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An iterative procedure is proposed for determining increasingly accurate effective
Hamiltonians for use in the adiabatically reduced coupled equations approach to
intramolecular dynamics calculations [J. Chem. Phys. 84, 2254 (1986)]. The relationships
between this iterative determination of the effective Hamiltonian, which is based on an
adiabatic approximation, and some other partitioning methods for determining an effective
Hamiltonian are discussed. The present iterative procedure provides accurate agreement with
the exact dynamics for the two specific model systems studied.

. INTRODUCTION

In recent years, there has been considerable theoretical
and experimental interest in the quantum dynamics of ini-
tially prepared nonstationary states in isolated polyatomic
molecules. More specifically, the time-evolution of initially
prepared states resulting from vibronic,' vibrational,? and
rovibrational® coupling mechanisms is of particular interest.
The “exact” treatment of the dynamics of these states re-
quires, in typical situations, the numerical diagonalization of
a Hamiltonian matrix having a very large number of basis
states. Since there are, at present, computational limitations

on the size of matrices which can be diagonalized, methods

which reduce the size of the Hamiltonian matrix to be dia-
gonalized, or, alternatively, new methods for determining
the quantum dynamics,* must be developed.

By virtue of clever numerical methods, several authors
have been able to increase the number of basis states which
may be included in a typical calculation. For example, Nauts
and Wyatt® have developed the recursive residue generation
method (RRGM) to determine the relevant time-dependent
transition amplitudes directly without requiring the diagon-
alization of the Hamiltonian matrix. Moreover, Tietz and
Chu,® as well as Chang and Wyatt,” have implemented artifi-
cial intelligence algorithms in their studies of multiphoton
excitation of molecules which allowed them to consider a
large number of basis states and then to include in their dy-
namical calculations only those states which had the largest
effect on the dynamics. These methods represent potentially
quite powerful numerical approaches for obtaining the dy-
namics of nonstationary states.

Recently, Voth and Marcus® have developed an ap-
proximate dynamical approach which is based on a parti-
tioning™®” of the basis set into a subset of states which are
resonant and/or strongly interacting with the initial state,
and a subset of states containing the remaining off-resonant/
weakly:coupled states.® Their approach then treats the off-
resonant/weakly coupled states in an effective manner by
virtue of an adiabatic approximation. This latter method
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also allows one to determine the dynamics directly by inte-
grating the effective coupled equations and hence does not
rely on a calculation (and computer storage) of the eigenval-
ues and eigenvectors of the system.

In this article, an iterative scheme is applied to the adia-
batically reduced coupled equations approach of Voth and
Marcus.® With each iterative step, new effective coupled
equations for the resonant/strongly coupled subspace are
obtained, and hence a new effective Hamiltonian is derived.
If the initial adiabatic approximation is a good one (cf, Dis-

cussion in Ref. 8), the resulting dynamics calculated from

the effective coupled equations exhibit accurate agreement
with the exact dynamics. . )

The derivation of the reduced coupled equations is re-
viewed in Sec. IT and the iterative scheme is presented there.
In Sec. I1I the present time-dependent method for determin-
ing the effective coupled equations is shown to be related to
the iterative solution of an equation for the effective interac-
tion in nuclei derived from a time-independent viewpoint by
Schucan and Weidenmiiller.'’ The relationship of the pres-
ent effective Hamiltonian to that given by Lee and Suzuki!'
and to the partitioning formalism of Léwdin'? is also dis-
cussed in Sec. III. An application of the effective coupled
equations to two model problems is given in Sec. IV, and the
results are discussed in Sec. V. Concluding remarks appear
in Sec. VL.

il. THEORY
A. Coupled equations

The time-dependent wave function (in atomic units) is
expanded as®'3

[W(t)) =exp(— i(H)t)fj b:(0)|@;) ,

i=1
where the basis states |@,) are eigenfunctions of a suitably
chosen zeroth-order Hamiltonian Hy, and (H ) is the expec-
tation value of the total Hamiltonian H( = H,+ 1), de-
finedas (H ) = (¥ (1) |H |¥(z)). By substituting this expan-
sion for |¥(7)) into the time-dependent Schrodinger
equation and using the orthonormal properties of the {‘l:pi Y}
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basis, the following coupled first-order differential equations
for the amplitudes b, (¢) are obtained:

db (1) . s
T=I(H>bj(t)'—li;111ﬁbi(t)’ 2)
where H; = (@, |H |@,).

