode selectivity”
in the tunneling and nontunneling regimes, for molecules of different com-
plexity is clearly of considerable interest in defining some limitations of
statistical theoreies.

In a concluding comment we recall some ideas on a topic that has fre-
quently arisen in discussions of dynamical and statistical behavior, namely,
the relation between what was previously termed “highly mixed quantum
states” and “chaos.” As noted elsewhere,®® classical chaos is expected to imply
some corresponding behavior in the quantum case, such as “highly mixed
states,” but only when the classical chaos s, on a phase-space scale, large
compared with A.%° A more detailed discussion, based on Chirikov’s idea for
the origin of classical chaos (overlapping resonances) and the connection
between classical resonances and quantum-mechanical avoided crossings, has
been given elsewhere, 52:6°

It may also be recalled that there are two types of “global states™ In
particular, one can have states that, owing to the presence of an isolated
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quantum-mechanical resonance, may have a delocalized character. Such states
will, when projected onto a set of localized basis set states, have many com-
ponents. Nevertheless, the state may still be regular, that is, not participate in
overlapping avoided crossings and be a member of a set of states which has
a high regularity in its eigenvalue sequences. It was shown elsewhere’® that
the “global states” of Nordholm and Rice, for example, were of this type.!
There is also another type of global state, namely, a state that is delocalized
by virtue of being involved in many overlapping avoided crossings. These two
types of global states will exhibit some differences in properties, as well as
some similarities. Detailed experimental pump-probe measurements are only
now just beginning to unravel the nature of the vibrational and rotational
states of vibrationally excited molecules.
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