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In part I a reaction—diffusion equation was introduced for the description of electron transfer

reactions which are induced by fluctuations in both the solvent polarization and in the
intramolecular vibrational coordinates. We analyze the model employing a generalized

" moment expansion for the time behavior of the surv1va1 probability Q(#), i.e., for the fraction of
molecules that have not transferred their electron at time ¢. Numerical and, in the narrow
reaction window limit, analytical solutions are given for the average survival times 7. When the
contribution of the intramolecular coordinates is appreciable an approximate power-law
behavior 7« 7¢, with 0 < @<, is found for the dependence of 7 on the solvent dielectric
relaxation time 7, in the large 7, regime. Within the framework of the generalized moment
description Q(¢) is approximated as a superposition of several optimized exponential functions.
In the small and intermediate 7, regimes it is found that a single- or bi-exponential description,
respectively, is sufficient. Simple formulas for such approximations in terms of the average
survival times are given. Furthermore it is demonstrated that in the large 7, regime a truly
multiexponential time behavior for the survival probability is encountered which, over a
certain range of time, can appear to be algebraic, i.e., Q(¢) « ¢ ~7. The relation of these results

to experimental data is discussed.

L INTRCDUCTION

The dynamical effects of solvent dielectric relaxation on
the ratés of electron transfer reactions have been the focus of
a number of recent experimental'™ and theoretical'®'? in-
vestigations. However, since the theoretical investigations
on this topic were naturally centered on the description of
the influence of the solvent, additional contributions to the
electron_transfer from intramolecular degrees of freedom
were most often neglected. In part I of this series'® the elec-
tron transfer process was treated in a way which incorporat-
ed the effects of fluctuations of both the solvent polarization
and of any intramolecular vibrational changes during the
reaction.. The treatment led to a diffusion equation for the
solvent polarization coordinate which included a reactive
term also dependent on this coordinate. In the absence of
intraimolecular contributions this reactive term simplifies to
a delta function. A first analysis of this solvational plus intra-
molecular vibrational model, including an approximate de-
scription of resulting reaction rates, was given in part 1.

In the present paper a numerical solution of the model of
part I is given, making use of a multiple exponential expres-
sion for the survival probability and evaluating the terms in
it using the generalized moment algorithm.*>*' To make the
present paper relatively self-contained, the model is re-
viewed in Sec. II and the method of solution is described
there in detail. In Sec. III the numerical results for mean
survival times are presented and comparison is made with
several approximations. Numerical results for the time de-
pendence of the survival probability, i.e., the fraction of mol-
ecules that have not transferred their electron, are given in
Sec. IV, and a comparison is made with single- and bi-expo-
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nential approximations. Concluding remarks, discussion,
and remarks on some experiments appear in Sec. V..

il. MODEL AND METHOD OF SOLUTION
A. Reaction—diffusion equation

In solutions, stochastic degrees of freedom, such as a
fluctuating solvent polarization coordinate X, as 1as in-
tramolecular vibrational degrees of freedom, may/contribute
to electron transfer processes. The first of these coordinates,
it was argued in part I, can often be regarded as “slow,” and
the second as relatively “fast.” In such a situation electron
transfer reactions can be described by a reaction—diffusion
equation. For the probability distribution P(X,7)dX, i.e., the
fraction of molecules that have not transferred their electron
at time ¢ and which experience a solvent polarization coordi-
nate in the interval (X,X + dX), this equation has the form

2 Py = [LOD — kCOTPAD) @1
L(X) is a Fokker-Planck operator that determines the sto-
chastic motion along the polarization coordinate and has the

form

6
LX) =D 4 ux ]]
) X 3X+B[dX 0
where D is the “diffusion coefficient” for the solvent fluctu-
ations, and U(X) is a potential that, for the generic case
considered in part I, is assumed to be harmonic

UX)=1X%; (2.3)
B denotes the scaled inverse temperature, (ky T) ~'. The dif-

fusive motion along the polarization coordinate alone, i.e.,
the fluctuations of the solvent polarization in the absence of

2.2)
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reaction, would lead to a relaxation of the distribution func-
tion P(X,t) from an initial distribution P(X,z=0) to an
equilibrium Boltzmann distribution

Po(X) <exp[ - BUX)], (2.4)
on a time scale given by
. =(BD)"". (2.5)

That the stationary distribution (2.4) is not reached is due to
the reactive term k(X)) in Eq. (2.1). It describes the electron
transfer process, which is induced at each X by the solva-
tional and vibrational motion. In deriving the reactive term
the assumption was made that equilibration in the vibration-
al coordinates is fast, that the motion across the transition
state is ballistic rather than diffusive,?*‘® and, for computa-
tional simplicity, that no backreaction occurs (equations in-
volving a back reaction are given later in this section). The
reactive term has the form?*®

k(X) = v, expl —BAG(D)], (2.6)

with a frequency factor v, which depends on whether the
crossing of the transition state is adiabatic or nonadiabatic
and is described in part I. The X-dependent free energy bar-
rier AG(X) was derived in part I to be

1 (4o 2
— (22} (x - x.)?,
7 (32) %0

where A, and A, are quantities describing the contributions
from intramolecular and environmental reorganization pro-
cesses, respectively, to a reorganization energy term 4. X,
denotes the value of the polarization coordinate at the point
of the transition state hypersurface where the intramolecular
coordinates have their initial equilibrium value (compare
Fig. 1 of part I).

One time scale of the reaction process is given by the
thermal equilibrium expectation value of £(X):

AG(X) = (2.7)

= (k(X)>o=J dX k(X)Py(X) , (2.8)
where { ), denotes averaging with respect to the equilibri-
um distribution function P,(X). As will be discussed below,
this time scale is to be compared with 7, the diffusive time
scale. The rate constant k, has the value'®

k,=v, (1 +%)—”2 exp(—BAG*), (2.9)
with a free energy barrier AG * given by
AG* =— 1 (l—i—/{)_l){z (2.10a)
5 e (7. .

X % is given in terms of the standard free energy of the reac-
tion, AG °, and the reorganizational terms, A; and A, by com-
paring Eq. (2.10a) with the equivalent expression'®

AG*:i( AG
T

0\2
X A ) ’
withd =4, +4,.

It is of notational convenience to consolidate the molec-
ular parameters. By the transformation VB X—X the
Fokker—Planck operator can be written in the convenient
form

(2.10b)

‘ d 19
LX) =7 ]
(X) =71, aX 8X+

and the Boltzmann distribution (2.4) becomes, after norma-
lization,

(2.2

Py(X) = ——e— /X7 2.4)
V2
Also, by the use of Eq. (2.9) the frequency factor v, can be

eliminated from the expression for k(X):

k(X) =k, / 1 +% exp{ —B[AG(X) — AG*]},

O
Therefore, the present model depends only on the diffusive
and reactive time scales, i.e., on 7, and k., and on the reac-
tion parameters A,/A, and SAG *.

A quantity of experimental relevance is the fraction of
reactant molecules that have not transferred their electron
by time ¢, which was termed the survival probability in part I,

(2.6")
with
1 (4, 2 /
BAG(X) =? 7 (X—Xx.°, (2.7)
and X, related to SAG * by
A
Xc=\/2(1+i—')BAG* . (2.10")

Q1) =J dX P(X.,t) . (2.11)
For the initial distribution P(X,t = 0) of the molecules we
will assume the Boltzmann distribution (2.4) throughout
this paper,”>‘® since this case appears to correspond to a
common experimental situation. Due to the electron trans-
fer processes the function Q(r) decreases monotonically
from 1 to 0. Except in special cases, Q(¢) cannot be evaluated
analytically from Eq. (2.1) and, therefore, a simplifying ap-
proximation (as in part I) or a numerical solution is needed.