The zeroth-order basis is now partitioned into a subset
of states which are nearly resonant with and/or strongly
coupled to the initial state and another subset containing all
remaining off-resonant/weakly coupled states. The coupled
equations may then be written in vector-matrix notation as®

4

dt

4

dt
By denoting the dimension of the resonant/strongly coupled
subspace by N, and the off-resonant/weakly coupled sub-
space by N, the quantities in Eqgs. (3) and (4) are defined as
follows: b®(2) [b°(£)] is an N (N, )-dimensional column
vector containing the amplitudes for the resonant (off-reso-
nant) states, 1% (1°) is the Ny X Nz (N, X N,, ) identity ma-
trix, H?(H?) is the Ny X N (N, X N,,) Hamiltonian sub-
matrix for the resonant (off-resonant) states, and VRO(VOR)
isthe Nx X Ny (N X Ny ) coupling matrix between the two
subspaces.

bR(#) = i({(H )1®* — H®)bR(2) — iVR%DO(2), (3)

bO(r) =i((H )1° — H%)b°(s) — iVORbR(2) . (4)

B. Iterative scheme for the effective coupled equations

The adiabatic approximation given in Ref. 8 was based
on the physical property that the off-resonant amplitudes
b°(z) will remain negligibly small during the time evolution
and hence the derivatives db®(z)/dt in Eq. (4) are effective-
ly equal to zero. The validity of this approximation depends
on the partitioning scheme, and the reader is referred to Ref.
8 for further details in that regard. With the approximation
of db°(t) /dt~0, which hereafter will be termed the “zeroth-
order” approximation, effective coupled equations for calcu-
lating the dynamics of the resonant amplitudes may be de-
rived.® It will be shown here how increasingly accurate
higher-order effective coupled equations can be derived iter-
atively by obtaining improved approximations for the off-
resonant derivatives in Eq. (4).

Equation (3) can be rewritten in the form

VROBO(1) = ig—t BR() + ((H IR — HOBR(r)  (5)
and Eq. (4) can also be rearranged to give
bo(r) = —i((H)Y1°— H")-‘% b(z) .

+ ((H)1° —H®) " 'VoRbR(z) . (6)

As a metioned before, the zeroth-order adiabatic ap-
proximation used in Ref. 8 was

dx

= b9(t)~0, 7

7 (1) (
which, when substituted into Eq. (6), yields

bO(2) ~({H )1° — H?) ~'VoRpR(¢) . (8)

Substitution of this expression for b°(¢) into Eq. (3) gives

%bR(t)z—inmbR(t), (9

where the zeroth-order effective Hamiltonian is given by
HY o =HF — (H)1R + VRO((H )1° — H®) ~'VOR
(10)
An iterative formula for the general nth-order effective
Hamiltonian, Hf;,, may be derived as shown below, for
which the corresponding coupled equations are given by

LAVIP — HE ,bR(1), ' (11)
dt
where
: Hfﬁ',n = [lR + F_I(Hgf,n— 1+ <H>1R - HR) ] _letf,o
(12)
and
F_l=VRO((H)10—HO)_1(VRO)_1. (13)

Equations (11)—(13) constitute the central result of the
present paper.
To derive Egs. (11)-(13), Eq. (5) is first rewritten as

bO()~ (VR "I (HE,, _, + (H)1* — H*)b"(2),
(14)

where (VZ9) ~lisa “left” inverse, and idb® (¢) /dt in Eq. (5)
has been taken to be equal to HY; , _ ; b® () (i.e., it is taken
from the previous iteration). For example, the first-order
approximation to b®(¢) is obtained by replacing idb® () /dt
in Eq. (5) by H%,b"(¢). By taking the derivative of Eq.
(14) and then substituting the resulting expression for
db®(r)/dt into Eq. (6), an approximation for b°(¢) is ob-
tained, namely

bO(1)~ — i((H )1° — H®) "' (VR ~Y(HE,, _,
+ (H)IR — HY) L pR(s)
: dt

+ ({(H)1° —H°) " 'VoRpR(1) . (15)

Substitution of Eq. (15) for the off-resonant amplitudes into
Eq. (3) and collecting the terms for db®(z)/dt yields the
nth-order effective coupled equations given by Egs. (11)-
(13).

