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The theory for unimolecular reactions described in part 1 is applied to the recombination of methyl radicals in the high-pressure
limit. The model potential energy surface and the methodology are briefly described. Results are presented for the recombination
rate constant k., at T = 300, 500, 1000, and 2000 K. Canonical and Boltzmann-averaged microcanonical values of k., are
compared, and the influence of a potential energy interpolation parameter and a separation-dependent symmetry correction
on k., are examined. Earlier theoretical models and extensive experimental results are compared with the present results
which are found to have a negative temperature dependence. The present results agree well with some of the available but
presently incomplete experimental determinations of the high-pressure recombination rate constant for this reaction over
the 300-2000 K temperature range. There is also agreement with a decomposition rate constant for a vibrationally excited

ethane molecule produced by chemical activation.

I. Introduction

Bimolecular association reactions that have no energy barrier
along the reaction coordinate have posed an interesting challenge
in the theory of unimolecular reactions. These and related re-
actions were considered in parts 1!2 and 2'® of this series. In the
present paper these considerations are applied to the recombination
of methyl radicals

k
2CH; — C,H; (L.1)
where the recombination rate constant k is defined by
d[CH;]
BT 2k[CH,)? (1.2)

For this reaction there is no barrier to the association along the
reaction coordinate and a transition state is therefore not readily
identifiable on that particular basis. There is, however, a
“bottleneck™ for such reactions in terms of the number of states
as a function of the reaction coordinate,? and this bottleneck
identifies the transition state. A method presented in part 1 and
described in detail in part 2 has been given for implementing
RRKM theory for such reactions.

In the present paper attention is focused on the methyl re-
combination reaction, in part because it has been extensively
studied experimentally and its high-pressure value of k has been
reported, according to the results of a number of authors, to display
a negative temperature dependence. The latter is not predicted
by some of the earlier theoretical models, described later. (The
Gorin model, for example, predicts a k proportional to 7'/6.) This
paradox posed by the earlier calculations stimulated our own
interest in the problem. The reaction also serves to demonstrate
the utility of the present method for treating systems involving
the recombination of, or dissociation into, polyatomic fragments.

The high-pressure recombination rate constant k., is given as
a function of the temperature T by?

g
hQ:

where J is the total angular momentum quantum number, E is
the total energy (in the center-of-mass frame), Ng,(R) is the sum

ko(T) = f "dE ¥ (2J + 1)Ng(RN)eET (1.3)
0 J=0
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of quantum states in all degrees of freedom except the reaction
coordinate R for the given J and having energy less than or equal
to E, R is that value of R which minimizes Ng; for a given (E,
J) pair; Q, is the partition function (in the center-of-mass frame)
for the reactant fragments at infinite separation; and g, is the ratio
g'/g.8, of electronic partition functions for the transition state
and separated radicals and is taken to be !/,, corresponding to
the usual approximation that only systems initially on the singlet
potential energy surface can lead to recombination products.

The principal idea in the calculation of Ng;, described in part
1, is that the degrees of freedom are subdivided into “transitional”
ones and the remaining coordinates. The transitional degrees of
freedom involve (a) the free rotations of the reactants which
become bending and torsional motions of the product, (b) the
relative orbital motion of the approaching fragments, and (c) the
other coordinates, if any, which change considerably their form
of motion during the approach along the reaction coordinate. The
motions (a) to (c) are typically strongly coupled to each other and
are constrained by energy and total angular momentum conser-
vation, rendering formidable a purely quantum-mechanical cal-
culation of the energy levels at each value of the reaction coor-
dinate (so as to calculate Nz;(R)). The density of states for such
coordinates as a function of their energy ¢, Q,(¢), can sometimes
be approximated, as we shall do here, by the corresponding
classical phase-space integral. ’

With this subdivision of the coordinates Ng; can be written as
the convolution'

E
Ny, = j; NAE - €) Q,(e) de (1.4)

where Q,(¢) de is the number of states of the transitional modes
for the given J when their total energy lies in the interval (e, €
+ de) and Ni(E — ¢) is the number of quantum states in the
remaining coordinates when their energy is less than or equal to
E —e* The two types of coordinates are taken to be uncoupled

(1) (a) Wardlaw, D. M.; Marcus, R. A. Chem. Phys. Lett. 1984, 110, 230.
(b) Wardlaw, D. M.; Marcus, R. A. J. Chem. Phys. 1985, 83, 3462.

(2) Marcus, R. A. J. Chem. Phys. 1966, 45, 2630. Cf. comment on this
paper in the introduction to ref 1a. Some later references to this criterion,
namely to the work of M. Quack and J. Troe, W. L. Hase, B. C. Garrett and
D. G. Truhlar, are cited in ref la.

(3) Marcus, R. A. J. Chem. Phys. 1965, 43, 2658. Equation 1.3 is a
straightforward adaptation of the unimolecular case treated in this reference.
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from each other in eq 1.4, apart from an indirect coupling via the
dependence of the molecular structure and potential parameters
on the reaction coordinate. The value of Ny in eq 1.4 is obtained
by the usual quantum count,*® while Q,(¢) and N, are evaluated
by Monte Carlo methods. The quantity ©,(e) is evaluated in the
present paper by using action-angle variables, as in parts 1 and
2.

Before presenting the calculations in some detail, it is useful
to indicate qualitatively how the theory can lead to a negative
temperature dependence of k... In the case of a loose transition
state (or, as it is sometimes known, the Gorin model) the tran-
sition-state location is determined by a balance of centrifugal and
long-range van der Waals dispersion forces, free internal rotations
are assumed, and the predicted k. is found to increase with T,
varying as T'/. When, as in the present model, a more accurate
treatment of the internal degrees of freedom is employed, the close
spacing of their energy levels at large R (free rotations, for ex-
ample) in contrast with the wider spacing at smaller R (restricted
rotations now) causes Ng(R) to be larger at large R than at
somewhat smaller R’s and thereby shifts the minimum of the
Ngy(R) vs. R curve to an R' less than its value for the loose
transition state. For the present model of Ng;(R) this shift in-
creases as the energy is increased and, hence, as the temperature
is increased. (The effect is enhanced with increasing energy, since
at each R the number of states grows rapidly with the energy.)
As R decreases so does Ng;(R') relative to its loose value and
so, thereby, does the rate constant. Accordingly, the deviations
of the rate constant from the 7"/6 dependence should increase with
T and, in this case, to such an extent that k., now decreases with
T.

Other discussions of the decrease in R' with increasing tem-
perature or increasing energy, based on the hindered rotor nature
of some internal degrees of freedom, have been given by a number
of authors.® Several of these authors have also discussed the
temperature dependence of the rate constant.’®

The present article is divided as follows: In section II action-
angle coordinates are given for the transitional modes; the
transformation to the internal or relative coordinates is described
in Appendix A. The potential energy function is presented and
briefly discussed in section 111 and in Appendix B. The explicit
evaluation of eq 1.3 for the rate constant k.. is described in section
IV, and results are given in section V. A comparison of the
recombination results with extensive experimental data and with
earlier theoretical models is given in section VI; also included is
a comparison with an experimental decomposition rate constant
for vibrationally excited ethane produced by chemical activation.
A summary and discussion follow in section VIL

II. Action-Angle Variables and Expression for N,

In the description of these quantities we extract from part 2
only the material needed for a brief presentation of the method
as it applies to methyl radical recombination. More detail and
generality are given in part 2. Except where noted, both here and
in Appendix A, the coordinate systems and transformations used
are the same as those described earlier (Appendix E of part 2).

We label the two methyl radicals X, and X, and let (x, y, z)
denote a set of Cartesian coordinate axes fixed in the combined
X=X, system, the z axis being chosen to lie along the relative

(4) (a) This Ny (E — ¢) is equivalent to the Ny{E’~ ¢ in ref 1: The present
NWE - €) is zero until £ = e exceeds Vyio(R) + E, (R), where Vamin( R) is the
potential energy minimum at that R and E(R) is the zero-point energy of
the “conserved degrees of freedom™ at that R. The previous N(E" - ¢) was
zero until E’— ¢ exceeded zero. The E’in ref 1 equals E — V;,(R) — E;p(R).
(b) A grid size of 2 cm™' was used to obtain an approximate direct count via
the approach described in part 2 where a grid size of | cm™ was employed.
Ng; results for these two grid sizes at various R values for a high energy (E
- E,, = 63.52 keal mol™') were found to agree within the statistical uncertainty
(represented by oM©) imposed by the Monte Carlo calculation. The larger
grid size of 2 em™' reduces both the computer memory requirement and the
execution time of an Ng, calculation.