There are some qualitative arguments which can be giv-
en concerning the functional form to be expected for Q(¢).
For a large class of potentials, including the harmonic one,
the operator [L(X) — k(X)] is expected to have a discrete
spectrum of eigenvalues — ¥, with 7, >0 and so, in princi-
ple, a spectral expansion of Q(¢#) can be given,

Q(t) — i ane—Y,,t’

n=1
with the expansion coefficients a, determined from the ei-
genfunctions and from the initial distribution P(X,0).
Therefore, we should expect a multiexponential relaxation
behavior for Q(¢) which, in certain parameter regions, may
be approximated by one or two exponentials.
As has been pointed out in part I, valuable information
about the time behavior of Q(¢) is already given by the aver-
age survival times:

r = fw oy,
0

e =jw tQ(t)dt/Jw Q(t)dt .
0 (4]

(2.12)

(2.13a)

(2.13b)
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These quantities give an estimation of the time scale for the
relaxation process of Q(¢) and give also some hints concern-
ing the functional form of this behavior. A comparable value
of 7, and 7, indicates, for example, that Q(z) exhibits an
almost single-exponential decay, whereas strongly differing
" values indicate that the behavior is more complicated, e.g.,
bi- or multi-exponential. The quantity 7, is equivalent to the
mean first passage time known from diffusion controlled
processes,”> and its inverse serves as one estimate for the
reaction rate of the electron transfer process. The relation
between 7, and 7, will be further delineated during the
course of this paper. The quantities 7, and 7, have been
evaluated approximately in part 1. Numerical results for
these quantities are obtained in the present article and are
given below in Sec. III, where they are also compared with
the approximate results of part L.
It is useful, at this stage, to review four limiting cases of
Eq. (2.1) already discussed in part I.

1. Fast diffusion limit, v k, - 0 (k, #0)

In this limit the distribution of reactant molecules that
experience the polarization coordinate X is at all times pro-
portional to the thermal distribution (2.4), since deviations
from this form rapidly decay due to the fast diffusional relax-
ation processes. Therefore, the relation P(X,t) = P,(X)Q(?)
holds, and with this relation one can easily derive from Eq.
(2.1) that Q(¢) shows a single-exponential decay with k, as
rate constant.

2. Slow diffusion limit, v .k, - co (K, < o)

In this other extreme case the distribution of the polar-
ization coordinate X seen by the reactant molecules appears
to be frozen in at the initial distribution P(X,0), since practi-
cally no diffusional relaxation occurs. Furthermore, each
fraction of molecules that experiences a polarization coordi-
nate X reacts with a rate constant k(X). Since the time be-
havior of Q(¢) is a superposition of these different reaction
processes this case yields a well-known expression

Q) =fw dX Py(X)e <P, (2.14)

Thus, in this limit the eigenvalues — 7, in Eq. (2.12) are so
closely spaced that the multiexponential form (2.12) has
become essentially an integral.

The two cases above were distinguished by the different
limiting values for the ratio of the diffusive and reactive time
scales, irrespective of the value for the other reaction param-
eters. The following two cases are, in contrast, distinguished
by different limiting values for the parameter A,/4,, which
regulates the width of the Gaussian reactive term & (X) and,
therefore, will be called reaction window parameter.

3. Narrow reaction window limit, A,/2,—0

This limit corresponds to a vanishing contribution of the
intramolecular degrees of freedom to the electron transfer
reaction, i.e., 4, =0. The reactive term now assumes the sim-
ple form of a delta function

k(X) =k, [Py(X)]7'8(X—X,), (2.15)
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which makes it possible to give some analytical results. For
the case k, —» o and X, =0 (i.e., BAG * = 0), the form of
Q(t) was derived in Ref. 24 and in part I to be®®

o(r) =2 Gin—t(e~ "y | (2.16)
T

Analyticél results for the average survival times for the other

values of k, and X, are derived in the present paper.

4. Wide reaction window limit, A,/2¢—

In this other extreme case of the reaction window pa-
rameter the contributions from the solvent to the electron
transfer process vanish, A, being zero. The reactive term is
practically constant and equal to k, over the relevant range
of the potential. Therefore, in this limit the time behavior of
Q(¢) is simple again, being a single-exponential decay with
k, as rate constant.

Before we proceed to describe the method employed in
this paper to evaluate numerically the average survival times
(2.13) and the survival probability Q(z), we would like to
discuss first the relation of the model presented here to sever-
al reaction diffusion models treated in the recent chemical
physics literature.?® The physical description of the electron
transfer process underlying these models has already been
discussed in part I.

Reaction—diffusion models for electron transfer pro-
cesses coupled to solvent polarization fluctuations without
the inclusion of intramolecular degrees of freedom have been
treated in several papers.’>®'*!7 Though different ap-
proaches were employed in these investigations the models
derived had quite comparable features. They resulted in the
description of the transfer process as a “diffusion” of the
solvent polarization (or an equivalent coordinate) along a
one-dimensional free energy surface of the reactant, with the
reaction occuring via the crossing over to the free energy
surface of the product at the intersection point of the two free
energy surfaces. In the adiabatic case the crossing over to the
product free eriergy surface occurs with unit probability. In
this case, neglecting the backreaction, the reaction process
can be viewed as a diffusion in a one-dimensional potential
well with an absorptive boundary at the intersection point of
the two free energy surfaces. When the intersection does not
pass through the minimum of the reactant’s free energy sur-
face there is a reaction barrier, and for high enough barriers
the approach of Kramers®’ can be employed to derive ex-
pressions for the reaction rate.'>'” In the nonadiabatic case
the crossing over to the product free energy surface at the
intersection point occurs with a probability of less than one
and, therefore, the part of the reactant free energy surface
that lies energetically higher than that of the product free
energy surface can be reached. In this case, again with ne-
glect of the back reaction, the reaction process is described
by a diffusion on the reactant potential curve including a
reactive term of delta-function form at the intersection point
of the potentials.'*®

The model just described for a nonadiabatic electron
transfer process corresponds to the narrow reaction window
limit of our model, the point X, representing the intersection
point of the two free energy surfaces. The inclusion of intra-
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molecular degrees of freedom gives rise to a broadening of
the delta-function reactive term to a Gaussian.

In Ref. 15 a model was introduced where intramolecu-
lar contributions to the electron transfer process enter

through the inclusion of exchange processes of vibronic

quanta. This gives rise to a reactive term k£ (X) consisting of a
sum of delta functions centered at different values X, of the
polarization coordinate X, the separation of successive X, ’s
being proportional to the vibration frequency (2. The respec-
tive contributions of the various delta functions are given by
Franck-Condon factors. The present model can be regarded
as the classical analog of the semi-quantum-mechanical
model presented in Ref. 15. Indeed, Boltzmann-weighted
Franck—Condon factors assume the form of a Gaussian dis-
tribution in the continuum limit. The models discussed in
Refs. 12(b), 12(c), and 14, are also classical analogs of Ref.
15. They correspond to the present model, in case the back
reaction is neglected, with a similar k(X) in case of Ref. 14
and k(X) unspecified in case of Refs. 12(b) and 12(c).

An extension of the present model to include the back-
reaction is straightforward. One has to take into account the
product distribution P ¢” (X,#)dX, i.e., the fraction of mole-
cules that have already transferred their electron and experi-
ence a solvent polarization in the interval (X,X + dX), in
addition to the reactant distribution P(X,t)dX. Equation
(2.1) is then replaced by the coupled equations®®

g;P('X,t) — [L(X) — k(X) [P(X,1)

+kPXOPP (X)), (2.17a)

d

EP“”(X,t) =[LYX) —k?(X)]

X PP (X,t) + k(X)P(X,t), (2.17b)

where L'?(X) is given by Eq. (2.2), with the potential
U(X) replaced by the product potential U (”’ (X); k (2’ (X)
is the X-dependent reactive term for the back reaction which
was neglected in part I and in Eq. (2.1). Equations (2.17)
have to be solved subject to appropriate initial conditions,
e.g, PP (X,t=0) =0 and a Boltzmann distribution for
P(X,0).

_ For simplicity of presentation, such an extension was
not considered in part I and will not be considered here.
However, it can be readily treated, and we shall do soin a
later publication. We may note, although, that we do not
expect that the results will change qualitatively. As was al-
ready discussed in part I, the inclusion of the backreaction
effect typically changes the resulting rate for equilibration by
afactor of two or less when k£ (X) >k (#’ (X), which is usually
the case in experiments.

. In closing this discussion we may note that reaction—
diffusion models which correspond to the model of the pres-
ent paper have also been applied in physical situations that
are quite different from the above discussed electron transfer
problems. The narrow reaction window limit of our model
for the parameter values X, = Oand k, — o was treated ana-
lytically by Schulten et al.** in the context of protein folding.
A reaction—diffusion equation with a functional form similar
to our model was derived by Agmon and Hopfield**® for

the description of the anomalous binding behavior of CO to
the heme group in myoglobin. They treated their model by
both direct numerical integration of Eq. (2.1) and by calcu-
lating the spectral expansion (2.12) numerically. Numerical
values for the average survival time 7, have been obtained by
them by a method*® somewhat similar to ours, to be pre-
sented in Sec. II C. Bagchi et al.>® used a similar equation for
the description of electronic relaxation processes in solvents.
They employed an expansion in a set of orthogonal functions
for their analysis.