The present iterative procedure can be repeated ad in-
Jinitum to give, in principle, better and better approxima-
tions to the off-resonant amplitudes and hence to give more
and more accurate effective coupled equations. However,
the accuracy of the coupled equations determined from this
procedure depends crucially on how good the initial choice
for the time derivatives of the off-resonant states is. (This
choice was zero in the present case.®) When the initial ap-
proximation for those derivatives is not a sufficiently accu-
rate one, the iterative procedure may give qualitatively in-
correct results for the dynamics. From the nature of the
iterative formula, it is cléar that the convergence properties
depend very much on the “magnitude” of V®° (or VOX)
relative to the magnitude of ((H }1° — H?).%

The following notation is introduced here to simplify
the expressions for the effective Hamiltonians:

— IR
VO - Heﬂ'.O ’
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V, = VRO((H)1° —H%) ~ U+ DVOR  j>1. (16)

For example, the first-order effective Hamiltonian is now
given by

HE, = [1° 4 VRO((H)1° — HO) 7?VoR | ~'H,
=1*+V)7V,, (17)
- and the second-order effective Hamiltonian by
HY, =[1°+V, =V, (1% + V)7V, ] 7'V, . (18)

C. Expansions of the effective Hamiltonian

The effective Hamiltonian determined from the present
iterative procedure may be expanded in various ways. For
example, due to computational limitations, it may not al-
ways be desirable to invert the matrix ({(H )1° — H) pres-
ent in V, [Eq. (16)]. In that case, the following expansion
could prove useful (e.g., Ref. 12, with {(H ) replaced by an
energy eigenvalue E):

((H)1°—H%"'= ((H)1°—E%) !

X ni:"o [VO(<H>10— EO)—I]n,
(19)

where the matrix H® has been separated into E® + V©, with
E° containing the diagonal elements of H® and V contain-
ing the off-diagonal elements of H®. Since the matrix
{({H »1° — E°) is a diagonal matrix and thereby trivial to
invert, each of the terms in the expansion may be stralghtfor-
‘wardly evaluated.

Another expansion which may prove useful is a series
expansion in powers of V; [cf. Eq. (16), and see, e.g., Ref.
10]. For example, the series expansion of HY;, in powers of
V, is given by

Hfﬂ’,2= z v, Z (=V,

m=0 n=20

With the further definition of

)"Vy —V, | Vo . (20)

Vi=[1"+V,]7'V,, >0, (21)

the second-order effective Hamiltonian may be rewritten as
Hf, = (1" — V;Vg) ~'Vg . (22)

A final series expansion which may prove useful is one in
powers of V/ (see, e.g., Ref. 10), which for HY;, is given by

Hi, = 3 (ViV)'vg. (23)

n=20

lll. RELATIONSHIP TO OTHER PARTITIONING
TECHNIQUES

The relationship between the present time-dependent
methad for determining the effective coupled equations, and
hence the effective Hamiltonian, and some time-indepen-
dent methods'®'%!*-16 for determining eigenvalues using ef-
fective Hamiltonians is discussed next. For the purpose of
comparison, the preceeding dynamical analysis of Sec. II B
may be viewed as a complementary way of determining an
effective Hamiltonian, although the focus of the present pa-

per is towards a determination of the dynamics rather than
the eigenvalues.

Several authors (e.g., Refs. 10, 11, 14-16) have used
partitioning techniques to construct an effective interaction
Hamiltonian for the determination of a subset of energy lev-
els in nuclei. A summary of the work in this field is given in
Ref. 16. One frequently used formula for determining the

effective interactions is the Des Cloiseaux and Brandow ex-
14,15

pansion,'*!® given in the present notation'’ by
HE =HF— A1% + Z —4"_yro(g10_Ho)-!
(dE )
X VOR —-—(H . (24)

E=AR

In this equation, the quantlty A is taken to be a general pa-
rameter which should, in principle, be chosen to give the best
agreement between the eigenvalues of the effective Hamilto-
nian and the corresponding eigenvalues of the exact Hamil-
tonian. For a nondegenerate resonant subspace, deciding
upon the appropriate choice of A is nontrivial.'” Following
our analysis in Ref. 8, we make the choice A = (H ), since it
gave the most accurate effective coupled equations for calcu-
lating the resonant state dynamics. The relationship of the
effective Hamiltonians determined by the present iterative
scheme to those determined by previous authors'®-!>'*-16
can also be shown, noting that we have replaced their 4 by
our (H).