(5) E.g.: Hase, W. L. J. Chem. Phys. 1976, 64, 2442. Quack, M.; Troe,
1. Ber. Bunsenges. Phys. Chem. 1977, 81, 329. Smith, G. P,; Golden, D. M.
Int. J. Chem. Kinet. 1978, 19, 489, Benson, S. W. Can. J. Chem. 1983, 64,
881,
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Figure 1. (a) Euler diagram depicting the relationship between the (x,
v, 2), (x/ 'y 2)") and (x,”, »,”, 2//") Cartesian coordinate systems for
the nonlinear polyatomic fragment 1. The doubly primed system is
chosen so that the inertial tensor is diagonal in it; the z/” axis is the
symmetry axis of the symmetric top methyl radical. 1 lies along the z
axis, j lics along the z,” axis, and «, is the projection of j, on the z," axis.
Pairs of the three planes intersect along the lines of nodes V), N,"”, and
N,”"", whose orientations are determined by the vectors 1 X j;, I X «, and
K, X jy, respectively; V,”” also serves as the x,’ axis. The angles (a;, Oy,
8,) are the Euler angles specifying the orientation of the primed system
relative to the unprimed system, and the angles (v, 0, 0) are those
specifying the orientation of the primed system relative to the doubly
primed system. For pictorial clarity the angle fi, between the z axis and
the z,” axis and the angle 8,; between the z,” axis and the z)”” axis are not
shown. (b) The CH bond length rey, the angle between adjacent CH
bonds aycy, the bond dissociation/association coordinate rec = ras
several interfragment atomic separation coordinates ry, and the angles
0; between ree and the symmetry axis z” of fragment i (i = 1, 2) for the
CH,+CH, system. The carbon atom of fragment 2 is taken as the origin
of ree. (c) Angular momenta for fragment rotations and for the orbital
motion of CHy+CHj, the distance R between the centers of mass, and
the projection «; of j; on the z;” axis.

orbital angular momentum vector 1 of the two fragments as in
Figure la. (Throughout angular momentum actions arc written
in units of A = 1.) In the present paper the x axis is chosen to
lic along the vector I X j;, where j; is the rotational angular mo-
mentum vector of X; (i = 1, 2). In part 2 it lies instead along
the vector 1 X k, where k is an intermediate angular momentum
vector defined to be j, + j,. (This new x axis reduces somewhat
the computational effort involved in the transformation from action
angle to internal coordinates. The new details are given in Ap-
pendix A.) The relative separation vector R along the line joining
the centers of mass of the two fragments lies in the body-fixed
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xy plane and is oriented at an angie «; with respect to the x axis
(o is conjugate to /). The vector R and the angle «; are not shown
in Figure la.

Two coordinate frames (x/, y/, z/) and (x/”, y/’, z/’) are fixed
in fragment X; and are defined as in Figure la and in the caption
to that figure. The projections of j; on the z; and z;/” axes are
denoted by j;, and «;, respectively (Figure 1a).

The angles conjugate to (j;, ji,, «;) are («;, Bi, v;), respectively
(Figure 1a). The z projection of 1, /,, its conjugate angle 3,, and
a, specify the orientation of the body-fixed (x, y, z) system with
respect to a space-fixed system. These coordinates provide a set
of variables (/, ap, Ly B J1s @1s Jizs Brs K1s Yo J2» @2, J2zs B2y K2, Y2)
which specify, among other things, the orientation in space of each
fragment X; (i = 1, 2). However, instead of (/,, ji,, 2., 81 B1»
B,) the variables (J, J,, k, a, 8, a;) will be used, where J, is the
z projection of J and the angles o, 8, o are conjugate to J, J,,
k, respectively. The resulting action variables are J, J,, ji, j», &,
1, ky, x; and their respective conjugate angles are «, 8, a;, a,, ay,
a;, ¥, ¥2. The reaction coordinate R, the angular momenta j,,
J2» 1, and the projections «,, x, are depicted in Figure lc.

The expression for Q,(¢) in terms of these action-angle variables
is
Q) = 2x) 2! f f dJ, dj, dj, dk dI dx; dx, de dB

dal daz dak da, d‘Y] d‘Yz A(J,k,l) A(kJ],Jz) 6(6 - Hcl) (II].)

The limits on the angle variables are 0 to 2, the J, integral is
over the interval (-J, J), the «; integrals are restricted by |«] <
Ji» the angular momentum actions j,, j,, k, and / are restricted
by the indicated triangle inequalities A and by energy conservation
(A equals unity when the triangle inequalities are fulfilled and
is zero otherwise), and ¢ is a symmetry number to be discussed
in section IV. For XX, the Hamiltonian H is written as

2
Hcl - Erl + Er2 + ﬁ + I/t(rmmalaoz) (IIZ)

where y is the reduced mass for relative motion of the X, and X,
fragments, V| is the potential energy function for the transitional
modes (i.e., for variation in the separation distance and in the
orientation of the CH; groups), and r,,, (m, n = 1-4) denotes a
4 X 4 set of distances which, together with 4, and 6,, are described
in section III.

In the particular case of CH, fragments the principal moments
of inertia are related by I, = Iy < I and each CH; is an oblate
symmetrical top with symmetry axis C and with I[= I Jc/(I5
—I¢c)] negative. We note that an additional restriction on |«;| arises
from the requirement that E,; must be greater than or equal to
zero. The relation between the action-angle variables of eq II.1
and the internal coordinates r,,,,, 8;, 8, for the case of CH;--CHj,
is described in Appendix A.

As seen in Appendix A, H,, is independent of (J,, @, #) and
eq IL.1 becomes

Q) = (2 + 1)(27) 0! f f dj, dj, dk dI dx, d, de;

da; day da; dy, dy, ALK, 8(kyj) 8(e — Hy) (I1.3)
and

Ngy = (2 + 1)(2w) 60! f f dj, dj, dI dk dx, dk, day da,
day da; dy, dy, NKE — Hy) A(JKD Alk,jrjy) (11.4)

The evaluation of eq I1.4 is described briefly in section IV.
We shall use p (products) and r (reactants) subscripts to denote
properties of the molecule and of the fragments, respectively. In

particular E,, will denote the total zero-point energy of the two
methyl radicals at R = =,

III. Potential Energy Function

For the 2CH; — C,H{ reaction a model potential V = V_ +
V., is used.- This potential is intended to be physically reasonable
but not quantitatively accurate since it is not constructed from
ab initio points but, rather, is based on several different types of
approximation, as described below. However, it is to be em-
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TABLE I: Correlation of Conserved Vibrations®

C,Hg¢ CH,;
label sym sym
i mode  type v vP mode  type v
1 v A 2954 29250 vy Ay 3044

vs A, 2896

2 v, A, 1388 13835 v, Ay 580
Vg A2n 1379

3 vy E, 2985  2977.0 vy E’ 3162
ve E; 2969

4 vg E, 1472 1470.5 v, E’ 1396
vy By 1469

2 All frequencies are in units of cm™ and are taken from ref 8.

TABLE II: Disappearing Vibrational Modes of C,H¢*

sym .
mode type v description
vy Ay 995 C-C stretch
A An 289 torsion
vy E, 821 CHj; rock
vz E, 1206 CHj; rock

2 All frequencies are in cm™ and are taken from ref 8.

phasized that the utility of the present method is independent of
the accuracy or explicit form of the potential energy surface.

The potential V, is for the “conserved” vibrational degrees of
freedom (listed in Table I) and is assumed for simplicity to be
separable and quadratic. (Inclusion of approximate anharmonicity
corrections in the potential ¥, would not lead to difficulties in
obtaining the sum of states N;.57) The vibrational energy in
excess of the (R-dependent) zero-point energy is then expressed
in terms of principal quantum numbers n;; and n,, of the normal
modes in methyl fragments 1 and 2, in units of A = 1:

Ey= fzw,.(R) [y + my) (11L.1)
i=1

The sum is over the (identical) vibrations of each methyl group,
two of which are doubly degenerate. For simplicity the frequencies
vi(R) were obtained by interpolation

v(R) =vf+ (@P-vP)eg(R) (i=1,..,4) ({I1.2)
with
g(R) = exp[-a(R - R,)] (111.3)

where R, is the equilibrium value of R in C,Hg and « is an
interpolation parameter. It is not clear that the interpolation in
eq I11.3 is physically correct; when an improved potential energy
surface becomes available, this approximation can be avoided. The
two particular values of « used in this work are discussed in section
IV. The reactant frequencies v are the normal-mode frequencies
of an isolated methyl radical and are listed with their symmetry
type in Table I. The product frequencies », which correlate to
the » via eq II1.2, were determined as follows: For a given
symmetry type (either 4 or E) and for each type of vibration
(either CHj stretching or CH, deformation), two nearly degenerate
frequencies of C,Hg were averaged. The resultant »’s were then
correlated on a 1:1 basis with »/’s according to symmetry type
and characteristic vibrational motion® and are listed in Table I
together with their symmetry type. The remaining normal modes
of C,Hg arise from transitional modes-as R decreases and are listed
in Table 1I.

The potential V; for the transitional degrees of freedom is
assumed to arise from nonbonded and bonded interactions

V.= Vus + Vg (11L.4)
and is described in Appendix B.

(6) Troe, J. J. Chem. Phys. 1983, 79, 6017.
(7) Bhuiyan, L. B.; Hase, W. L. J. Chem. Phys. 1983, 78, 5052.
(8) Quack, M.; Troe, J. Ber. Bunsenges. Phys. Chem. 1974, 78, 240.
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TABALE III: Features of the Transitional Mode Potential V¢ for o =
1.0 A7

R, A Vmin(R) V!or(R) Vbarr(R) Emin(R)
2.2 -59.6 0.107 319.8 58.8
2.3 -51.0 0.069 190.6 50.3
2.4 —43.3 0.045 119.1 42.6
2.5 -36.4 0.029 77.8 35.8
2.6 -30.5 0.019 53.9 300
2.7 -25.5 0.011 38.9 25.0
2.8 -21.2 0.007 28.9 20.8
29 -17.6 0.005 21.9 17.3
3.0 -14.6 0.002 17.0 14.3
3.1 -12.1 0.001 13.5 11.8
3.2 -10.1 0.000 10.8 9.8

¢ All energies are in kcal mol™.

In order to assess certain features of the transitional mode
potential V,, the latter was evaluated on a five-dimensional grid
of the angles (8, 8,, 1, 2, X2) for a set of R values ranging from
2.21t0 7.0 A in 0.1-A increments. The angles v, 7, are conjugate
to xq, k; and appear in eq IL.1, I1.3, and 11.4, but the angles é;,
55, X are not conjugate to any angular momentum action variable
appearing in section II. These five angles constitute the minimum
number needed to specify the relative orientation of the two
radicals and are described in Appendix C. They, together with
the separation distance R, completely determine the arguments
(Pems 01, 05) Of V. Also defined in Appendix C are three types
of relative orientational configurations of the two methyl radicals,
when each radical is in an umbrella-like configuration. Config-
uration A (“back to back™) where the umbrellas are, as in ethane,
facing away from each other is the most favorable one for reaction.
In configuration C they are “face to face” and in B “face to back”
or “back to face”.