We shall use here a different approach, based on the
generalized moment expansion of the survival probability
().

B. Generalized moment expansion

To construct an approximation to Q(¢) westart, asin |,
with the Laplace transform

0(s) = F dte "Q(t) .
0

In Ref. 21 it has been demonstrated that, by the use of the
adjoint Fokker—Planck operator, which has the form

(2.18)

= [Lox] 2
LT(X)=r] [GX X R (2.19)
for L(X) given by Eq. (2.2'), the Laplace transform of many
observables can be written as the matrix element of a non-
Hermitian resolvent operator. In our case, this matrix ele-
ment has the form

06s) = (|[s —L*(X) +k(X)]17 Y1), (2.20)

where ( | ), denotes a scalar product with P,(X) as weight
function,! :

(U|V)0=f dXP,( X)) UX)V(X), (2.21)
and 1in Eq. (2.20) is the unit function which represents the
operand of the resolvent operator [s — L™ (X) + k(X)] .

Q(s) has the following asymptotic expansions for high
and low frequencies:

O(s) ~5~! i (—s)""u, for s—oe, (2.22a)
n=0
0~ (=)u_,_, for s-0, (2.22b)
n=0

with the expansion coefficients, the generalized moments,
given by

L = (1 [k(X) = LT (X)]"|1),. (2.22¢)

These generalized moments determine the high- and low-
frequency behavior of Q(s), i.e., the short- and long-time
behavior of Q(¢). Once the y, are known they can be used
for the construction of an approximation g(s) to Q(s). In
our case, since we are interested in the numerically correct
description of the behavior of Q(¢) over the whole time
range, such an approximation g(s) should be designed to
reproduce the correct high-frequency as well as the correct
low-frequency behavior of O(s) in a balanced way. We shall,
therefore, require that the approximation g(s) of order N
reproduces N low-frequency and N high-frequency mo-
ments. As functional form for g(s) we choose a sum of N
Lorentzians,
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N
g =3 fils+7, 7,

n=1

which leads, in the time domain, to a sum of N exponentials,

N t/
g(t) = Y fie” o

n=1

(2.23a)

(2.23b)

The sum of exponentials (2.23b) is, therefore, optimized in
the sense that g(¢) gives the correct short- and long-time
behavior of the exact function Q(#). Typically, the number
of exponentials needed to adequately represent Q(¢) is much
less than needed by using a spectral expansion (2.12).

The functional form (2.23a) of g(s) together with the
requirement of the correct asymptotic behavior in the limits
5—0 and s— o« makes it a two-point | N — 1,N]-Padé ap-
proximant *2t0 Q(s). From Egs. (2.22) and (2.23) it follows
that the parameters f, and 7, are solutions of the equations

N
> fiTa" =#_m» m=—N,—N+1L.,N—1.

n=1

(2.24)

An actual algorithm for the solution of these nonlinear equa-
tions for 7,, and f,, is given, e.g., in Refs. 20 and 33. However,
for N =1 and N = 2 solutions to Eq. (2.24) can be found
quite easily.

The single- and bi-exponential descriptions of Q(#) are
of particular interest since they are determined solely by k_,
7., and 7,. This can be seen from the fact that the first high-
and low-frequency moments have the following representa-
tions:

wr=<(k(X))o=k,, (2.25a)
po={1)g=1, (2.25b)
H_q= J‘w owydt=r,, (2.25¢)

) 0
7 =f tQ(t)dt = 7,7, . (2.25d)

0

We note that the average survival times 7, and 7, are given
byu_, and g _,/pu_,, respectively, which will be employed
for the determination of 7, and 7, in Sec. III. With the above
representations of the moments the corresponding approxi-
mations g(¢) assume the forms

q,(t) = e for N=1, (2.26)
and
) =fie "+ fre” forN=2, (2.27a)
with 7, and £, , given by
, —i(f (1—k.7p)
2T\ A —k,7,)
(1 —k,7)° T, (T —7',,))
T_[7 efol _4leTa 2.27b
$\/ (1 —-k,7,)? (1~k,7,) (2.270)
and
f1,2 = + M (2.27¢)

T, — T2

Here, the upper algebraic signs refer to 7, and f;. For 7, =7,
it is seen immediately that ¢, (¢) reduces to the single-expo-
nential function ¢, (¢). By comparing g,(¢) and g, (¢) with
higher order approximations we will analyze in Sec. IV how
good their quality is in different parameter regions.

In closing this subsection we would like to point out also
that a single-exponential approximation that is solely deter-
mined by the two low-frequency moments p_; and p_,
leads to 7, as the relaxation time. The resulting approxima-
tion -

g, () =Ta

Ty .
is, therefore, expected to describe the asymptotic long-time
behavior of Q(#) correctly.

(2.28)

C. Numerical determination of the generalized
moments

For the numerical evaluation of the generalized mo-
ments 4, given by Eq. (2.22¢) it is convenient to transform
the Fokker—Planck operator (2.2°) or its édjoint into a Her-
mitian, symmetric form.** This Hermitian operator L™ (X)
[which is equivalent to the operator — H(X) in part I] is
related to L(X) and L™ (X) in the following way:

L®(X) = py "(X)L(X)po(X) = po(X)L* (X) py (X)),

(2.29)
where we have used the square root of P,(X),
Po(X) =y Py(X), (2.30)

as a transformation operator. With the operator L* (X), the
matrix element in Eq. (2.20) can be rewritten as the matrix
element of a Schrédinger operator:

Ly = {po(X) | [E(X) — LX) ]"] po(X)) . (2.31)

(| ) is now the usual scalar product with a constant weight
function equal to 1.

The next step is the introduction of auxiliary functions
U, (X) defined by

ty (X) = [k(X) — LX) ]"po(X) . (2.32)

Once these auxiliary functions are known, the moments x,,
can be calculated from them by evaluation of the scalar prod-
ucts

1u‘2n = </un (X)|,un (X)) ’ (2.333)
Ban—1 =y (X, (X)) . (2.33b)

In particular, the moments 1 _; and i _, can both be deter-
mined from the single auxiliary function pz_, (X) through

U1 =ApeX)|_ (X)), (2.33¢)
U =Ap_(X)|u_(X)). (2.33d)

The determination of the auxiliary functions Eq. (2.32)
is straightforward in the case of high-frequency moments,
i.e., for n>0. One simply operates successively on the func-
tionsu, ,(X),n>0: "

pn (X) = [k(X) = LOX) g, 1 (X)), (2.34)

beginning with u,(X) = py(X), and thereby iteratively cre-
ating the high-frequency auxiliary functions of ever increas-
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ing order n. For the low-frequency auxiliary functions, i.e.,
for n <0, multiplication of Eq. (2.32) on the left with the
operator k{X) — L (X) results in the following differen-
tial equations for the u _ , (X):

[k(X) —L(s)(X)],u—n(X) z,u_(nVn(X)s n>0,

(2.35)

which have to be supplied with appropriate boundary condi-
tions®! {in our case po(X)(d /dX)[ p _ ,{X)/ po(X)] -0
as X— + oo }. By iteratively solving these equations, again
beginning with u,(X) = p,(X) as right-hand side, we can
calculate the low-frequency auxiliary functions of ever in-
creasing order — n.
In most cases Egs. (2.35) cannot be solved analytically.
An exception is the narrow reaction window limit and it is
treated in Appendix A. However, Egs. (2.35) can be solved
numerically and for this task we employ a particular discreti-
zation procedure?’**® which was justified mathematically
in Ref. 21.
We first limit the infinite diffusion space to a finite inter-
val [ X, X ax | where X, and X, are chosen so that the
relevant parts of the stationary distribution P, (X) and of the
‘reactive terms k(X) are included. In the cases we considered
a choice X, = — X, =n. (X%, with n_ ranging
from 4 to 7, was sufficient, in general. In each case a check
was made to determine whether the numerical results are, in
effect, independent of #__.
Next, this finite diffusion space is discretized into N,
cells. Inside those cells the representative discretization
~ points are chosen through
X(i) = Xpn + (1= 18, i=1,..,N,, (2.36)
with & being the discretization length, § = (X,,.c — Xnin )/
N, . In our applications we have found that a choice of NV, in
the range from 50n, to 100n, was sufficient to produce re-
sults independent of the step size. Again, the results were
checked that they became, in effect, independent of this
choice of NV,,.
In a diffusion space discretized in this manner, the dif-
ferential operator L (X) becomes a symmetric matrix op-
erator L™ of the following tridiagonal form?":