Schucan and Weidenmiiller!® (SW) have considered
the application of partitioning techniques to the determina-
tion of energy levels in nuclei. SW derived the following
equation for the effective interaction'”:

HE = [1F 4+ F'(HY + A1R—HM)] "'V, (25)

where this F~! denotes VR?(11° — H®) ~1(VR9)~! and
.V, is given in terms of A by HFf—-A1R
+ VRO(11° — H?)~'VOR This equation is equivalent'® to

the implicit equation for HY; given by the Des Cloiseaux and
Brandow expansion [Eq. (24)] Comparison of Eq. (25)
above for the SW effective interaction with Eq. (12) for the
present nth-order effective Hamiltonian shows that HY; , is
just the nth iterative solution to Eq. (25), with the specific
choice of A = (H ). SW discuss solving Eq. (25) iteratively,
and, by making expansions in powers of V,’s or V/’s, they
derive series expansions for the effective Hamiltonian which
are similarly related to nth order forms of Egs. (20) and
(23) by making the choice A = (H ). Discussions of the co-
vergence properties of the eigenvalues of the unexpanded
and various expanded forms of the effective Hamiltonians
are given in Refs. 10, 11, and 14-16, for example.
Recently, Lee and Suzuki'' have derived an iterative
formula for an effective Hamiltonian H,, for use in obtaining
the eigenvalues in the case of a degenerate subspace. This

formula, generalized to the case of a nondegenerate sub-
16,17

space, is given in the present notation [Eq. (16) ] by
Ho = Vo:
n —1
H, = 1*+V, — Z(—)mv Hk—l] Vo,
f m=2 k=n—m+2
n>1, (26)
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with V,, given as in the expression following Eq. (25) and
with the V,’s for i > 0 given by Eq. (16) and having the (H )
replaced by A. In Appendix A, it is shown that the present
HE;, is equivalent to the nth-order effective Hamiltonian
H,, of Lee and Suzuki,'’ given by Eq. (26), once the specific
choice of A = (H ) is made.

The eigenvalues obtained from the present iterative
scheme for the effective Hamiltonian are also related to the
Newton—Raphson technique for determining the eigenval-
ues for the exact partitioned Hamiltonian of Léwdin.'? The
exact partitioned Hamiltonian is given in the present nota-
tion by®

HR,, =HR 4+ VRO(E1° —H?)~'V%, (27)
~ where the constant factor — (H )1® has been omitted. The
eigenvalues are then determined by solving the secular equa-

tion
det | HR . —E1X | =0, (28)

which, due to the dependence of HX ., on E, may require the
use of a root search technique such as the Newton-Raphson
method.'?

The relationship between the Newton—Raphson solu-
tion to the above secular equation and the present effective
Hamiltonian method may be established in the case of a one-
dimensional resonant subspace. In this situation, the expres-
sion for the eigenvalue derived from the first-order effective
Hamiltonian is identical with the expression derived from
the first iteration of the Newton—Raphson method with the

initial guess for E of (H ). However, therelationship between -

the higher-order effective Hamiltonians and further itera-
tions of the Newton—Raphson method (as well as for reso-
nant subspaces of dimension greater than one) requires
further investigation.

The effective Hamiltonian method for determining
eigenvalues is also related to various other formulations of
degenerate or nearly degenerate perturbation theory. These
relationships are not as relevant to the dynamical analysis of
the present paper and will not be discussed here. Further
discussions in that regard are given in Refs. 18 and 19.

IV. APPLICATIONS

In order to illustrate the possible applications of this
technique and the accuracy of the effective coupled equa-

ENERGY
<

FIG. 1. A schematic diagram of the four-state model system used in Sec. IV.
Dotted lines denote the couplings between the zeroth-order states, and |l
is the initial state.

tions, two model systems are considered here. The zeroth-
order energy levels and couplings for the first system studied
are depicted schematically in Fig. 1. The four basis states for
this system are separated into two resonant states |@,) and
|@,) and two off-resonant states |@;) and |@4). The state
|@, ) is taken to be the initially prepared state. This effective
two-level model has features in common with the energy
transfer dynamics of the local mode states in a model of
H,0.5% In the present model, the relevant matrix elements
are given by Hf = E1NH?=E, + AHY, =HS =V,
and VEC =V R =16,

By using the formulas for the zeroth- and first-order
effective Hamiltonians given in Egs. (10) and (17), the fol-
lowing analytic result for the time-dependent probablhty
P, (¢) of the initial zeroth-order state is obtained:

Py(1) = |bF(®)|* = cos* (1 /2), (i=01), (29)
where the zeroth- and first-order effective frequencies £,
and Q, are given, respectively, by

J
2V,
0 -A-Z_Vg > (30)
0 _ iz(Az—' VO{[(A? = V2)> + V(A2 + VD) VIV, — 287V Vo) 31)
- [(a2— VD) + Vi(A + VD] — 441V}

An analogous analytical formula for the second-order effec-
tive frequency 2, can be obtained from Eq. (18), although it
is omitted here for brevity. The “exact” frequency®' which
would appear instead of Q; in Eq. (29) is denoted below by
Q.