For each value of R in the interval 2.2-7.0 A in increments of
0.1 A and for both values of the interpolation parameter a, the
absolute potential minimum V;,(R) occurred for the staggered
“equilibrium” arrangement of configuration A, i.e., at §; = 0 and
8,=m, %2 =v; =0,and v; = /3. For @ = 1.0 A™! the quantity
Vomin is given in Table I1I for values of R ranging from 2.2 to 3.2
A. Local minima occur for configuration B with §, = 8, = 0 or
8, = &, = w and configuration C with §, = = or 6, = 0. Also listed
in Table I is a torsional barrier, V,,(R), defined as the difference
in ¥, between the eclipsed arrangement (6, = 0,8, =7, v, = v,
= x, = 0) and the staggered arrangement (defined above) of
configuration A. As expected, V,,, is a decreasing function of R.
Semiempirical molecular orbital calculations for the potential
energy between recombining methyl radicals by Yamabe, Minato,
Fujimoto, and Fukui® predict a small value of ¥, at rec = 2.85
A, namely V,,, = 0.37 kcal mol™'. The present model for V, yields
an even smaller value, V,,, = 0.047 kcal mol™!, a discrepancy
commented on in footnote 10.

(9) Yamabe, S.; Minato, T.; Fujimoto, H.; Fukui, K. Bull. Chem. Soc. Jpn.
1979, 52, 3242.

(10) The authors of ref 9 note that their numbers “should be regarded as
qualitative.” However, in the equilibrium configuration for ethane (R = R,
= 1.70 A) the present value of V,, = 0.83 kcal mol™! is also too small,
compared to the accepted value'® of ~3 kcal mol™. The latter result is not
surprising since the Lennard-Jones parameters used were not designed for such
short distances.

(11) Chao, J.; Wilhoit, R. C.; Zwolinski, B. J. J. Phys. Chem. Ref. Data
1973, 2, 427.

(12) For each triplet of angles (5;, 85, x») the minimum value of V;, denoted
by V,™in(8,,8,,X2), is selected from the (v,, v,) grid. Next, for fixed 8, and
X2, the minimum-energy path for flipping radical 2 (i.e., §, progressing from
0 to 7) with respect to radical 1 is defined by the set {/;™"(3, x»; 0 < 8, <
x)). The largest value of V™" from this set is denoted by Vi,(8,,x,) and the
smallest value of Vi,(8).x2) for all §; and x; is taken as the Vi, entry in
Table III. For all R values it is found that the interval of configurations &,
=0tox/18,5,=Tr/18 to 87 /18, and x, = 0 to x/9 give rise to V. That
is, the lowest barrier to flipping occurs for the transition between configura-
tions A and B and lies near the boundary (8, ~ w/2) separating these two
cases. Vi, is seen to decrease rapidly with increasing R for the smaller R
values and then to decrease more slowly as R further increases. For com-
parison with Vy,, we list in column 5 the minimum available energy E,;,(R),
i.e., the energy available at a given R value if E - E,, =0

Wardlaw and Marcus

In Table III is also given Vi, as a function of R. This quantity
is the approximate minimum barrier height, as measured from
the R-dependent absolute potential minimum, for the flipping of
X,, by changing §,, for a given orientation of X;. The role of Vi,
in evaluating N, is described in section IV. It is obtained from
the angle-space grid of V; values for each R value.

IV. Calculation of k .(T)

In this section three related approaches to the calculation of
the recombination rate constant are described, the second two
being approximations to the first. In each case the reactant
partition function Q,(7) appearing in the denominator of eq 1.3
is the same and is obtained by modeling each methyl! radical as
a collection of separable harmonic oscillators and a rigid rotor.
The general form of Q, and pertinent details are found in ref 13;
the CHj vibrational frequencies are listed in Tables I and II, and
the CH; moments of inertia are determined from data in Table
III. The sum over J in the numerator of eq 1.3 is replaced, in
each case, by an integral whose lower limit is zero and whose upper
limit is taken to be Jya(Eg). Here Jy,, is the maximum value
of J for a rigid symmetric top model of equilibrium C,Hg when
all of the available product energy, E — E,, + Dy(C-C), is in the
overall rotation of the C,Hg product (D is listed in Table III).

In the first approach, with a rate constant denoted by k..!, a
transition state is determined for each E and J and the results
are then averaged over E and J by using the Boltzmann weighting
factor. This approach is the correct one for the present model
as one sees from eq 1.3. In the second approach (k.!") the
transition state is determined at each E, and in the third approach
(k.1 it is determined at each T, as described below.

(i) kL. The integrals over E and J in eq 1.3 are approximated
by N-point Laguerre and 2M-point extended Simpson’s rule
quadratures,'* respectively, yielding

1 AJN 2M ¢
gehQ,(T)kT 3 x==>:1 EOW'WkNExh(RI ) (IV.1)
where E; = kTx;, w; and x; are Laguerre weights and points,*
AJ is the constant step size for the J quadature, J;, = kAJ, and
wi = 1 for k = 0 or 2M, w;, = 2 for k even, and w, = 4 for k odd.
The transition-state location R;' is determined independently for
each (E; J;) pair in eq IV.1 by minimizing Ng;, with respect to
R ona 0.1-A grid over an appropriate range of R values. The
integral appearing in the expression for N, in eq I1.4 is evaluated
by the Monte Carlo method described in part 2 and will not be
discussed here. The Monte Carlo approximation to Ng;, is denoted
Ngy £ M€, where oMC is one standard deviation. Estimates of
the upper and lower bounds on k..!(7) are obtained by using (Ng,,
+ oMC) and (g, — o™©), respectively, in eq IV.1.

Since the present model potential ¥, for the transitional modes
admits, for sufficiently small values of R and E, disjoint regions
A, B, C (defined earlier) of energetically accessible classical phase
space, we have introduced an ad hoc restriction in the Monte Carlo
sampling procedure. !

The value of the symmetry factor ¢ in eq 11.4 deserves special
consideration. A loose transition state will be characterized by
large values of R;" and hence essentially planar methyl radicals.
In this case each of the identical fragments has both a C,, and
a C, axis resulting in o; = (3 X 2)? X 2 = 72. The results given
in section V, apart from those labeled k." and £..'¥, were obtained
by using this value of o. Those designated k.. and k."" were

k(T) =

(13) Weston, R. E.; Schwarz, H. A. Chemical Kinetics; Prentice-Hall:
Englewood Cliffs, NJ, 1972. .

(14) Abramowitz, M.; Stegun, I. Handbook of Mathematical Functions,
Dover: New York, 1965; p 890.

(15) If the available energy E — E,, + Epyy, is less than Vi, (see Table IV)
for a given R value, then phase-space points I'(R) corresponding to configu-
rations B or C are rejected on the assumption that a classical trajectory
originating with reactants (R = «) and passing through T'(R) does not dy-
namically evolve to configuration A (via an inversion). It cannot so evolve
classically via a rotation. Thereby, it cannot evolve to bound C;Hg product
without recrossing the fixed R hypersurface. Such recrossings, although
dynamically possible, are thereby explicitly excluded in the usual application
of transition-state theory considered here.
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TABLE IV: Values of k! (Minimization at Each E and J)*

kol £ 8,
1013 ¢cm? mol™! 57!

temp, K N A, h 2M

a=10A"
300 6 25 6 433 +£0.12
10 25 6 426 £ 0.12
6 12.5 10 4.15 £ 0.10
500 6 25 8 3.67 £ 0.08
1000 6 25 8 2.37 £ 0.06
2000 6 25 10 1.09 £ 0.04
a=08A"
300 6 25 6 3.84 £ 0.08
2000 6 25 10 0.96 + 0.03

9 N and 2M denote the number of i points and k points in the sums
of eq IV.1, respectively; AJ denotes the step size in the J; quadrature
in eq IV.l; knl = I/Z[(kwl)mnx + (kml)min] and § = l/Zl(kml)max -
koD min), Where (k.Dpex and (k.')p, are estimated upper and lower
bounds obtained by using Ny, + oMC and Ng,;, — aMC, respectively, in
eq IV.1.

obtained by an approximate interpolation taking into account the
umbsrella shape of the methyl radicals at smaller R values.!®
(i) k1. By defining

Ne(®) = 74 NedR)

and approximating the integral over E by an N-point Laguerre
quadrature, we obtain the following approximation to eq 1.3.

1 N
- t
ghou TR
In contrast to (i) the transition state location Ry;" is determined
for each E; in eq IV.3 by minimizing Vg, with respect to R on
a 0.1-A grid. The integral for Ng in eq IV.2 is evaluated by
modifying the Monte Carlo method described in part 2 to include
the additional integration over J. k.'(7T) will exactly equal k.. '(7)
only when R;! is independent of J. As in (i), phase-space points
corresponding to configurations B and C are excluded from Ng
if E < Ve (see footnote 15, Table IV). Recombination rate
constants k.Y, analogous to k!, are also considered in section
V and are obtained by substituting Ng, for Ny, in the expressions
in footnote 16, so yielding Ng/.
(iii) k.M. This canonical rate constant is taken to be

(IV.2)

k(T = (Iv.3)

(IV.4)

N
kYT) = kT[EIWiN E,-]Rm’f

1
g:hQ(T)
where the transition-state location Ry is determined by mini-
mizing the sum Y_w;Ng, with respect to Ron a 0.2-A grid; this
value of Ry’ is thereby independent of E;. The evaluation of Ny,
in eq IV.4 is described in (ii). k. will equal k.! exactly only
if R, is independent of both E and J. k.M has, in effect, also
been used in earlier literature of reactions (maximization of free
entropy of activation, sometimes known now as canonical varia-
tional transition-state theory).