75! fori=j+1

— [Wl-i+ 1)+ Wi-i—1)]
0 for all other i, j

Ly = fori=j,
(2.37)

with 75 being the time scale of the discretized operator, 74
= 8%r,. W(i— j) is a “transition rate” between cells:
. W(l—’_]) — 7_6» 1 pO[X(])] .
PolX ()]
In an analogous way the reactive term in Eq. (2.35) becomes
" a diagonal matrix, K, with elements )

(2.38)

K, =k[X(D)]6,; . (2.39)

Therefore, Egs. (2.34) and (2.35) for the generations of
the high- and low-frequency auxiliary functions become lin-
ear algebraic equations (n> 1):

u, =[K-L%}u,_,, (2.34')
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(2.35") :

[K - L(S)]I‘l’—n = l""—(n—l) 4
where the functions 4, (X) have been replaced by vectors ., |
through _ |

()i =, [X(D] . (2.40)

Because of the simple tridiagonal form of L, the linear"
equations (2.35') for the discretized low-frequency auxiliary |
functions p_,, can now be solved easily using a Gaussian
elimination procedure.*® In addition, Eq. (2.34’) also pro-
vides an effective alternative way for the numerical deter-
mination of the discretized high-frequency auxiliary func- |
tions p,, . For the final evaluation of the moments the scalar
products (2.33) are evaluated simply as scalar products of
the vectors w,, .

{ll. RESULTS ON AVERAGE SURVIVAL TIMES ;

In the present section numerical results for the average
survival times 7, and 7, are presented. The results were cal-
culated with the algorithm described above, i.e., the general- |
ized moments p__, and y _, were evaluated numerically ac- i
cording to Sec. II C, and from Eqs. (2.25¢) and (2.25d) 7,
and 7, follow.

Figures 1 to 3 cover the same parameter and time range

mean survival time T, I

T T T T
3+ - z
o
A
R :
= |
0
L
1 —
§
0
-2
log,q TiKe |
b %
mean survival time 7,
T T T T
3r
|
& .
o2l
S ;
ap %
9
1+
0 ;
-2
log,, Tk,
FIG. 1. Average survival time 7, (a) and 7, (b) vs solvent polarization ;
relaxation time 7, for various values of the reaction window parameter i
~ A;/A, The reaction barrier parameter is SAG * = 0. :
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mean survival time T,

log,, Tk, .

e

log,, T K

mean survival time T

T T T T

o

e

log,q Tk

log o T Ke

FIG. 2. Same as Fig. 1 for BAG* = 1.

as the approximate results of part I and, to facilitate com-
parison, are given in the same scale. The approximation in
part I agrees quite well with our numerical results in the fast
diffusion regime (7, k, <1), in the intermediate diffusion
regime (7, k, =~ 1), and when the reaction window is narrow
(A;/4,=0). For large values of 1,/4, the agreement in the
slow diffusion regime (7, k,> 1) is not good.*®

It is useful to consider analytically the behavior for large
values of the reaction window parameter 4,/A,. In particu-
lar, for A,/A,> lin case of 7, and for 4,/4,> 2 in case of 7,
respectively, the average survival times can be shown
straightforwardly to assume finite values in the slow diffu-
sion limit. These limiting values are given by expectation
values of the inverse reactive term:

7o (0) = ([k(X) 11
(ﬂvi/ﬂo)z

=](__1 PR
o (A, /A0)% =1
2BAG*
X T A ford /Ag>1, 3.1a)
ef(p[/li//lo—l] o 0> (

([k(X)1™?)o

mole) = e e

mean survival time T

T T T T

)\i/>\o =

e

log,, T k

mean survival time T,

)\/)\

log,, Tk

FIG. 3. Same as Fig. 1 for BAG* = 2.

- (Al A0) (Al Ao — 1)
) (Ai/Ao—2)(AfAo + 1)
[ 4(A, /Ay — 1) BAG*
X exp
(A2 —2) (Ai/ Ao — 1)

} forAd,/A,>2.

(3.1b)

For smaller values of the reaction window parameter 4,/4,
these expressions are seen not to be defined, and the average
survival times then indeed approach 1nﬁn1ty rather than a
finite value when 7, k, - .

That the average survival times approach a finite value
as 7.k, — o is seen, for example, in the curves for 4,/4,
= 5.0in Figs. 1(b), 2, and 3. To illustrate this limiting be-
havior more fully, and to illustrate also the behavior de-
scribed by Eq. (3.2) below, the results corresponding to the
parameters of Figs. 1 to 3 are plotted over an extended time
regime in Figs. 4 to 6. In these figures the curves for 4,/4,
=2.0in case of 7,, and for 4,/4, = 5.0 in case of 7, and 7,
convincingly show the limiting behavior, Eq. (3.1).

At A,/4, =0, on the other hand, one sees that the log—
log plots of 7, and 7, vs 7, in Figs. 1to 6 (and later in Fig. 7)
show a slope of unity. In the intervening region, 0 <A4,/4,

J. Chem. Phys., Vol. 86, No. 7, 1 April 1987
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mean survival time T,
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FIG. 4. Same as Fig. 1 for an extended range of 7, .

< lforr, and0 < A,/A, <2 for r,, one would expect that the
limiting log-log plots exhibit a slope between zero and unity,
corresponding to a power-law dependence,

7,7 (0<a,<1), (3.2a)

and
O<a,<l), (3.2b)

of the average survival times on the solvent relaxation time
7, in the slow diffusion regime (7, — o). Figures 4 to 6
show that this holds to a very good degree. We note also that
the apparent value for the exponent depends on the range of
values for 7, k, under consideration. In Tables I and II
asymptotic numerical values are given for the exponents ¢,
and a, for different values of reaction window parameter
A/, and of the reaction barrier parameter SAG *. In each
case a becomes unity in the narrow reaction window limit.
This numerical result for solvents that are characterized
by a single polarization relaxation time 7, , namely that the
inclusion of intramolecular coordinates causes the average

ap
TpXTL

mean survival time T,

10

0‘ T
-2 0 2 - 4

o H
@

10
log,, Tk,

mean survival time Ty

10[— - T T T T

AJA, =

log,, T K

FIG. 5. Same as Fig. 2 for an extended range of 7, .

survival times 7 to depend on 7, approximately in an alge-
braic form (3.2), is particularly interesting. It deviates
strongly from the simple 7« 7, behavior that results from
the usual models'?*-'*'7 in which electron transfer reaction
processes have no contribution from intramolecular degrees
of freedom. It is also different from the results in Refs.
12(b), 12(c), 14, and 15, where intramolecular contribu-
tions were considered. There, only limiting cases were treat-
ed.that led also to a simple 7« 7, behavior in the large 7,
regime, corresponding to the behavior we found in our mod-
el for the narrow reaction window limit.

In the fast diffusion region, 7, k, €1, the moments 2 _,,
can be formally expanded in a power series in the inverse
Fokker-Planck operator (a detailed derivation is given in
Ref. 37),

ILLVI:. efl_ke_z

X 1Sk (X)[LH(X)] T '8k(X)|1) + O(2) ,
(3.3a)

J. Chem. Phys., Vol. 86, No. 7, 1 April 1987
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FIG. 6. Same as Fig. 3 for an extended range of 7, .

p_,=k 2 =2k’

X (1|8k(X) [L* (X)] 7'6k(X)[1) 4+ O(17) .
(3.3b)

Since L™ (X) « 77!, such a series corresponds to an expan-

TABLE I. Asymptotic values* for the anomalous exponents «,,.

AG * 0 1 2
A /A
0.0 1.00 1.00 1.00
0.1 0.84 0.90 0.90
0.2 : 0.74 0.83 0.85
0.3 0.64 0.76 0.79
0.4 0.54 0.69 0.81
0.5 0.44 0.62 0.69
0.6 0.34 0.50 0.63
0.7 0.24 0.49 0.57
08 0.15 0.43 0.45
0.9 0.08 0.35 0.45

*The asymptotic values for the anomalous exponents have been determined
in the region 10°<7, k, <10'%; approximate anomalous exponents in a re-
gion for smaller values of 7, k, may be smaller, see the text for a discussion.

TABLE II. Asymptotic values® for the anomalous exponent a,,.