r

The time evolution of P,(t) is plotted in Fig. 2 for the
exact, zeroth-, and first-order coupled equations. The pa-
rameters used in making this plot were V;= —43.9,
V,= —50.6, A=337.7 cm™'. For these parameters, the
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6
TIME (ps)

FIG. 2. Initial state probability P, (¢) for the model system shown in Fig. 1,
with A =337.7, ¥, = —43.9, and V, = — 50.6 cm™!. The exact results
are given by the solid line, the zeroth-order results by the long dashed line,
and the first-order results by the short dashed line.

values of Q, A,, and 2, were calculated to be 1.7495,
1.6588,and 1.6614 cm !, respectively, while the result for
is 1.6613 cm ™. In Fig. 3, the initial state probability P, (¢) is
plotted once again, but now for the exact, zeroth-, and sec-
ond-order coupled equations, and with the zeroth-order de-
tuning A decreased to 150 cm™". In this case, the values of
Qo Ql, and Q, were calculated to be 9.781,7.056, and 7.481
cm ™!, respectively, while the result for 2 is 7.426 cm ™. In
Table I, the resonant subspace elgenvalues for the above two
sets of parameters, as calculated from the exact, zeroth-,
first-, and second-order effective Hamiltonians, are given.
The second model system considered consists of 55 basis
states, with the resonant subspace having 10 states and the

TIME (ps)

FIG. 3. Initial state probability P, (¢) for the model system shown in Fig. 1,

" with A = 150.0, ¥, = — 43.9, and ¥, = 50.6 cm . The exact results are
given by the solid line, the zeroth-order results by the long dashed line, and
the second-order results by the short dashed line.

5023

TABLE 1. Eigenvalues for the resonant subspace in the four-state model
system.

A? Exact Second First Zeroth
3377 — 656266 —656274 —6.55932 —6.71268
— 490133 —490134 490056 —4.96320
150.0 — 1661214 —16.66792 —1622389 — 19.38843
—9.18653 —9.18733 —9.16814 —9.60723
*The other parameiers in the four-state model were V; = —43.9 and

V,= —50.6cm~". All units areincm™".

off-resonant subspace having 45 states. The initial state ener-
gy HR was arbitrarily set equal to zero and all the other
diagonal elements of H? were chosen to have random values
between + 10cm™". The diagonal elements of H® were cho-
sen randomly within the limits — 55<HJ< — 10cm™'and
10<HZ<55 cm™'. The off-diagonal elements of HX, H®,
and all the elements of VR and V°F were chosen randomly
to be between + 2 cm™'. These matrices were made to be
Hermitian. The initial state probability P, (¢) as calculated
by the exact, zeroth-, and first-order coupled equations is
plotted in Fig. 4 for this system. In Table I, the eigenvalues
for the resonant subspace, as calculated from the exact Ham-
iltonian, and the zeroth- and first-order effective Hamilto-
nians, are given.

The probabilities in Figs. 2—4 obtained by integration of
the effective coupled equations are seen to remain somewhat
above the peaks and valleys of the exact probability curves. It
is perhaps desirable to have the effective probability curves
follow the “average” of the exact curves. For this purpose, a
correction factor f, derived in Appendix B, may be used.
This factor takes into account the small fraction of probabil-
ity remaining, on the average, in the off-resonant states (cf.
Appendix B) and is given by

FIG. 4. Initial state probability P, (¢) for the second model system discussed
in Sec. IV of the text. The exact results are given by the solid line, the zeroth-
order results by the long dashed line, and the first-order results by the short
dashed line.
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TABLE II. Eigenvalues for the resonant subspace in the 55-state model
system.?

Exact First Zeroth
— 7.8342 — 8.1506 — 9.1006
— 3.4768 —3.5308 — 4.1809
—2.6149 — 2.6338 —2.9832
— 1.3356 — 1.3344 — 1.5533
0.6269 0.6268 0.7097
1.1780 1.1811 1.3642
4.5006 4.3520 5.3627
5.9862 6.1315 6.8652
6.1681 6.2137 7.3159
7.6073 7.7074 8.5667
*All units are cm ™",
1
fRzl——_ZMii’ (32)
‘NR i=1
where the matrix M is
M = VRO((H )»1° — HO) ~2yOR (33)

In Figs. 5 and 6, all the initial state probabilities from Figs. 3
and 4 are plotted, but the approximate ones are now multi-
plied by the overall correction factor f5.