V. Results for k_.’s, R"’s, and Configurational Populations

Results are given for k! in Table IV for the four temperatures
300, 500, 1000, and 2000 K, which span the temperature range
studied in the collective experimental work. The majority of results

(16) For a tight transition state with smaller R," the methyl radicals are
no longer planar but have an umbrella shape. Consequently, there is no Gy,
axis and g, = 32 X 2 = 18 = ¢;/4. We therefore also consider recombination
rates, denoted k.Y, estimated from an approximate interpolation

Ngy! = pNgg, + (1 —P)4N£g,f‘

where N, * includes only states corresponding to configuration A and both
Ngy, and Ng, * are obtained by using o = g;in eq I1.4, with a weighting factor
p given as follows. A weighting function p was chosen which becomes zero
at R = R, and unity at R = «. In as much as Ng;* = Ng; when R = R,
and Ng A = '/uNgy, when R = =, a suitable p is

P = %WNgg,— Neg® / Neg,
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TABLE V: Dependence of R,!, Ng,(R;"), and N AR ")/Ngy (<) on
E and J for o = 1.0 A™!

E - Ezp’ NEJ(le)/
kcal mol™!  J, A RtA NeARh Ney()
0.13 0 100.0 0.33 X 102 1.0
25 5.6-58  0.24 x 10 0.02
50 b
100 b
150 b
0.44 0 1000 0.67 X 10 1.0
25 52-6.0 020 x 10* 0.47
50 b
100 b
150 b
1.18 0 6.6~7.0  0.78 x 10* 0.99
25 5.6 0.62 X 10° 0.76
50 44 0.81 X 10* 0.10
100 b
150 b
2.36 0 3.7-3.8  0.46 X 10° 0.96
25 3.7-3.9  0.60 X 10° 0.86
50 3.9-41  0.20 x 10° 0.29
100 b
150 b
473 ] 3.5-3.6  0.31 X 10° 0.67
25 3.5-3.7  0.59 x 107 0.68
50 3.5-3.7 029 x 107 0.33
100 3.7 0.50 X 10° 0.01
150 b
9.53 0 33 0.42 X 107 0.46
25 3.3-3.4 010 X 10° 0.47
50 3.3-3.4  0.63 X 10 0.29
100 3.4 0.59 x 107 0.03
150 b
19.55 0 3.0-3.1  0.15% 10° 0.27
25 3.0-3.2 048 x 10" 0.30
50 3.1-3.2  0.35 % 10'° 0.21
100 3.1 0.65 X 10° 0.04
150 3.0-3.1  0.24 x 10 <0.01
39.10 0 2.8 0.14 x 10" 0.15
25 2.8 0.52 X 10" 0.15
50 2.8 0.48 X 102 0.13
100 2.8 0.15 X 1012 0.04
150 27-28  0.16 X 10" <0.01
63.52 0 2.5 0.59 X 102 0.09
25 26-27 029 x 10" 0.09
50 26 0.28 X 10 0.07
100 2.5-26  0.10 x 10" 0.03
150 25-2.6  0.19 X 10'3 <0.01

a A range of R;' values indicates that the associated Ng,(R;") values
agree to within their Monte Carlo uncertainty. ®Ng; is zero over a
range of R values and no R, value can be assigned; these J’s do not
contribute to the rate.

were obtained with a value®!71% of 1.0 A~ for the parameter
appearing in eq I11.3. A limited set of results with a = 0.8 A
is also included, close to the value of 0.82 A~ determined by Hase!
by fitting a different variational transition-state model to ex-
perimental rate data. Table IV also contains some results with
different numbers of quadrature points. The number 2M for the
J integration was chosen such that the contribution of the term
with kK = 2M in eq IV.1 was essentially zero.

At all four temperatures and for all values of (E;, Ji) ineq IV.1
a minimum in the N, vs. R grid was readily identifiable for both
values of a. As is noted in part 2, the relative error in Ng; increases
as R decreases for a given number of Monte Carlo integration
points. Since increasing the number of Monte Carlo points to
maintain a constant 6M®/Ng; as R decreases requires excessive
computer time, this was not done. Instead, a smaller increase in
the number of points was adopted and a slow but steady increase
in 6MC€/ N, with decreasing R was accepted with no adverse effects
on the overall calculation.

(17) Troe, J. J. Phys. Chem. 1984, 88, 4375.
(18) Cobos, C. J.; Troe, J. J. Chem. Phys. 1985, 83, 1010.
(19) Hase, W. L. In ref S.
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TABLE VI: Values of k.." (Minimization at Each E)®

Wardlaw and Marcus

TABLE VII: Values of k. (Minimization at Each T)¢

temp, K N k£ 5,102 cm? mol™! 7! temp, K Ryt A k.12 10" cm?® mol! §7!
a=10A" 300 4.2 5.08 £0.13
300 6 428 +£0.10 500 38 4.38 £ 0.06
10 4.19 £ 0.08 1000 3.4 2.79 £ 0.06
500 6 3.58 £ 0.08 2000 3.0 1.32 £ 0.03
1000 6 2.29 £ 0.06
2000 6 1.08 + 0.03 ‘“a = 1.0 A_l. bkmm = l/2[(kmm)mzxx + (kmm)min] and & = 1/2'
10 1.08 % 0.03 [k ax — (k) ial, where (k). and (k) .. are estimated
upper and lower bounds obtained by using Ng, + ¢MC and Ny, - oMC,
a =038 A" respectively, in eq IV 4. )
300 6 3.68 £ 0.08
500 6 3.11 £ 0.07
1000 6 199 + 8.04 TABLE VIII: Values of k.’s with Approximate Symmetry
2000 6 0.95 + 0.03 Correction”

“N denotes the number of i points in the sum of eq IV.3; kI =

1/2[(km“)max + (kwn)min] and § = l/2[(kmu)max - (kwn)min], where
(ko) max and (k") are estimated upper and lower bound obtained
by using Ny, + oMC and Vg, ~ oMC, respectively, in eq IV.3.

The choice @ = 1.0 A~! for the interpolation parameter o in
eq I11.3, although reasonable, is somewhat arbitrary and for
comparison calculations at T = 300 and 2000 K were made by
using @ = 0.8 Alin ¥, (eq 111.4). The resulting &.! values are
given in Table IV. At both the high (2000 K) and low (300 K)
temperatures the calculated rate constant decreased about 10%
when o was changed from 1.0 to 0.8 A, Some decrease was
expected since a smaller « tends to decrease /V, £, (R) values when
Ris not too large. For each (£;, J;) pair in eq IV.1 the transi-
tion-state location R|' is found to depend weakly or not at all on
the values of a considered here. (Some R;' results are given in
Table V, although only for o« = 1.0 A1)

The dependence of the transition-state location, as well as the
sums of states at the transition state and at large radical sepa-
rations (R = «), on energy and angular momentum is illustrated
in Table V, which gives values of R;', N, (R;"), and the ratio
NeARy')/Ngf ), for various J’s (0 to 100) and E’s. These E’s
were chosen from the set of 24 Laguerre quadrature points £; as
determined by using V = 6 for each of the four temperatures.
The transition-state location R;! is almost independent of J for
E - E,, 2 2 kcal mol™ (Table V). For E - E,;, less than 2 kcal
mol™, R decreases rapidly with increasing J (Table V), but for
a given (E, J) pair the associated Ny, values vary only slowly with
R. These observations suggest that the k. value should provide
a good approximation to that of the rigorous k..}, a result confirmed
below. At a given energy Ny, (R;") itself, incidentally, can vary
with J over 1-2 orders of magnitude in the range J = 0~100.

The ratio Ng;/Ngj (<) in Table V is seen to be a strongly
decreasing function of both E and J, approaching unity at low
£ - E,p (52 keal mol™) and low J (<25) and approaching zero
at high E - E,, and high J. This finding indicates that, for the
present model system, a loose transition-state model with Ng,/
Ng,(») ~ 1 for all E and J is inapplicable.

Results for the k. rate constant are given in Table VI and
are seen to agree with the k.! values of Table IV, within the
estimated Monte Carlo errors. In the calculation of k. there
is a significant saving in computation time over that of k.l The
inclusion of the J integration in the phase-space integrat increases
the dimensionality of the Monte Carlo problem by one and, hence,
increases the associated variance for a given number of Monte
Carlo points. It was found that, for each R value, using twice
as many points to calculate Ng(R) as to calculate N, £ (R) yielded
comparable Monte Carlo variances for these two quantities. The
elimination of individual Monte Carlo calculations for each of
the discrete J; in eq IV.1 values more than compensated for this
increase and reduced the total number of Monte Carlo points
required to obtain k.l by factors of about 3, 4, 4, and 5 for T
= 300, 500, 1000, and 2000 K, respectively. The present results,
of course, have only established the agreement of k. and £.! for
the particular model system under study.