BAG* 0 1 2
ARy
0.0 1.00 1.00 1.00
0.2 0.97 0.96 0.94
0.5 0.96 095 0.93
1.0 0.91 0.91 0.90
1.5 0.87 0.80 0.39

2See footnote a, Table I.

sion in powers of 7,. Equations (3.3) are well defined and
there is no possibility for a singularity of the matrix element
of [L*(X)]~! since the function §k(X) = k(X) — k, can
be shown to lie outside the null space of L™ (X). This is
discussed in detail in Appendix B. We may note that the
linear approximation (3.3a) has also been derived by
Weiss®® for a system of the form (2.1) by employing the
Wilemski-Fixman approximation.®® Equation (3.3a) was
derived also in part I under the assumption of a single expo-
nential decay of Q(¢) in the fast diffusion regime.

To first order in 7, Egs. (3.3) give the same expression
for 7, and 7,

Top =k '+ F(A;/A6, BAG*)T, + O(72), ~ (3.4)
where the function F(4,/4,, SAG *) is given by the matrix

element in Eq. (3.3) and has already been derived in part I to
be

(1+c%)
F(A,; /24, BAG*) =1 [2—
(Ai/%o PAGT) =In (1+¢)?
1 e1— ¥ BAG*
2 ax ——— s
+ J; 1—x2

(3.5)

with ¢ = (1 4+ 24,/4;) "% The integral in Eq. (3.5) can be
evaluated by standard numerical methods® and numerical
values for F are given in Ref. 19(b).

A comparison with the numerical results for 7, and 7,
shows that the quality of the approximation (3.4) is some-
what better in case of 7,. In case of 7, the approximation
(3.4) is valid in the narrow reaction window regime (4,/4,
=0, see also the discussion below). In the other regions of
the parameter space the approximation is valid for 7, within
afactor of 2, giving a rule of thumb, as long as the correction
term is not larger than k . For larger correction terms the
deviations from the exact results for 7, can be significant. In
case of 7, the approximation is quite applicable, i.e., within a
factor of 2, in a larger range of the narrow reaction window
regime (up to 4,/1,=0.5) for small barrier heights. Table
III illustrates this point. For larger values of the barrier:
height parameter SAG * the deviation becomes larger in the
slow diffusion regime, a feature also illustrated in this table.
In general, strong deviations of the approximation (3.4)
from the numerical results occur mainly in the slow diffusion
regime (large 7, ), as to be expected. This demonstrates also
that an extension of the Wilemski-Fixman approximation to
this regime can be strongly erroneous.

J. Chem. Phys., Vol. 86, No. 7,1 April 1987
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TABLE III. Comparison of approximation (3.4) for 7, with numerical results.”

Eq. (3.4) Eq. (3.4) Eq. (3.4)
.k, (Ai/Ae=0) Exact (A:/2,=0.2) Exact (A:/A,=0.5) Exact*
BAG* =0
1 1.7 1.9 1.3 1.3 1.1 1.2
10 7.9 1.0(1) 3.5 5.1 2.4 3.0
10? 7.0(1) 9.5(1) 2.6(1) 3.8(1) 1.5(1) 1.8(1)
10? . 6.9(2) 9.4(2) 2.5(2) 3.1(2) 1.4(2) 1.3(2)
BAG* =1 '
1 4.6 5.1 3.1 3.2 2.5 2.5
10 3.7(1) 4.3(1) 2.2(1) 1.8(1) - Le(ly o 1.2(1)
T 10? 3.6(2) 4.2(2) 2.1(2) 1.3(2) 1.6(2) 7.1(1)
10° 3.6(3) 4.2(3) 2.1(3) 9.7(2) 1.5(3) 4.9(2)
BAG* =2
1 1.1(1) 1.1(1) 6.6 5.4 4.9 3.8
10 9.8(1) 1.0(2) 5.7(1) 3. 4.0(1) 1.8(1)
10? 9.7(2) 1.0(3) 5.6(2) 2.1(2) 3.9(2) 1.1(2)
BAG* =10 .
1 1.3(4) 1.3(4) 2.7(4) 1.3(2) 8.1(2) 3.5(1)

*Numbers in parentheses indicate powers of 10.

We have also checked the applicability of a simple
[1,1]-Padé approximation
., Frim, (o) + ko 7w (0) —k 1]

“ Frp + [Tap(00) —k ']

with F from Eq. (3.5) and 7, (0 ) the limiting values [Eq.
(3.1)] of the average survival times. Equation (3.6) holds
for A;/A,> 1in case of 7, and for A,/A, > 2 in case of 7, and
interpolates between the slow and the fast diffusion regime.
However, in the region of intermediate values for 7, k., i.e.,
the region where the change of 7, and 7, is strongest, strong
deviations of Eq. (3.6) from the exact results may occur,
unless A, /A, is large. Therefore, the use of an approximation
such as (3.6) is not recommended unless 4,/4, is large.

In the narrow reaction window limit, 4,/4, =0, a nu-
merical evaluation of the moments according to Sec. II C is
not possible due to the singular form (2.15) of the reactive
term. However, as demonstrated in Appendix A, the deriva-
tion of analytical formulas for the moments in terms of mul-
tiple integral expressions is possible. With these results the
average survival times are given by

, (3.6)

Ta = ke_l +A‘[17—L (ﬂ’z//io = 0) > (373.)
I, —I)7
=k I, LB Ly,
keAI+IlTL
(3.7b)

with I, and I, being functions of X, given in Eq. (A8) and
Table IV; X, is related to SAG * through Eq. (2.10"). Asalso
shown in Appendix A, the narrow reaction window limit of
the function F, i.e., Eq. (3.5) with ¢ = 0, is identical to the
term linear in 7, in Eq. (3.7a), I,. Therefore, in the narrow
reaction window limit the approximation linear in 7, is al-
ready correct for 7, and terms of higher order in 7, vanish
altogether. Although such a simplification does not apply

for 7,,, the third term in Eq. (3.7b) being of second order and
higher in 7., 7, is approximately linear in 7, in the slow
diffusion regime, however, with a different slope than 7,

Ty =k '+ (I/I)7, form, >k andA,/A,=0.

(3.7v%)

For large values of X_, i.e., for large values of the reaction
barrier parameter SAG *, the ratio I,/I, approaches I, nu-
merically, see Table IV. Therefore, for large reaction bar-
riers 7, and 7, become equal when 4,/1, =0, and a truly
single-exponential relaxation of Q(z) is to be expected. We
consider below the case of large SAG * for general values of
A:/Aq which also exhibits a single-exponential behavior.

The curves for .the narrow reaction window limit in
Figs. 1 to 6 (as well as in the later figures) have been calcu-
lated from Eq. (3.7) with the values for the integral expres-.
sions I, and I, given in Table IV in Appendix A.

In Fig. 7 we include some results for high reaction bar-
riers. In the range of 7, k, examined the values for 7, and 7,
are approximately equal, and so there is a single exponential
decay of form (2.25) for Q(¢) in this regime. We note that in
this case, too, the dependence of 7, on 7, appears to exhibit
an approximate power-law behavior (3.2) over some range
of 7, k,. It may also be noted that due to the inclusion of
intramolecular coordinates the observed reaction rate con-
stant 7, ' can well be some decades larger than the rate that

would be expected from the barrier height alone, i.e., from
7 '=7;'exp( —PAG*).

Of particular experimental interest is the dependence of
the average survival times on the free energy barrier SAG *.
This quantity is related to the standard free energy of-the
reaction, AG°, through Eq. (2.10b), and AG? can be

" changed experimentally at approximately constant 4; and 4,

by suitable changes of the reactants.

J. Chem. Phys., Vol. 86, No. 7, 1 April 1987
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FIG. 7. Average survival time 7, vs solvent polarization relaxation time 7,
for several values of the reaction window parameter A,/4, in the fast and

intermediate diffusion regime. The reaction barrier parameter is relatively
high with (a) BAG* = 8; (b) BAG * = 9; (¢) BA G * = 10. The dotted line
indicates the plot for a function 7 = 7, exp( SAG *).

In thé narrow reaction window limit, 4, /4, = O, the de-
pendence of 7, on SAG * is given by Eq. (3.7a). For larger
values of BAG *, Eq. (3.7a).can be approximated as*°

BAG * 3
o=k 7, | dye’. (3.8)
(1]
The integral is related to Dawson’s integral*! and ap-

proaches the value {( BAG *)~'/2 exp( BAG*) for large
values of the free energy barrier parameter. Taking into ac-
count also the dependence of k, on SAG*, Eq. (2.9), we
obtain the relation '

T4 o< €Xp( BAG*) (PAG* large) (3.9)
for the dependence of the average survival time 7, onBAG*
in the narrow reaction window limit. With Eq. (2.10b) the
relation

0

T, ocexp[%ﬁAGO + ji— (AG

3.10
7 (3.10)

)ﬁAG"].

follows for the dependence of 7, on the experimentally con-
trollable parameter SAG °. In particular, Eq. (3.10) predicts
the usual linear dependence of In 7, on BAG ° for small val-
ues of AG °/A with a slope of 1.