V. DISCUSSION

‘ From the results shown in Figs. 2~6, it is clear that by

using such higher-order effective Hamiltonians one can ob-
tain more accurate approximations to the dynamics than by
just using the zeroth-order one. In addition, the results
shown in Fig. 3 indicate that, even in the case of an interac-
tion with the off-resonant states which is fairly large relative
to the splitting between the resonant and off-resonant sub-
spaces, the approximate resonant state dynamics obtained
from a higher-order effective Hamiltonian may still be able

1.0

PROBABILITY OF INITIAL STATE

TIME (ps)

FIG. 5. “Corrected” initial state probability P, (¢) X f, for the model sys-
temshownin Fig. 1, with A = 150.0, ¥, = — 43.9,and ¥, = — 50.6cm~".
The exact results (with no correction factor) are given by the solid line, the
zeroth-order results by the long dashed line, and the second-order results by
the short dashed line.

1.0

PROBABILITY OF INITIAL STATE

FIG. 6. Corrected initial state probability P,(¢) X f; for the second model
system discussed in Sec. IV of the text. The exact results (with no correction
factor) are given by the solid line, the zeroth-order results by the long
dashed line, and the first-order resuits by the short dashed line.

to reproduce the most important trends in the dynamics.
However, in each case it is also apparent that the zeroth-
order approximation gives a reasonably good description of
the correct average behavior, apart from a shift in the oscilla-
tion frequency. As mentioned before, this situation is neces-
sary for the higher-order effective coupled equations to be
accurate. In addition, Figs. 5 and 6 indicate that the correc-
tion factor f [Eq. (32)] is indeed useful for obtaining better
average dynamics.

An inspection of the results given in Table I shows that
the eigenvalues in the effective two-level model become more
accurate with successive steps in the iteration procedure.
From the results given in Table II for the second model sys-
tem, one can again see that the eigenvalues which are ob-
tained from the first-order effective Hamiltonian are more
accurate than those obtained from the zeroth-order effective
Hamiltonian, with the ones closest to the initial state energy
(H) (=H?F, =0) being the most accurately determined.
In addition, calculations for this and other model systems
have shown that more accurate dynamics and eigenvalues
may also be obtained by increasing the dimension of the reso-
nant subspace relative to the dimension of the off-resonant
subspace. This result illustrates the potential power of a
combined partitioning and iterative formalism.

It is also noted here that although the zeroth-order ef-
fective Hamiltonian is Hermitian, since H is Hermitian, the
nth-order effective Hamiltonian is not in general Hermitian.
If desirable, this situation can be remedied in various ways.
For example, a Hermitian effective Hamiltonian may be ob-
tained by defining it to be (HX;, + HX,,)/2. This simple
symmetrization of the effective Hamiltonian has been used
in nuclear physics applications,'® but was found in those ap-
plications and in the present dynamical calculations to have
a negligible effect. Other alternatives in this regard include
transformations which make the initial non-Hermitian ef-
fective Hamiltonian Hermitian.'*'>1°
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Vi. CONCLUDING REMARKS

An iterative procedure for obtaining increasingly accu-
rate effective coupled equations has been presented in the
present paper. This procedure extends the adiabatic approxi-
mation developed by Voth and Marcus® and is related to
several effective Hamiltonian techniques'®-'%14-16.18.19 yged
predominantly in the nuclear physics literature. A general
prescription for obtaining the effective coupled equations,
and hence an effective Hamiltonian, has been formulated.
This prescription may be used to calculate the dynamics of a
subset of resonant/strongly coupled states (relative to the
initially prepared state). The model calculations performed
to test the accuracy of the iterative procedure indeed yielded
very encouraging results.

The results presented in this paper suggest the following
possibilities for use of the higher-order effective coupled
equations in intramolecular dynamics calculations: (1) as a
test for the usefulness/accuracy of the zeroth-order adiabati-
cally reduced coupled equations approach,® (2) as a means
for obtaining more accurate dynamics in any given applica-
tion of the zeroth-order coupled equations, and (3) as a
means to obtain the approximate intramolecular dynamics
in a situation where, due to computational limitations, one
cannot obtain convergence of the zeroth-order dynamics by
“simply increasing the dimension of the resonant subspace. It
is planned to give specific applications of the present theory
- in later publications.
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APPENDIX A: EQUIVALENCE OF EQ. (12) TO EQ. (26)

y It is given that H, = H%;,, and so using the method of
" induction, the equality of the two effective Hamiltonians
Hfm . and H, [Eqgs. (12) and (26), respectively] may be
established by assuming that HY;,, = H, and then showing
that HY,, ., =H, .
Equation (12), with # replaced by »n + 1 and setting
HE, = H,, yields

H")]~'F~'FV,
(AD)

HE, ., =[17+ F~'(H, + (H)1* —
= [F+H, + (H)1* —HR ]| ~'FV,,
¢ recalling Eq. (16) for V,,. There is also the identity,
H, =V,— (VH, ' —1H,