We also explored “canonically” calculated k.’s, denoted by k.1,
which are given in Table VII together with the corresponding
transition-state locations Ry;t. The k.M values are seen to be

kY £ 482 k% 8. 101

temp, K 103 cm? mol™! 57! cm?® mol™! 57!
300 4.31 + 0.10 4.31 £ 0.10
500 3.64 = 0.08
1000 2.52 £ 0.06
2000 1.53 + 0.05 1.49 £ 0.04

“a=1.0A" k" and 5 are determined as in the footnote of Table
IV but with N, replaced by Ng,;,’. See section IV.i for details. <k,
and § are determined as in the footnote of Table VI but with N, g, Te-
placed by Ng/. See section IV.ii for details.

greater than the corresponding k. or &." values (see Tables IV
and VI) by a factor of about 1.2 for all four temperatures studied.
Since at each R, Ng;(R) = Ny, (R, it is clear that k™ should
be an upper bound to k.. Indeed, one can show that k.1 > kI
>

There also proved to be no computational advantage in cal-
culating k..'I" for the present model. Attempting to remove the
energy quadrature in eq IV.4 by including the energy integral in
a straightforward way in the present Monte Carlo procedure
substantially increased the standard deviation sM€. Reducing cM€
to an acceptable value would have required extra computer time,
or modifying the Monte Carlo method, and the computational
effort expended to obtain k. via the energy quadrature was
approximately the same as that required for the preferred k!
for the present treatment of this system.

It can also be seen in Table IV that when the number of
quadrature points was varied the k! values so obtained agreed
within the uncertainty imposed by the Monte Carlo procedure.
The other calculations of k.,! in Tables IV and VII were therefore
performed with N = 6 and AJ = 25. The convergence of the
Laguerre quadrature over E was also checked for T = 300 and
2000 K by comparing .." values obtained from eq IV.3 with V
= 6 and 10. For both temperatures the excellent agreement
justified the use of the six-point quadrature for the remaining
results for k" and k! (Tables VII-IX).

To consider the effect of the symmetry correction proposed in
footnote 16, results are given for k,F and £,V in Table VIII. The
transition-state location R;" (or Ry") is that value of R (in in-
crements of 0.1 A™") which minimizes the Ny, (or Ng/), defined
in footnote 16, for given E; and J,, (or E;) and is, in general, not
equal to R,' (or Ry;"). No additional computations are required
to obtain the Ny, appearing in footnote 16. During the Monte
Carlo evaluation of Ng,, = Ng, + Ny, B+ Ng, © one simply
identifies the subset of randomly selected configurations corre-
sponding to A and processes the data for Ngy, and Ng 2 in
parallel; an analogous procedure is followed for the kT calculation.
At T = 300 and 2000 K, the k." and k¥ values agree to within
the Monte Carlo uncertainty as did the corresponding k.! and
k.M. Further discussion is therefore confined to the more readily
evaluated k.. rate constants. At 7 = 300 and 500 K, k. agrees
with corresponding k.. in Table VII to within the Monte Carlo
uncertainty. At 7= 1000 K, £." is about 10% greater than k.1
at 7 = 2000 K the same relationship is observed but the relative
difference has increased to about 40%. In terms of the present
model this trend is attributable to the decrease in R};" with the
increase in the available energy E associated with increasing
temperature. Table V illustrates this point for R,, and the sit-
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TABLE IX: Comparison of Nz and N* as a Function of R at E -
E,, = 63.52 keal mol™!

R, A [Ng £ oM€] /10 [N & o, MC) /1018 p

2.2 0.597 + 0.037 0.597 + 0.037 - 1.00
2.3 0.473 % 0.026 0.469 = 0.026 0.99
2.4 0.357 £ 0.016 0.343 £ 0.016 0.96
2.5 0.298 + 0.012 0.261 % 0.012 0.88
2.6 0.299 + 0.010 0.231 % 0.009 0.77
2.7 0.323 & 0.008 0.218 < 0.007 0.67
28 0.360 + 0.007 0.201 % 0.006 0.56
2.9 0.453 % 0.007 0.219 £ 0.006 0.48
3.0 0.563 £ 0.008 0.235 + 0.005 0.42
3.1 0.773 % 0.009 0.289 =+ 0.006 0.37
3.2 1.01 % 0.01 0.342 + 0.006 0.34
34 1.72 + 0.02 0.528 £ 0.010 0.31
100 29.4 £ 0.5 7.63 £ 0.24 0.26

uation for Ry;' is no different. Based on the k." and k' results,
the “effective” or “collective” transition state for 7= 300 and 500
K can be termed loose and is seen to become tighter as T is
increased beyond 500 K. The effect of the potential surface ¥V,
on the energetically allowed configuration types with decreasing
R and the need for the symmetry correction are illustrated in Table
[X. The energy under consideration is E — E,; = 63.52 keal mol™,
the value of E4 in the NV = 6 Laguerre quadrature at T = 2000
K. Given are the Monte Carlo estimates Ng and Ng* and their
associated standard deviations for the cited R values; also given
is the ratio p = Ng*/Np. It may be noted that at R = 2.2 A, the
smallest R value considered in any of the present calculations,
p equals 1.0 and that as R increases p tends to 'h. as expected.
In addition, R,* (= 2.5-2.6 A) is less than R;;" (= 2.8 A) at this

(high) energy.

VI. Comparison of k. with Experiment and Other
Calculations

In this section the results for k. are first compared with the
available experimental data. The features of several earlier
theoretical treatments of methyl radical recombination, each of
which led to a different prediction for the magnitude and tem-
perature dependence of k., are then described. The following
discussion focuses heavily on Figure 2, a semilog plot of k., vs.
/T,

Experimental values for the high-pressure methyl radical re-
combination rate constant are indicated by the various symbols
in Figure 2; the associated references are listed in the figure
caption. For pictorial clarity the associated experimental un-
certainties arc not depicted in Figure 2. Those values of k.
obtained by conversion of a measured unimolecular rate constant
for ethane decomposition by using an equilibrium constant are
so identified in the figure caption. A comprehensive review of
pre-1980 experimental work on methyl radical recombination was
published by Baulch and Duxbury.?®  All of the pre-1978 citations
in the present paper (ref 28-46) but one (ref 42) can be found
in their Table 1 along with the experimental method and, in most
cases, the experimental uncertainty. Their Table 1 is extensive
and, to avoid considerable congestion and overlapping of symbols,
particularly at T = 300 K, no attempt was made to include all
the entries therein in Figure 2. While many of the 1979-1985
experimental citations (ref 21-27) were obtained by a literature
search, the list may not be exhaustive. For experimental details
and estimated uncertaintics of the 1979-1985 work the reader
is referred to the individual references.

Despite the scatter and uncertainty in some of the measured
data, the currently available experimental k., values have been
regarded by various authors as displaying a negative temperature
dependence; i.e., k., decreases as T increases.”’*®  For example,
the center of gravity of points at 300 K is higher than that at 1400
K by a factor of about 3. However, accurate experimental de-

(20) Baulch, D. L.; Duxbury, J. Combust. Flame 1980, 37, 313.
(21) Macpherson, M. T.; Pilling, M. 1.; Smith, M. ). C. J. Phys. Chem.
1985, 89, 2268,
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Figure 2. Semilog plot of high-pressure rate constant for CH; recom-
bination vs. reciprocal temperature. Theoretical results are presented as
the solid curves labeled 1-8 and are discussed in the text. Experimental
results are plotted as symbols. Identical symbols connected by a dashed
line indicate that the reported rate spans a temperature range; a lower
bound on a measured rate is indicated by an upward pointing arrow on
top of the symbol. In the following list, results obtained from kinetic
studies involving CH; recombination are identificd by a symbol alone and
those obtained by conversion of measured C,H; dissociation rates by a
symbol and a “d™ (®) ref 21; (&) ref 22; (+) ref 23; (¢) ref 24; (A)
ref 24; (@, d) ref 25; (O, d) ref 26; (@) rel 27; (¢) rel 28; (m) ref 29;
(w) ref 30; (@) ref 31; () ref 32; (@, d) ref 33; (W) ref 34; (B) ref 35;
(O, d) ref 36; (m) ref 37; () ref 38; (m) ref 39; (B) ref 40; (@) ref 41:
(®) ref 42; (X, d) ref 26, 43; (&) ref 44; (*) ref 45; (&) ref 46.

terminations of high-pressure recombination rate constants at high
temperature require an extrapolation of the results at various
pressures, and consequently there is clearly uncertainty in the
quantitative temperature dependence of k.. at high temperatures,
where a large extrapolation is needed.

The collective data are seen to be in qualitative agreement with
the present treatment as represented by curves 1-3 in Figure 2.
Because of the scatter, the significance of this agreement at high
temperatures, as well as the applicability of the particular sta-
tistical model described herein, will require more accurate ex-
perimental data in the 1000-2000 K range. Curves 1 and 2 depict
k.M for o = 0.8 and 1.0 A~', respectively, and curve 3 depicts k.
for « = 1.0 A™', each curve being obtained by smoothly connecting
the calculated values of k. at T = 300, 500, 1000, and 2000 K.
At each of these temperatures the estimated Monte Carlo un-
certainty in the k. values is indicated by error bars whose range
corresponds to the upper and lower bounds as given in the ap-
propriate table. Of interest is the excellent quantitative agreement
between the recently published data of Macpherson, Pilling, and
Smith?! and the present calculations for the experimentally studied
temperature range 296-577 K. In Figure 2 it can be seen that
their data, as represented by circles with solid upper half, are close
to curves 1 and 2 over this temperature range. The significance
of the data in ref 21 is the accurate determination of the absorption
cross section ¢ for the CHj transition at 216.36 nm described
therein. Since most experimental studies of methyl radical re-
combination employ optical detection of CH; at this wavelength
and accurately measure k., /o, an accurate measurement of o over
the temperature range of interest must be performed to determine
the T dependence of k...>' In many earlier determinations of k..
a major source of error appears to lic in the absorption cross
section, a case in point being the earlier work of Macpherson,
Pilling, and Smith,** represented by the open triangles in Figure

(22) Macpherson, M. T.; Pilling, M. L; Smith, M. J. C. Chem. Phys. Lett.
1983, 94, 430.