Numerical results for the dependence of 7, on SAG * are
shown in Fig. 8 for several values of the reaction window
parameter A,/A, and of the time-scale ratio 7, k, (0), where
k. (0) isthe value of k, at barrier height A G * = 0. Since 7,
is approximately equal to 7, for larger values of BAG * (see
also the discussion of Fig. 7 above) we give only the results
for 7,. We note that in Fig. 8 the time scale is normalized by
k, (0), in contrast to the normalization of the time scale in
Figs. 1to 7. In Fig. 8(a) it is seen that in the narrow reaction
window limit the relation (3.9) holds already for BAG * > 1.
Figures 8(b) and 8(c¢) show that this relation also holds for
A;/2,7#0, although only ultimately for larger values of
BAG *, depending on the magnitude of 7.k, (0). We note
that in case of large values of 7, k, (0) the dependence of 7,
on SAG * over some intermediate range of values for BAG *
can be approximated well by

7, xeXp(aBAG *) ,

with 0 <a < 1, instead of by Eq. (3.9).

The dependence of 7, on BAG ° that follows from the
results in Fig. 8 via the rescaling according to Eq. (2.10b) is
shown in Fig. 9. We may note that, because of Eq. (2.10b),
the actual dependence of 7, on SAG ° depends also on the
value of SA. We have chosen a not atypical value of B4, of
40, corresponding to a value of about 24 kcal/mol for the
solvent contribution A, to the reorganization energy param-
eter A at room temperature. It is seen in Fig. 9 that even in the
narrow reaction window limit, 4,/4, = 0, there is a quadrat-
ic dependence of In 7, on SAG ° when BAG ° is varied over a
large range. For small values of A6 %/A a linear dependence
with slope 1 holds. Moreover, since for nonzero values of
A;/2, the behavior of 7, deviates from the relation (3.9)
over some range of BAG * for large 7, k, (0), there are also
deviations from a quadratic dependence of In 7, on SAG °in
these cases. This can also be seen from the fact that in Figs.
9(b) and 9(c) the curves for larger values of 7, k, (0) are no
longer parallel to the curve for 7, k,(0) = 1, which still

3.9)
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shows a quadratic dependence of In 7, on SAG°.

In closing this section we like to summarize our results
on the possibility of a simple approximate description of the
results for 7, and 7,. We have noted that Eq. (3.4) is a good
approximation when 4,/4, = 0, and, in case of 7, it is also

3917

mean survival time 7,

22 T T T T T T T
20k A/A, = 05 i
181 Tk (0) = 102 i

gAG”

FIG. 8. Average survival time 7, vs reaction barrier parameter SA G * for
various values of the reaction window parameter 4,/4, and of the time-scale
ratio 7.k, (0); (a) 4,/4, = 0; (b) 4,/A; =0.2; (c) 4,/A, = 0.5. The time
scales are normalized to k, ( SAG * = 0), in contrast to the normalization
in Figs. 1 to 7.

good provided 4,/4, and BAG * are both relatively small,
see Table III. In case of 4,/4, = 0, also the exact solution
(3.7) is available. For large values of 4,/4,, Eq. (3.6) pro-
vides an acceptable approximation. When SAG * is large 7,
and 7, become equal and so the decay of Q(¢) becomes single

J. Chem. Phys., Vol. 86, No. 7, 1 April 1987
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FIG. 9. Average survival time 7, vs reaction standard free energy BA G ° for
various values of the reaction window parameter 4,/4, and of the time-scale
ratio 7.k, (0); (a) 4,/4y = 0; (b} 4,/ = 0.2; (¢) A;/A, = 0.5. The time
scales are normalized to k, ( SAG * = 0), in contrast to the normalization
inFigs. 1 to 7. The dotted lines denote the relation 7, « exp(} BA G ©) which
holds for small values of AG /4.
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exponential. In that case the relaxation time 7, becomes
equal to the inverse of the lowest eigenvalue of the operator
k(X) — L®(X). An alternative and more familiar way to
calculate 7, would be in this case to use standard methods
for solving one-dimensional quantum mechanical eigenval-
ue problems, instead of solving Eqs. (2.35) or (2.35'), re-
spectively, for the auxiliary function g _ ,(X) and using Eq.
(2.33) to calculate the generalized moment g _,, which is
equal to 7,.

IV. RESULTS ON THE RELAXATION OF Q(9)

We have also investigated the relaxational behavior of
Q(t) by employing the generalized moment algorithm of
Sec. I B. The approximations ¢(#) to Q(t) presented below
were N-exponential approximants (2.23) with the order N
chosen so that approximants of higher order did not give rise
to a recognizable change in the plotted behavior. This choice
can be regarded as sufficiently exact since, in our experience,
the convergence rate of the approximation algorithm of Sec.
II B is quite fast, in general. The order N of these numerical
solutions varied between 3 and 10in the various cases, corre-
sponding to the degree of multiexponentiality Q(¢) exhibit-
ed. In the fast diffusion regime (7, k, < 1) the relaxation of
Q(?) is in effect single exponential and we refrain from giv-
ing examples for this case. ,

In Fig. 10 an example is given for the behavior of Q(z) in

the intermediate 7, regime, i.e., for 7, k, =1, with 4,/4,
=0.2. As can be seen, the relaxation is still almost single
exponential. The approximations g, (¢) and g, (), Egs.
(2.26) and (2.28), respectively, describe the relaxation
equally well, with g, (#) becoming exact in the long time
limit. The bi-exponential description ¢,(¢), Eq. (2.27), is
indistinguishable from the numerical solution.

surviving fraction Q(t)

I

1.0 _

Il

0.2

= 1.0

20 25

FIG. 10. Time behavior of the survival probability Q(¢) in the intermediate
diffusion regime, 7.k, = 1. Reaction parameters are 4,/4,=0.2 and
BAG* = 1. (—) is the numerical solution (see the text); (——-) is the sin-
gle-exponential approximation g, (), Eq. (2.25); (- -) is the long-time ap-
proximation g, (), Eq. (2.27); (---) is the bi-exponential approximation
g,(1), Eq. (2.26). The function ¢,(?) is indistinguishable from the numeri-
cal solution in this case.
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surviving fraction Q(t)

FIG. 11. Same as Fig. 10 for r, k, = 10.

For still larger values of 7, k, at this value of 4,/4,, the
quality of single- and also of bi-exponential approximations
become less acceptable. Figure 11 gives an example for the
value 7, k, = 10. In this case the single-exponential approxi-
mations already give an incorrect description of the relaxa-
tion process of (), although ¢, (¢) captures the asymptotic
long-time behavior and can still be considered an acceptable
approximation for this time regime. A bi-exponential de-
scription is still a good approximation in this intermediate
diffusion case, as demonstrated by ¢, (#) in'Fig. 11. Figure 12
gives an example for an already somewhat extreme case of
the time-scale ratio, i.e., for 7, k, = 10°. Q(¢) exhibits a truly
multiexponential relaxation behavior and an approximation
of order N = 10 constitutes the numerical solution in this
case. The single- and bi-exponential approximations give
now a totally wrong impression of the true behavior of Q(¢).
For example, g,(¢) indicates an equilibration process to a
quasistationary state which certainly does not take place.
Rather, an algebraic decay

O(t) <t =7 (4.1)

occurs over a range of about two to three decades, namely in

surviving fraction Q(t)

log,o t k

e

FIG. 12. Same as Fig. 10 for 7, k, = 10°.

surviving fraction Q(t)

T T T T

logo t k

e

FIG. 13. Time behavior of the survival probability Q(¢) for different values
of the time-scale ratio 7, k,. Reaction parameters are 4,/4, =0.2 and

BAG* = 1. There is seen to be an almost algebraic decay, Eq. (4.1), with
~0.1 in the time range 10! <k, < 10> for 7 k, = 10°.

therange 10~ < tk, < 10% This algebraic decay goes over, in
the long-time limit, to an exponential relaxation described
by g, (¢). In the example of Fig. 12 the exponent y has a value
of about 0.1. In general, the exponent ¥ depends on the reac-
tion parameters of the system.