=V,— [(H,Vg )~ ' =17 ]H,. (A2)

. Introducing the expression for H,,, given by Eq. (26), into
the first H,, term on the right-hand side of Eq. (A2) yields

H" =v°— [Vl -_ Z ( haad )mvm Hk—l]Hn
m=2 k=n—m-+2
n+1 n+1
-3 (=)Veli I Hiin (A3
m=2 k=n—m+3
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upon using Eq. (16). Substituting this expression for H,
into Eq. (A1) yields

R
I-I(-:ﬂ'n+1

=[F+V,+ (H)1* —H?

n+1 n+1
=3 (=), _,

m=2

Observing that

FV,=V,+ (H)1® — HR
and

FV, =V, _,, (m>2),

one sees that Eq. (A4) may be rewritten as

n+1
Hﬁﬂ‘,n+l = [F[1R+V1 - Z (_ )mvm

m=2

n+1 —1
X H Hkvl]] FV,

k=n—m+3
=H
=H (A7)

upon using a result for the produce of inverses, and introduc-
ing Eq. (26) (for n + 1 instead of ).

Vi 'FIFV,

n+1

n+ 12

APPENDIX B: DERIVATION OF THE CORRECTION
FACTOR £,

The total probability (¥(¢)|¥(r)) of the quantum dy-
namical system satisfies the condition

Pr(t) +P,(t) =1, (B1)
where Py (¢) and P, (r) are the resonant and off-resonant
basis state probabilities, respectively (cf. Sec. IT A). The lat-

ter two quantities may be written in terms of the vectors
containing the resonant and off-resonant state amplitudes as

Pr (1) =bRT(5)bR(z) and P, (t) =b°()bO(2),
(B2)
respectively. If the probabilities are now long-time-aver-

aged, the average resonant state probability Py is given from
Eq. (Bl) as

Pr=1-P,, (B3)
where P, and P,, are given by
P, = lim if P.(Hd:, (i=R,0). (B4)
>0 T JO

By virtue of Eq. (B2) and the “zeroth-order” adiabatic
approximation for the amplitudes b°(z) [Eq. (8)], the long-
time-averaged off-resonant state probability may be ap-
proximated as

?ozlim[ f |b R () |%dt
T l=l

T—

Ngp Ny T

2 oM b?*(t)b}‘(z)dt],

T i=1j#i
where the matrix M is given by Eq. (33) of the text, and N,
is the dimension of the resonant subspace (cf. Sec. I A).

(B5)
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This expression could, in principle, be evaluated from an
actual dynamical calculation of the vector b®(#) using the
effective coupled equations [Eqs. (11)-(13)].

It is desirable, however, to obtain simple approxima-
tions for the long-time averages of [bR(t)|?
b F*(1)b }(¢) and to thereby simplify Eq. (BS). To achieve
this goal, the resonant state basis functions |@ X) are as-
sumed to be adequately described as a linear combination of
the resonant state eigenfunctions |¢%), i.e., as

Ng
PR~ Culvd). (B6)

n=1

It is assumed here that the contributions from the off-reso-
nant basis functions |@ ) to the resonant eigenfunctions
|¢R) are small. With the further assumption of strong mix-
ing among the resonant basis functions due to the perturba-
tion and their near degeneracy, the magnitude of the expan-
sion coefficients |C,, | may be approximated by 1/,/N,. By
virtue of these latter two approximations and the fact that
bRty =(p fl\l’(t) ), the first term in Eq. (B5) becomes

ak IbR(t)lzdtfv— Su,. @

i=1

hm— z

T T =1

The second term in Eq. (B5) is assumed to be approximately
equal to zero since each b f*(2)b R(¢) term, with i/, is
“highly oscillatory. With the above approximations for the
long-time averages in Eq. (B5), the simple approximate for-
mula for P,, is obtained:

1 =

Po~— 3 M, (B8)

‘R i=1 -
If dynamics calculations are performed using the effec-
tive coupled equations [Egs. (11)-(13)] and an initial state
probability normalized to unity, the results of Eq. (B3) and
(B8) suggest that the calculated resonant state probabilities
should be multiplied by the correction factor

Sr=1 —Fo»

where P,, is given by Eq. (B8). The factor f corrects phe-
nomenologically for the small fraction of probability which
is present, on the average, in the off-resonant ‘‘virtual”
states.®

(B9)

'Forreviews, see K. F. Freed, Top. Appl. Phys. 15, 23 (1976); P. Avouris,
W. M. Gelbart, and M. A. El-Sayed, Chem. Rev. 77,793 (1977); S. Muka-
mel and J. Jortner, in Excited States, edited by E. C. Lim ( Academic, New
York, 1977), Vol. 3, p. 57; W. Rhodes, J. Phys. Chem. 87, 30 (1983), and
references cited therein.