(23) Laguna, G. A.; Baughcum, S. L. Chem. Phys. Lett, 1982, 88, 568.

(24) Adachi, H.; Basco, N.; James, D. G. L. Int. J. Chem. Kinet. 1980,
12,949,

(25) Zaslonko, I. S.; Smirnov, V. N, Fiz.-Khim. Protesessy Gazov. Kon-

“dens. Fazakh 1979, 19 (in Russian). Kiner. Katal. 1979, 20, 575 (in Russian).

(26) Olson, D. B.; Gardiner, W. C. J. Phys. Chem. 1979, 83, 922.
(27) Pacey, P. D.; Wimalasena, J. H. J. Phys. Chem. 1980, 84, 2221.
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2, in which the same k. /o ratios were employed as in ref 21.

Also depicted in Figure 2, as curves 4-8, are the k., predictions
of several other theoretical treatments. Curve 4 displays a very
small negative temperature dependence and is obtained from
calculations3 based on the statistical adiabatic channel model
(SACM) of Quack and Troe.® It spans the temperature range
300-1350 K. Details of this model are given in ref 8; the salient
features of the SACM and a numerical comparison between it
and our model for Ng; in the dissociation of NO, were described
in part 2. The utility of the present method is emphasized, in part,
by examining the relative computational effort involved in applying
it and SACM (and, in part, by noting that given a potential energy
surface it has no adjustable parameters). In part 2 it was found
for the NO, system that the present model was computationally
faster for the evaluation of Ny, for the larger values of E and J.
Although no SACM computations were performed by us for the
C,H¢ < 2CH, system, it is apparent that the greater number of
atoms will drastically increase the number of reactant and product
energy levels to be correlated, especially at higher temperatures
where the average values of E,, and J are larger. In their SACM
treatment of C,H dissociation,® Quack and Troe found it nec-
essary to correlate “states of individual (transitional) coordinates
separately...(to avoid) the complex six-dimensional correlation
problem”, presumably to obtain a computationally tractable model.
Subsequent work*” on the SACM has focused on the introduction
of approximations which reduce, relative to the original version,}
the computational effort in applying this model. Cobos and Troe'®
have recently summarized a two-parameter canonical version of
the SACM and applied it to a number of association reactions.

In curve 5 the high-pressure methyl radical recombination rate
constant for the range 400-1000 K, predicted by Hase’s treatment
of this system,!? is given. It shows a positive temperature de-
pendence of k... In Hase’s work a density of states N(rcc) was
obtained (by exact count or semiclassically) as a function of the
available internal energy and external rotational energy by treating
the critical configuration as a collection of rigid rotors and har-
monic oscillators with several additional approximations.® Hase’s
critical configuration was chosen as that value of rcc which

(28) Callear, A. B.; Metcalfe, M. P. Chem. Phys. 1976, 14, 275.

(29) Glanzer, K.; Quack, M.; Troe, J. Symp. (Int.) Combust., [Proc.],
16th, 1976 1977, 949.

(30) Glanzer, K.; Quack, M.; Troe, J. Chem. Phys. Lett. 1976, 39, 304.

(31) Parkes, D. A; Paul, D. M,; Quinn, C. P. J. Chem. Soc., Faraday
Trans. 1 1976, 72, 1935.

(32) Clark, J. A.; Quinn, C. P. J. Chem. Soc., Faraday Trans. 1 1976, 72,
706.

(33) James, F. C.; Simons, J. P. Int. J. Chem. Kinet. 1974, 6, 887.

(34) Bass, A. M.; Laufer, A. H. Int. J. Chem. Kinet. 1973, 5, 1053.

(35) Truby, F. K; Rice, J. K. Int. J. Chem. Kinet. 1973, 5, 721.

(36) Burcat, A.; Skinner, G. B;; Crossley, R. W.; Scheller, K. Int. J. Chem.
Kinet. 1973, 5, 345.

(37) Clark, T. C.; Izod, T. P. J.; Kistiakowsky, G. B. J. Chem. Phys. 1971,
54, 1295.

(38) Clark, T. C;; Izod, T. P. J.; Di Valentin, M. A,; Dove, J. E. J. Chem.
Phys. 1970, 53, 2982.

(39) Basco, N.; James, D. G. L.; Stuart, R. D. Int. J. Chem. Kinet. 1970,
2, 215.

(40) Braun, W ; Bass, A. M.; Pilling, M. J. Chem. Phys. 1970, 52, 5131.

(41) Van Den Berg, H. E; Callear, A. B.; Norstrom, R. J. Chem. Phys.
Lett. 1969, 4, 101. Van Den Berg, H. E. Dissertation, Cambridge, UK, 1971.

(42) Biordi, J. C. Melon Inst. Radiat. Res. Lab. Q. Rep. 1969, 47, 12.

(43) Lin, M. C; Back, M. H. Can. J. Chem. 1966, 44, 2357.

(44) March, R. E; Polanyi, J. C. Proc. R. Soc. London, A 1963, 273, 360.

(45) Moseley, F.; Robb, J. C. Proc. R. Soc. London, A 1957, 243, 130.

(46) Gomer, R.; Kistiakowsky, G. B. J. Chem. Phys. 1951, 19, 985.

(47) Troe, J. J. Chem. Phys. 1981, 75, 226; 1984, 79, 6017.

(48) The two degenerate CH, rocking frequencies, which are termed
transitional modes in our treatment, were assumed to have rcc-dependent
frequencies given by wg(rcc), where w is the rocking frequency in C,Hy and
g(rco) is eq 1113 with R and R, replaced by rec and rec. The interpolation
parameter « in the expression for g was selected to be 0.82 A1 by fitting a
calculated C,Hg rate constant to one measured in a chemical activation
experiment. In addition, roc-dependent moments of inertia were employed
to determine rotational energies, a Morse function was chosen to model the
reaction coordinate potential, and it was assumed that internal rotation be-
comes a free rotor for rec > 2.6 A. Explicit conservation of the total angular
momentum J was not included in this model.
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minimized the density of states N(rcc) in the hypersurface or-
thogonal to rcc. Both the canonical (activated complex) and the
more detailed microcanonical (RRKM) minimizations of this state
density were performed and found to be in good agreement with
each other (after integrating the microcanonical results over the
Boltzmann distribution of energy); the canonical results (the
counterpart of k! in our notation) reported in Table IV of ref
19 were used to construct curve 5.

It is also of interest to compare the theoretical and experimental
results to a rate k.y based on a Gorin-type collision theory.*
Curve 6 in Figure 2 is a plot of ke = '/28e(Zcon) Over the
300-2000 K temperature range. Here g, is the ratio of electronic
partition functions as discussed in section I and (Z.y) is a
Boltzmann average of the collision frequency as obtained from
a Gorin mode! in which the two methyl radicals are treated as
point masses moving under the influence of a central potential.®
The collision frequency*® is

2.257R.?

(u/2)'2

The parameters R, and Dcc are listed in Table ITI. This model,
which has an explicit positive temperature dependence of T" /8,
was intended in ref 50 only to provide an estimate of an upper
bound for the recombination rate and a basis for the discussion
and calculation of steric factors.

Curves 7 and 8 depict RRKM-type treatments of the recom-
bination rate in which no minimization of the sum over states or
density of states for the critical configuration was attempted and
in which the coordinates in the transition state were again ap-
proximated as free rotors and harmonic oscillators. The calcu-
lations of Waage and Rabinovitch3®%! (curve 7) and Quack and
Troe?30 (curve 8) are essentially the same. The salient features
of the Waage-Rabinovitch treatment of the critical configura-
tion?™! and given in footnote 52, together with minor differences
of the Quack-Troe treatment.

Not displayed in Figure 2 but worth discussing are several
unsuccessful attempts by Olson and Gardiner? to improve one
RRKM treatment, as embodied in curves 7 and 8, so as to bring
theory and experiment into better agreement. Their first approach
was a straightforward modification of the Waage~Rabinovitch
calculation. A direct count of vibrational states was introduced
for energies less than 12 kcal mol™ above threshold, and the
semiclassical formula was retained for higher energies. In addition,
the torsional motion of the CH; groups at the critical configuration
was treated as a hindered rotor instead of a free rotation and a
direct counting procedure was used to include these hindered rotor
energy levels in the sum of states. The resulting k vs. 1/T curve,
labeled RRKM in Figure 2 of ref 26, is seen to be qualitatively
the same as curves 7 and 8 in the present Figure 2. In their second
approach Olson and Gardiner performed calculations similar to
those of Hase,!® described earlier. The critical configuration was
chosen by a minimum state density criterion. A Morse function
was used for the C-C potential curve; the degenerate CH; mo-
ments of inertia were modeled to increase as the square of the
reaction coordinate rce, and the third moment was taken as
constant; the CH, rocking frequencies in C,Hq were assumed to
decrease exponentially with 7cc as g(rcc); the same exponential
decay was used to describe the fundamental torsional frequency
which determined the barrier to internal rotation. The interpo-

(Zean) = (Dco)'A(kT)/4(1.02) (VL)

(49) Gorin, E. J. Chem. Phys. 1939, 7, 256, 633.

(50) Benson, S. W. In ref 5. Equation V1.1 includes the factor of 7R?
which was accidentally omitted from his eq 11.

(51) Waage, E. V.; Rabinovitch, B. S. Int. J. Chem. Kinet. 1971, 3, 105.