Figures 13 to 16 are intended to give an overview of the
relaxational behavior of Q(¢) for different values of the reac-
tion window parameter 4,/A,, the free energy barrier param-
eter SAG *, and the time-scale ratio 7, k,. A common feature
in the different curves is the algebraic character of the relaxa-
tion, Eq. (4.1), over some range. of time for large values of
the time-scale ratio 7; k, as seen in the figures and discussed
in the legends to the figures. The algebraic character of the
relaxation is particularly noticeable for smaller, but non-
zero, values of both the reaction window parameter and of
the free energy barrier parameter. For large values of these
parameters the curves tend to approach a single-exponential

surviving fraction Q(t)

T T T T

€

log;y t k

FIG. 14. Same as Fig. 13 with 4,/4, = 0.5. There is seen to be an almost
algebraic decay, Eq. (4.1), with y=0.2 in the time range 10~ 03 < th, <103
for #, k, = 10°
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surviving fraction Q(t)

T T T

log,, t Kk,

FIG. 15. Same as Fig. 13 with 4,/1, = 2.0.

behavior, as was already discussed for the limiting cases in
Sec. IT A and in Sec. II1. S

In closing this section we would like to comment on the
behavior of Q(#) in the nondiffusing limit 7, k, — . In this
case the application of the generalized moment algorithm is
not possible since the low-frequency moments diverge, the
divergence of each depending on 4,/4, [see, for example,
Egs. (3.1) forp_, and u_,]. Therefore, a determination of
the time behavior of Q(#) has to rely on a numerical evalua-
tion of the integral (2.14). However, since in this limiting
case no solvent dynamical effects influence the electron
transfer process we refrain from giving examples. Moreover,
the case of a distribution of reaction rates has previously
been frequently treated, e.g., as a distribution of distances
between donors and acceptors in electron transfer reac-
tions*? or as a distribution of conformational substates in the
low-temperature reaction dynamics of proteins.*> .

surviving fraction Q(t)

logy t Kk

e

FIG. 16. Time behavior of the survival probability Q(¢) for different values
of the reaction barrier parameter SA G *. Parameters 4,/A, = 0.5 and 7, k,
= 10%. There is seen to be an almost algebraic decay, Eq. (4.1), with ¥=~0.8
in the time range 10° Sk, < 10", for BAG* = 0.
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V. DISCUSSION

We first comment on the methodological approach. The
results presented in the last two sections demonstrate that
the generalized moment algorithm of Secs. IIBand II Cis a
rather powerful method for the analysis of reaction—diffu-
sion equations over the whole range of parameters. In parti-
cular, even the partly algebraic relaxation, Eq. (4.1), of Q(¢)
in the slow diffusion regime could be revealed by this meth-
od, although the functional form of the approximation is
multiexponential only. In the fast and intermediate diffusion
regimes the simplified single- and bi-exponential approxima-
tions (2.25) and (2.26) were seen to be quite accurate de-
scriptions of Q(¢). The single-exponential approximation
(2.27) based on 7, gave the correct asymptotic long-time
behavior in any event, even in the slow diffusion regime.

Results on the survival probability Q(¢) are of particu-
lar interest in that they point to conditions (7, k, small or
BAG *large) for observing largely single-exponential behav-
ior and to other conditions (7, k, large, SAG * small and
intermediate values of 4,/4,) for observing multiexponen-
tial behavior. Experiments which focus on solvent dynami-
cal effects in the electron transfer process are comparatively
new and little attention has been devoted thus far to the
experimental distinction between the two types of behavior
of Q(1).

Some experiments made several years ago touch on this
question of single- vs multiexponential behavior. Two differ-
ent experimental groups studied the same system, the intra-
molecular electron transfer of dimethylaminobenzonitrile in
1-propanol.>? One group reported single-exponential decay
and the other a double-exponential decay. Using improved
short light pulse techniques it should be possible to deter-
mine which behavior is correct.

One interesting result of the present paper is the ap-
proximate power-law dependence of 7, i.e., of the estimate
for the experimentally determined inverse electron transfer
rate, on the solvent relaxation time 7, in the large 7, regime.
This behavior is in strong contrast to the results of other
models that describe the influence of solvent polarization
fluctuations on electron transfer reactions for solvents with a
single polarization relaxation time 7,.1%'>!7 From these
models only a simple linear dependence 7 « 7, is derived for
the inverse electron transfer rate. The existence of the frac-
tional exponent « in Eq. (3.2) in a single relaxation time
solvent is due to the inclusion in the present model of the
contributions from intramolecular coordinates to the elec-
tron transfer process.
~ Kosower and Huppert' studied experimentally an intra-
molecular electron transfer in a series of alcoholic solvents.
For the solvents for which actual reaction times were deter-
mined, propanol through decanol, their 7, ’s varied from 10
to 460 ps. Their k, appears to be larger than 0.1 ps~!, the
reciprocal of the pulse-limited rise time for the fastest system
studied (methanol as solvent), and so 7, k, was varied from
more than unity to more than about 50. The reaction time
was reported to equal 7, , within the experimental error for
those systems. From Figs. 1 and 2 we infer that for their
systems A,/4A, and SAG * are both approximately zero. It
would be especially desirable, however, to see if any depar-

J. Chem. Phys., Vol. 86, No. 7, 1 April 1987



W. Nadler and R. A. Marcus: Electron transfer reactions. Il 3921

ture from this equality or from single-exponential behavior
can be found (apart from that due to the existence of several
dielectric relaxation times in the solvent) using solutes with
some nonnegligible value of A,/4,. Deviations from 77,
would then be expected, even when SAG * = 0. We have dis-
cussed elsewhere some other relevant considerations, name-
ly which 7, , “constant charge” dielectric relaxation time, to
useactually'®®: 7, can be written as (€,/€, )7, Where 7, is
the customary constant electric field relaxation time and €,
and €, are the relevant high-frequency (“optical”) and low-
frequency (“static”) dielectric constants of the solvent, re-
spectively.** The reader is referred to Ref. 19(a) fora discus-
sion of which dielectric constants are relevant.

A very slow relaxation of the solvent polarization occurs
near a glass transition of the solvent. McGuire and McLen-
don® recently investigated electron transfer processes in such
asituation. These authors studied the electron transfer reac-
tion between methyl viologen (MV>") and electronically
excited ruthenium complexes such as Ru(phen); ", with
rigid glycerol as solvent. They reported a power-law depen-
dence of the electron transfer rate on the solvent polarization
relaxation time 7, in their system, valid over several decades
of the solvent relaxation time. The exponent was about 0.6.
.Such a result, on the surface at least, may indicate that 7, k,
isin anintermediate range (e.g., theslope of the 7, k, vs 7k,
plotin Fig. 1 for A,/4, = 0 and BAG * = Ois less than unity
when 7, k, is in an intermediate range), or that there is a
strong contribution from intramolecular coordinates to the
electron transfer process. However, the analysis of the exper-
iment is somewhat indirect, since the reaction rates were
inferred from the quenching data using a Perrin model, and
then were recalculated to rates at a fixed separation distance
(15 A) using an exponential modek The 7, was varied from
about 10~ % s to more than 10~ ' s by varying the tempera-
ture.*® The reaction time itself was estimated, indirectly, to
vary by somewhat less than three orders of magnitude. The
k, at these temperatures was estimated*® to vary only from
10%s~! to 10° s~ ! over the same temperature range, giving a
variation of 7, k, from 10~ 2to 10*. Clearly it would be useful
to investigate other systems, preferably intramolecular elec-
tron transfer systems with a fixed geometry, and so avoid
some of the uncertainties present in this especially interest-
ing first study. A direct determination of the functional form
of Q(¢) for this case, an important question, would then also
be possible.
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APPENDIX A: LOW-FREQUENCY MOMENTS IN THE
NARROW REACTION WINDOW LIMIT

As we have noted in Sec. I1, in the narrow reaction win-
dow limit, A4,/4,—0, the reactive term Eq. (2.6') assumes
the form of a delta function

k(X) =k, [Py(X)] T'8(X — X,) . (A1)

Because of this simple form integral expressions for the low-
frequency moments can be derived. In contrast to the nu-
merical evaluation of the moments in Sec. II C, the analyti-
cal derivation of these expressions is simpler by employing
the adjoint Fokker—Planck operator of Sec. II B. The differ-
ential equation for the adjoint auxiliary functions is then?!
(n>0)