ZFor reviews, see V. E. Bondybey, Annu. Rev. Phys. Chem. 35, 591 (1984);
F.F. Crim, ibid. 35, 657 (1984); E. B. Stechel and E. J. Heller, ibid. 35, 563
(1984); R. E. Smalley, J. Phys. Chem. 86, 3504 (1982); M. L. Sageand J.
Jortner, Adv. Chem. Phys. 47, 293 (1981); S. A. Rice, ibid. 47, 117
(1981).

3See, for example, K. T. Chen, B. E. Forch and E. C. Lim, Chem. Phys.
Lett. 99, 98 (1983); N. L. Garland and E K. C Lee, Faraday Discuss.
Chem. Soc. 75, 377 (1983); A. Lorincz, D. D. Smith, F. Novak, R. Kos-
loff, D. J. Tannor, and S. A. Rice, J. Chem. Phys. 82, 1067 (1985); P. M.
Felker and A. H. Zewalil, ibid. 82, 2994 (1985).

“We are concerned here with quantum mechanical approaches and hence
will not consider the many useful semiclassical and classical approaches.
5A. Nauts and R. E. Wyatt, Phys. Rev. Lett. 51,2238 (1983); Phys. Rev. A
30, 872 (1984); I. Schek and R. E. Wyatt, J. Chem. Phys. 83, 3028, 4650

(1985); 84, 4497 (1986); K. F. Milfeld, J. Castillo, and R. E. Wyatt, ibid.
83, 1617 (1985).

6J. V. Tietz and S. -I1. Chu, Chem. Phys. Lett. 101, 446 (1983).
7J. Chang and R. E. Wyatt, Chem. Phys. Lett. 121, 307 (1985).
8G. A. Voth and R. A. Marcus, J. Chem. Phys. 84, 2254 (1986).
9For a related, but somewhat different, partitioning approach to that given
in Ref. 8, see R. A. White, A. Altenberger-Siczek, and J. C. Light, J.
Chem. Phys. 59, 200 (1973).
19¢3) T. H. Schucan and H. A. Weidenmiiller, Ann. Phys. 73, 108 (1972);

(b) 76, 483 (1973).

'(a) S. Y. Lee and K. Suzuki, Phys. Lett. B91, 173 (1980); (b) K. Suzuki
and S. Y. Lee, Prog. Theor. Phys. 64, 2091 (1980). These authors use the
notation R, in place of H,,.

2p_ 0. Léwdin, in Perturbation Theory and Its Applications in Quantum
Mechanics, edited by C. H. Wilcox (Wiley, New York, 1966), p. 255 and

references cited therein.

3The expansion of the wave function |¥(¢)) in Eq. (1) is assumed to be
composed of a finite number ( = N) of basis states. In theory, an infinite
number of basis states are required to completely represent most Hamilto-
nians, but, in practice, the basis set is usually truncated.

- 143 Des Cloiseaux, Nucl. Phys. 20, 321 (1960).

15B. H. Brandow, Rev. Mod. Phys. 39; 771 (1967); in Lectures in Theoreti-
cal Physics, edited by K. T. Mahanthappa (Gordon and Breach, New
York, 1969), Vol. 11; Ann. Phys. 57, 214 (1970).

16T, T. S. Kuo, in Lecture Notes in Physics, edited by T. T. S. Kuo (Springer,
Berlin, 1981), Vol. 144, p. 248.

""Note that in this article the resonant subspace is not necessanly degener-
ate and for this reason the Des Cloiseaux expansion is slightly modified
here as discussed in Ref. 10(a). For the case of a degenerate subspace of
energy E,;, the choice 1 = E,, is used. Similar remarks apply to most of
the expansions of Schucan and Weidenmiiller and Lee and Suzuki, as giv-
en here. We have adopted the notation and partitioning scheme from Ref.
8.

187y J. Klein, J. Chem. Phys. 61, 786 (1974).

19B. H. Brandow, Int. J. Quantum Chem. 15, 207 (1979).

203 S. Hutchinson, E. L. Sibert III, and J. T. Hynes, J. Chem. Phys. 81, 1314
(1984).

21The “exact” frequency was determined from the splittings of the resonant
state eigenstates (cf. Table I).

J. Chem. Phys., Vol. 85, No.'9,, 1 November 1986