(52) The cc was fixed at an rcc distance of 2.7 A, and the moment of
inertia of the cc was assumed to be 2.45 times the C,Hj value. The torsional
vibration of C,Hg was assumed to have become a free rotor, and the two
doubly degenerate CH, rocking frequencies were reduced to 66 and 95 cm™!
from 822 and 1190 cm™!, respectively, in C;Hq. The sum of states at the cc
was evaluated by using a semiclassical formula. In the Quack-Troe treatment
the dissociation energy of the C~C bond in C,H, was taken as Dy(C-C) =
87.76 keal mol™, instead of the 86.3 kcal mol™! used by Waage and Rabi-
novitch. Other differences between the two treatments are presumably minor;
details of the Quack-Troe calculation are omitted in ref 8.
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lation parameter « in g(rcc) was varied widely, and the optimum
result is labeled as curve BPV in Figure 2 of ref 26. The agreement
with the experimental data is not good and was not better for other
values of «. In a final attempt to rectify the disagreement between
their RRKM treatment and experiment, the authors of ref 26
modified their second approach as follows: The two doubly de-
generate CHj; rocking modes were treated as four independent
hindered rotations, and a direct count of the associated energy
levels plus those of the hindered torsional motion was performed
in the sum of state calculation. The restricting barriers of all five
hindered rotations were reduced exponentially with increasing rcc.
Using the interpolation parameter of « = 0.75 A, one obtains
the curve labeled BPHR in Figure 2 of ref 26. Although it
predicted a smaller temperature dependence than the BPV model
(discussed above) with loosened CH, rocking vibrations, the
agreement with the experimental data remained poor.

Another test of the present model for Ny, is afforded by the
experimental data of Growcock, Hase, and Simons.®> These
authors determined the decomposition rate constant for vibra-
tionally excited ethane produced by chemical activation, C,H¢*
— 2CHj;. The reported™ excitation energy of 114.9 % 2 kcal mol™
with respect to the zero-point energy of ethane corresponds, for
the present molecular parameters (Table XI), to an energy of 27.3
+ 2 kcal mol™! with respect to the zero-point energy of separated
methyl radicals. Here we assume that this excitation energy is
deposited in internal degrees of freedom and that the overall
rotational energy of ethane is approximated by E; = J(J + 1)/21,,
(in units of A = 1) with a symmetric top moment of inertia I, ,
defined in part 2. For J-dependent total energies E — E,, = 27.3
+ E; and various J's, Ng,(R;") was determined as described in
section IV.i. In each case R;' was found to be 2.9 + 0.1 A. Rate
constants kz; = Ng,(R{")/hogs, where pg; is a state density for
ethane obtained via the method described in part 2, were then
calculated. The results are as follows: kg, (in 10°s71) = 4.6, 4.2,
4.4, 6.9, 14, and 33 for J = 0-125 in increments of 25. These
calculated kg, values agree, for J S 75, with the reported® ex-
perimental value of (4.6 & 1.2) X 10° s™!. The experimental J
distribution is not known. If J had its thermally averaged value
at room temperature (the temperature in the photolysis experi-
ment>? was not specified, however), then the average J would be
about 25. In any event a J distribution in which the dominant
J's are less than 75 is likely.

VII. Discussion and Summary

The present results show that the negative temperature de-
pendence reported (Figure 2) for the extrapolated high-pressure
rate constants k,, for methyl radical recombination can be un-
derstood in terms of deviation from a loose transition state. At
the present time the theory and experiment for k., are in agree-
ment, but further experimental data are needed. We have also
seen that k', in which one first sums over J in eq 1.3 before
minimizing with respect to R at each E, provides an excellent
approximation to k!, in which the minimization is performed for
each E and J (Tables IV and VI). The saving in computational
time was about a factor of 4 on the average. With an added error
of about 20%, values of k.. could also have been used, in which

(53) Growcock, F. B.; Hase, W. L.; Simons, J. W. Int. J. Chem. Kinet.
1973, 5, 717.

(54) Two separate computer programs were used in the present numerical
treatment. The determination of R-dependent potential parameters, the
analysis of the ¥, potential (section III and Appendix C), and the least-squares
fitting of Morse parameters for the bond-fission potential were done by a
preliminary program. The resulting data were stored, according to the R
value, and used repetitively by a main program dedicated to the evaluation
of Ng; (or Ng). The largest single section of the main program simply
initializes, controls, and summarizes the Monte Carlo procedure. The fol-
lowing repetitively executed processes form the core of the Monte Carlo
calculation and are not difficult to program: the selection of a multidimen-
sional point in action-angle space (in which step angular momentum and
energy conservation are ensured), the transformation from action angle to
internal coordinates, and the evaluation of the transitional mode potential.
These steps involve about 70, 120, and 40 lines of FORTRAN code, respec-
tively. The evaluation of the sum of conserved vibrational states Ny is done
once for each R value and is described in part 2.
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TABLE X: Definition of Angles Used in Rotational Transformations
(a) Conjugate Angles®

angular conjugate ref
momentum angle axis x rotated axis y
1 o 1% j, R
k ag 1xk i1 Xiz=§ Xk
Ji o Ixj; K X
K; Vi K X j? e,
B Jiz 1 jb X e
(b) Contained Angles®
angular
momentum
pair angle x cos X
(k) O (P-P-kY/2k
U J2) 0y (K= j2 = j) /2
(k, j») OGP+ K= ju))/ 2k ((=1,2,m=21)
W, J) 0y (cos Oy, cos 8; + o sin Oy sin 8, cos ay (i = 1,
2, 0=+1,-1)
Us %) 0, kfif (1=1,2)

4All conjugate angles range from 0 to 2= and are obtained by
counterclockwise rotation about x X y from x to y. The subscript /
refers to fragment 1 or 2. ®Corresponds to axis x in Figure la.
cCorresponds to line of nodes N,’ in Figure 1a. ¢Corresponds to line of
nodes N,”” in Figure 1a for i = 1. ¢In all cases 0 < 8 < 7 and sin 6 is
obtained from cos § as the positive root.

the minimization is made only after summing over J and inte-
grating over E. However, in the calculation of k..'!! extending
the present Monte Carlo method to include the integral over E,
thereby removing the apparently more laborious energy quadrature
in eq IV.4, offered no computational advantage, although other
Monte Carlo methods may do so.

In the calculation of the number of states, Ng;, an approxi-
mation was introduced (described in footnote 16) for the treatment
of the out-of-plane inversion motion of the CHj’s which led to
the calculation of other constants k.’ for comparison with k... This
approximation can be removed by a more elaborate quantum
treatment of that coordinate, in the presence of the other coor-
dinates. We plan to treat this aspect in a later paper. Some
measure of the effect is roughly inferred by comparing the values
of k. and k.. They approximately agree at the lower temper-
atures and differ by about 40% at the highest temperature.

The present calculations are based directly on some knowledge
of the potential energy surface. They serve, thereby, to identify
those parts of the surface which determine the value of k... Since
k. provides a reasonable yet “consolidated” approximation to
k., its calculation can be used to determine the important region
(R = Ryy") of the surface. The region depends on the temperature,
as one sees from Table VII; namely, the R values range from
about 3.0 A at 2000 K to about 4.2 A at 300 K. At4.2 A, almost
all mutual orientations of the methyl radicals made a significant
contribution to Ng;, whereas at 3.0 A those orientations corre-
sponding to configuration A (the CH; umbrellas opening away
from each other; see section IIT) dominated. Since only a limited
number of points of the potential energy surface can be obtained
in practice with quantum chemistry calculations, it will be desirable
to “spline” the points so determined by using some functional form
for the dependence on the angular coordinates. One possible form
is that used in Appendix B (present parameters in Table XI), but
some other form may be better. In such calculations of the
potential energy surface the force constants of the “conserved”
vibrations in this region can also be determined and thereby the
use of the parameter « in eq III.3 avoided.

Among the features of the present method which may be
mentioned are the following:

1. It includes full angular momentum conservation.

2. It proceeds directly from the potential energy surfaces
themselves rather than assuming some parametrization of the
energy levels. In this way it is associated with a fundamental
implementation of the statistical model. (The interpolation and
the « in eq II1.3 can be avoided, as already noted, when an
improved potential energy surface becomes available.)
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TABLE XI: Potential Parameters for the CH;--CH; System

parameter value ref parameter value ref
CyH,
Feche A 1.111 59 R,A 1.696 a
rece A 1.533 59 Dcc, kcal mol™!  96.6 b
OHCH,e» deg 107.3 59 ﬂcc, A_l 1.80 4
ﬂHCC.ev deg 111.4 59 DCCef, kcal IT'lOl_I 2025 d
7., deg 60 59 B, A 190 d
fecn erg em™ 4342 X 10° 60 recsh A 1175 d
Dy(C-C), kecal mol™!  87.60 59
CH;
TCH,e» A 1.079 58 QHCH,e» deg 120 58
CH3"°CH3
x4, kcal mol™ 0.010 57 ryenoe A 337 57
€cc» keal mol™! 0.095 57 reco A 3.88 57
€CH> kcal 1'1'101_1 0.031 d T'CH,00 3.62 e

4Determined by given equilibrium geometry and atomic masses of
CyH¢. *Dec = Do(C-C) + E,, - E,, where E,, and E,, are determined
by the normal-mode frequencies of C,Hg and CHj, respectively, as
listed in Tables I and II. “Bcc = (foc/2Dcc)' /2. 4 Obtained by least-
squares fitting as outlined in the text with « = 1.0 AL slightly differ-
ent values of the parameters are obtained with o« = 0.8 Al ey =
(ec-ntc-0)'/% oo = '/2(Faono + To.co)-

3. The method is easy to use and to program. There are some
initially tedious details involving the coordinate transformations,
but they pose no fundamental difficulty. A brief outline of the
computer programming involved in the present calculations is given
in footnote 54.