[£(X) —LT () ut, X)=p,_,) X)), (A2)

with ug" (X) =1 and the boundary conditions (d/dX)
Xpt,(X)|x- .. =0. It can be solved in a straightfor-
ward way, e.g., as in Ref. 47, with the result

X
#fn(X)zke_l'FTLH(X—Xc)f dY [Py(1)] "
X X,
XJ dZPy(Z)p* (1, (D)
Y
XL‘
+r HX, —X) f dY [Po(¥)]~!
X

Y
X J dZPy(ZD)pt (1, (2). (A3)

- In this formula H(X) denotes the Heaviside step function:

H(X) =0for X <0and H(X) = 1 for X >0, and its deriva-
tive H'(X) is 8(X). With Py(X) being the Boltzmann distri-
bution (2.4) for a general potential, Eq. (A3) holds also for
potentials more complicated than the harmonic one consid-
ered in our paper. From the auxiliary function Eq. (A3)
integral expressions for the first two low-frequency moments
can be derived using the relations

:u—l=<1|/uf1(X)>o=<,ut1(X))o’ (Ada)
por= (X)) e=(p (X (X))o, (Add)
with the results
Cu =k, (A5a)
p =k 242k 1+ 1L, (A5b)

where we have used the abbreviations for the integrals

X, X 2
11<Xc)=f dX[Po(Xn“‘U dYPo<Y>]
oo 0 2
+ J dX[Po<X)r‘U dYPo<Y>] . (A6a)
X, x
X, X,
12(X6)=f dXPo<X>U dY [Po(1)]™"
— w X
Y 2
XJ dZPO(Z)]
oow X
+J dXPO(X)U dY [Py(¥)]™"!
X, X,

© 2
X f dZPO(Z)] . (A6b)
Y

These integrals can be evaluated analytically for functional
forms of P,(X) such as polynomials or simple exponentials.

In our case the Boltzmann distribution is, instead, a Gaus-
sian and we have used a numerical quadrature for the evalua-
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TABLE IV. Numerical values for the functions I;(X,) and 1,{X,), Eq. (A8a).?

LX)/ (X,)

BAG* X, LX) L(X,)

0 0.000 0.6931 0.6515 0.9400

1 ‘1414 3.584 1.513(1) 4.222

2 2.000 9.696 9.953(1) 9.984

3 2.449 2.342(1) 5.591(2) 2.387(1)
4 2.828 5.556(1) 3.107(3) 5.592(1)
5 3.162 1.331(2) L777(4) 1.335(2)
6 3.464 3.245(2) 1.054(5) 3.248(2)
7 3.742 8.036(2) 6.459(5) 8.037(2)
8 4.000 2.017(3) 4.069(6) 2.017(3)
9 4.243 5.117(3) 2.619(7) 5.117(3)
10 4.472 1.309(4) 1.714(8) 1.309(4)

? Numbers in parentheses indicate powers of 10.

tion of Eq. (A6). However, an analytical simplification of
the multiple integrals in Eq. (A6) is still obtainable which
simplifies also the numerical quadrature: For X, = 0 and k,
— oo it has been shown in Part I that the analytical solution
for the survival probability is Q(¢) = (2/7) sin" (e~ '/TL).
Since the moments are alternatively given by time integrals
over J(t), asin Eq. (2.24), from the quoted result the value
of the integrals at X, = 0 can be shown to be!®4#

1,(0)=In2, (ATa)
~” 1

L(0)=2- 4 — (In2)2.

2(0) =—=+—-(In2) (ATb)

After some algebra, the corrections due to a nonzero value of
X, can be put into the form

(A8a)

I,(X,) =1,(0) + 2y F,(JBAG*) ,
L(X.) = L,(0) + 27 (In 2)F,(JBAG *)
+27[F,(JBAGH]®
+ 7[DWBAG*) )? + 27F,(JBAG*) ,
(A8b)

where we have used the relation between X, and SAG *, Eq.
(2.10"). D(x) = [} dz ¢~ is related to Dawson’s integral,
which is tabulated in Ref. 41, and the integrals F,(x) and
F,(x) are given by

Fy(x) =J dye” erf(y), (A9a)
0

F,(x) =f dye” f dz & [erf(2)]?, (A9b)
0 (o]

with -

erf(z) =if die= "
Jr Jo

being the error function. The integrals F, (x) and F,(x) can
be evaltated by standard numerical methods*® and numeri-
cal values for I;(X,) and I,(X,) for different values of the
parameter SAG * of our model are given in Table IV.

In closing this Appendix we note that the narrow reac-
tion window limit of the linear 7, approximation for the
average survival time 7, (and, therefore, for the first low-

frequency moment u _, presented in Sec. III), Eqgs. (3.3a)
and (3.4) with ¢ = Oisidentical to the expression Eq. (A5a)
for ;1 ,. This identity can be easily proven by comparing the
derivatives of (3.3a) and of (A5a) with respect to the pa-
rameter SAG * and taking into account the representation
(A9a) for I,(X,). These derivatives are identical and so are
the values of the functions at X, = 0, which finishes the
proof.

Therefore, in the narrow reaction window limit the first
order approximation (3.3a) for the first low-frequency mo-
ment is already exact. However, a similar property does not
hold for the second moment, since Eq. (A5b) shows that it
contains a term of second order in 7, .

APPENDIX B: NONSINGULARITY OF THE MATRIX
ELEMENT IN EQ. (3.3)

We may begin this discussion by noting that any func-
tion f(X) can be expanded in eigenfunctions ¥, (X) of the
adjoint Fokker-Planck operator L™ (X),

fD =3 fror 0.
n=0

Since the operators L(X) and L™ (X) are non-Hermitian but
are adjoint to each other, their respective eigenvalues are
equal and their eigenfunctions, ¢, (X) and ¢, (X), respec-
tively, can be normalized so that the “quasi-orthogonality”
relation ‘

(BI)

fw dX o, (X0 (X) =8, (B2)

holds.>® Therefore, the expansion coefficients £, in Eq.
(B1) can be written in terms of the projection of f/(X) on the
eigenfunctions of L(X), i.e.,

fi = f X, (X fX) .

Using Eq. (B1), the application of any integer power of the
operator L* (X) on the function f(X) can now be represent-
ed as

LTS = 3 AL (X,

n=20

(B3)

(B4)

where A, is the eigenvalue of L(X) and L™ (X) correspond-
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ing to the nth eigenfunction. However, since L(X) and
L* (X) have a single zero eigenvalue 4, = 0, Eq. (B4) is not
well defined in case of v <0, in general, due to the singularity
of the term corresponding to n = 0.

On the other hand, any function f(X) with a zero expan-
sion coefficient f", i.e., any function that lies outside the
null space of L* (X), will lead to an expression (B4) that is
well defined also for v <0. Using the projection operator
P,", defined through

Py f(X) = ¥ (X) f X’ Go(X") fX)

=1 (X) fo (BS)
which projects onto the one-dimensional null space of

L*(X), the property of to lie outside the null space can be

stated for a function f(X) as
[1-P5 ] AX) =fX). (B6)
Since the eigenfunctions of L(X) and L*(X) corre-

sponding to A, = O are the thermal equilibrium distribution

and the unity function,? respectively, i.e.,

v P(X) = Po(X) (B7a)
and
Yo (X) =1, (B7b)
it can be séen easily that the function
Sk(X) = k(X) — ko g (X) (B8)

fulfills the property (B6). Since k ;" equals k,, compare Eq.
(B3), this function has the same form as in the main text,
§k(X) =k(X) —k,. Therefore, the quantity
[L*(X)]"6k{X) can be expressed in terms of eigenfunc-
tions ¥, (X) according to Eq. (B4) in a well-defined man-
ner even for v < 0. From this it follows that the matrix ele-
ment of Eq. (3.3) is also well defined.

We may note that in Refs. 20 and 49 it was demonstrat-
ed how to actually calculate such matrix elements as in Eq.
(3.3). For general one-dimensional Fokker—Planck opera-
tors it was shown in Ref. 49 by employing the projection
operator (B5) and property (B6) that matrix elements like
in Eq. (3.3) can be expressed analytically in terms of multi-
‘ple integrals, i.e., in our case "

(1|8k(X) [L* (X)] '8k (X)| 1),
0 X 2
=¢LJ dX[PO(X)]-IU dYPO(Y)ék(Y)].
(B9)

This provides another way to derive Eq. (3.5), alternative to
the one used in part L.
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