In the present paper attention has been focused on the high-
pressure rate constant for the methyl radical recombination re-
action. The application of our results for Ng; to the pressure
dependence of this recombination will be discussed elsewhere.*
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Appendix A. Action Angle and Internal Coordinates

The internal coordinates r,,,, 6;, 8, in which the transitional
mode potential is expressed are determined from the action-angle
coordinates as follows. Atomic position vectors r,?)" (n =1, ...,
4;i =1, 2), as determined by the R-dependent CH; structure,
are assigned in the fragment-fixed (x;”, y;/, z/’) system and the
separation vector R” is chosen to lie along the x”” axis of the triply
primed (x’”, y*”, z’") system whose z”” axis lies along the z axis
of the molecule-fixed (x, y, z) system. By transforming each of
R, r, 1, and r,?" to the (x, y, z) system, the coordinates r,,,
=R+r,0-r,® (mn=1,..,4)and cos §;, = e, ¢, (i =
1, 2) are readily obtained; here roc = r44 and e,/ specifies the
symmetry axis of fragment /.

For given R, J, and 12-dimensional Monte Carlo point (j,, j3,
k, 1, xy, ks, oy, 03y 4y @y Y1, ¥2) the vectors R, 1, (), and r,® are
obtained by application of the inverse rotation matrix A™:

rn(i) = A—l(ai,ali’ﬂi) A_l(yivaxpo)rn(i)” (l = 1’ 2) (Al)
R = A}(«,0,0)R"” (A2)

The first applications of A~ in eq A.1 yields the intermediate vector
1, in the fragment-fixed (x/, y/, z/) system which is rotationally
related to the (x/”, y/’, z/’) system by the Euler angles (v;, 6,,
0), where v; is conjugate to «; and 6, is the angle contained between
«; and j; (i.e., between the z;” axis and the z/ axis). The second
set of Euler angles (a;, 0;;, 8;) in eq A.1 connect the (x/, y/, z/)

(55) Gutman, D.; Wagner, A. F.; Wardlaw, D. M., to be published.

(56) Warshel, A. In Semiempirical Methods of Electronic Structure
Calculation, Part A; Segal, G. A, Ed.; Plenum: New York, 1977.

(57) Goddard, W. A., private communication.

(58) Herzberg, G. Electronic Spectra of Polyatomic Molecules; Van
Nostrand: New York, 1967.

(59) Bair, A.; Goddard, W. A., private communication.

(60) Kakagawa, I.; Shimanouchi, T. J. Mol. Spectrosc. 1971, 39, 255 (cf.
set A in Table VII).
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and (x, y, z) systems; «; is conjugate to j, 8, is the angle contained
between j; and / (i.e., between the z/ axis and the z axis), and 8;
is the angle between the x axis and the x; axis and is conjugate
to j,. In part 2, we chose the x axis to lie along | X k and
determined 8, and 8,. Here, by choosing the x axis to coincide
with the x,’ axis (j, X 1), we have 8, = 0 and have only to
determine 3, the angle between j, X 1 and j, X 1, in terms of J
and of the 12-dimensional Monte Carlo point given above. For
this purpose the vector identities quoted in part 2 are used:

cos 8, — cos 8, cos 8,

cos ) = - -
! sin 8, sin 0,

sin @, sin 8, sin ay
sin B, = - - (A3)
sin 8;; sin 0,

The Euler angle o in eq A.2 is conjugate to /. The conjugate and
contained angles appearing in eq A.1-A.3 are defined in Table
X. None of the Euler angles in eq A.1 and A.2 depend on J,,
a, or B, and therefore, the internal coordinates r,,,,, 8, and 6, (and
hence H) are independent of the orientation of the molecule-fixed
(x, y, z) system, as stated in the text.

Appendix B. Potential V, for the Transitional Degrees of
Freedom

Nonbonded Interactions Vyg. Between all nonbonded H--H
and C-H pairs a Lennard-Jones potential ¥, ;, given by [(ro/r)!2
— 2(ro/r)%], was used and Coulomb interactions arising from
residual point charges on different atoms were neglected.’> The
resultant nonbonded potential is

4
Vg = 2 " Vi(Fmn) (B.1)
mn=1
where m and » label atoms on different CH; fragments and the
prime indicates that the C--C contribution is excluded.
Bonded Interaction V. For the C--C bond formation potential
a Morse function was used, modified by an orientational factor
to include in an approximate way the influence of the now bent
C--C bond*

VB = VMef(rcc) C052 01 COS2 02 (BZ)
where an effective potential V' was introduced:
Vi = Dol = exp[-Bec™(rec — roceN = Doc (B.3)

Here rec (= rec]) is the carbon—carbon separation distance and
6, is the angle between roc and the symmetry axis z;”/ of (CH;);
(i=1,2).

The effective Morse parameters in eq B.3 were determined by
a least-squares fit of a known C—C Morse function V) to the sum
of the potentials Vg + Vp given by eq B.1-B.3 and evaluated
along the minimum-energy path from reactants to product. The
latter was obtained by constraining the CH; groups to be in the
same relative orientation as in equilibrium C,Hg (8, = 0,6, =7
in eq B.2) and by using the interpolated R-dependent CHj,
structure described below. A least-squares fit over the 7 interval
of 1.75-6.78 A yielded a V), with a root-mean-square deviation
from ¥V of 0.35 keal mol™! for « = 1.0 A™! and 0.40 kcal mol™!
for & = 0.8 AL, The largest deviations occurred in the 1.75-2.1-A
interval, a region for which the potential was not needed. In the
region of interest, namely rcc = 2.2 A, ¥y was slightly less
negative than V.

In order that the structure of each CHj; group evolve smoothly
when R is varied, from that of an isolated methyl radical to that
in C,Hj;, the local equilibrium carbon—hydrogen bond length rcy
and the H-C-H bond angle aycy were obtained at each R by
an interpolation:

rea(R) = rcue’ + [rend® — rene'18(R)
opcua(R) = apcue + lencu® — aucu1g(R)  (B.4)

Here, the superscripts p and r denote product (C,H,) and reactant
(isolated CHj,) quantities, respectively. The CHj structure and



the relative separation and orientation of the two CH; groups
together determine the interfragment atomic separations and,
hence, V, in eq I11.4. In addition, the CHj structure determines
the three principal moments of inertia I, (R), Ig(R), and Ic(R),
used to assign a (rigid-rotor) rotational energy to each fragment.
In a theoretical study of the potential energy for colliding methyl
radicals, Yamabe, Minato, Fujimoto, and Fukui® found that the
geometrical deformation of the radicals (planar — pyramidal)
facilitates the recombination by bringing about a decrease in the
exchange repulsion energy.

The parameters appearing in eq B.1 and B.4 as well as other
relevant parameters are listed in Table XI. In Figure 1b the
various bond angles and bond distances that determine V, are
depicted.

Appendix C. Orientational Analysis of V,

A particular relative separation and orientation of the methyl
radicals is achieved from a standard configuration as follows:
Consider the two radicals to be superimposed with centers of mass
at the origin of the (x, y, z) coordinate system used in section I1
with the molecular symmetry axes aligned along the z axis.
Radical 1 is then translated along the positive z axis by a distance
R. The final orientation of radical i (i = 1, 2) is specified by the
Euler angles (;, 8;, x;) which directly connect the (x, y, z) system
to the double-primed system (x;”, y/”, z/’) in which the molecular
symmetry axis is aligned along the z;/’ axis. x; is the rotation in
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the xy plane about the z axis, §; is the angle between the z and
2/’ axes, and +; is the rotation in the x;”y/’ plane about the z//
axis (0 < x;, v; <27, 0< 4§, < =)

Since both x; and x, specify rotations in the plane and since
only different values of x; — x; can yield different relative ori-
entations of the radicals, we simply set x, = 0 and retain x,. This
elimination rotations of the entire system about the z axis, thereby
reducing the dimensionality of the angular space from six to five.

The volume of the five-dimensional angular space can be re-
duced by taking account of symmetry. Since each radical, as
modeled, has C,, symmetry for all R values, y; can be confined
to the range 0 < §; < 2x/3 (i = 1, 2). Furthermore, since the
radicals are identical, x, can be restricted to the range 0 < x,
< =, values of x, between m and 27 yield configurations different
only in the exchange of the two fragments. The range of the angles
8, and §, is unaffected by symmetry considerations in this case.
The values of these two angles provide a convenient and simplified
description of the gross relative orientation of the two radicals:
the “back-to-back” orientation with ¢, < /2 and 8, > 7 /2 is
denoted configuration A, the “back-to-face” orientation with 8,
> x/2and §, > n/2 or §, < /2 and 8, < w/2 is denoted con-
figuration B, and the “face-to-face” orientation with 6, > 7 /2 and
8, < m/2 is denoted configuration C. A grid with Ad, = Aj, =
Ay, = Ay, = /18 and Ay, = = /9 proved sufficiently fine for
our examination of V.

Registry No. Methyl radical, 2229-07-4.



Reprinted from The Journal of Physical Chemistry, 1987, 91, 4864. .
Copyright © 1987 by the American Chemical Society and reprinted by permission of the copyright owner.

ADDITIONS AND CORRECTIONS

1986, Volume 90

David M. Wardlaw and R. A. Marcus*: Unimolecular Reaction
Rate Theory for Transition States of Any Looseness. 3. Ap-
plication to Methyl Radical Recombination.

Pages 5383-5393. The factor (2J + 1) should be deleted from
eq 1.3. IneqIV.1, IV.3, and IV 4, the quantity g, should be in
the numerator rather than in the denominator. In Table V, the
heading for the fourth column should be Ng (R Y)a;/ (27 + 1),
with o, as defined in the text (p 5386). In Table IX, the headings
for the second and third columns should be [Nz £ ¢M¢]¢,/10'8
and [Ng* + 6,MC]a,/10', respectively.



