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It is shown how the “trajectory-close method” introduced in earlier papers of this series can be
used to treat other resonant systems semiclassically. The method, which does not involve the
use of any curvilinear coordinate system, is illustrated for two coupled oscillators which have
3:1, 4:1, 5:1, 3:2, and 5:2 internal resonances. It is readily executed and it is shown how it can
be extended to the three-oscillator case. This work supplements our earlier studies of 1:1, 2:1,
and 3:1 resonant systems using this technique. Shapes of eigentrajectories and of corresponding
quantum mechanical wave functions are compared for each of these systems. The paper also
contains a survey of and comparison with other semiclassical methods which have been applied

to systems with internal resonances.

. INTRODUCTION

A variety of methods have been used for the semiclassi-
cal treatment of molecular systems having classical reson-
ances.'™'> Such methods tend to complement quantum me-
chanical perturbation and variational treatments as well as
each other. In the present article, we show how a trajectory
method'® which we termed the “trajectory-close method”
and applied to 1:1, 2:1, and 3:1 resonances>>'* can be used to
treat in a simple way arbitrary classical resonances. The
treatment is “exact” within the Einstein-Brillouin—-Kramers
or, as it is sometimes called, “primitive” semiclassical ap-
proximation. As before,>>'* no special coordinate system is
needed or used. It requires that the trajectories be quasiper-
iodic. The method is illustrated here using 3:1, 3:2, 5:2, 4:1,
and 5:1 resonances for two-coordinate (2D) systems, there-
by supplementing our earlier studies® of 1:1 and 2:1 reson-
ances and of a 3:1 resonant avoided crossing problem.'* The
resulting eigenvalues and eigentrajectories are compared
with their quantum mechanical counterparts. The method is
readily extended to three-coordinate (3D) systems using a
recently developed rapid calculation of zero-width Poincaré
surfaces of section for three-dimensional systems. !’

A second method which we introduced in Refs. 3 and 5
was based on the use of coordinate systems topologically
appropriate to the shape of the trajectory.>'® With such co-
ordinates one can, at least in some instances, introduce a
uniform semiclassical approximation,”'® when it is needed
for quantization of a particular state. However, almost all
current methods for semiclassical quantization, including
the present one, are based, instead, on the primitive semiclas-
sical approximation.

The existence of the resonances themselves can be de-
tected from the power spectrum of the trajectory.'® For an
(n,m) resonance, there will be two fundamental frequencies
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in the ratio n:m and, in addition, the fundamentals show
splittings (or side bands) due to the resonant coupling. The
resonances can also be detected from the distorted “shape”
of the trajectory, e.g., as in Refs. 1, 3, and 5 for 2D systems
and Ref. 20 for 3D systems.

The method>>-1*1% is described in some detail in Sec. II.
The results are given in Sec. IIT and discussed in Sec. IV. The
various semiclassical methods for resonances are also con-
sidered there and comparisons are made. In particular, the
trajectory-close method does not involve the use of curvilin-
ear coordinate systems to treat resonant systems, unlike a
number of other methods considered later. The preoccupa-
tion with such coordinate systems in Refs. 3 and 5 may have
given a contrary impression.®?! In common with the other
semiclassical methods, some knowledge of the distorted
shape of the trajectory of the resonant system in coordinate
space is needed. Even in a variational basis set quantum me-
chanical calculation of eigenvalues a knowledge of the shape
of the wave function can reduce the number of basis set ele-
ments required for an accurate calculation.

Il. METHOD

In an N-coordinate system, there are N topologically
independent phase integrals $p dg. In the trajectory-close
method, the total phase integral for one cycle of the trajec-
tory is chosen as one of them. The ends of the trajectory are
joined, for this purpose, on a cross section of the somewhat
tube-like trajectory which occurs in the resonant system. A
second (in the case of N = 2) independent phase integral is
determined from the phase integral for the cross section of
the tube-like trajectory, using a surface of section method.'*’
With increasing numbers n and m in an n:m resonance, the
folds in the tube increase, but the present method is simply
applied nevertheless.

A description of the method, which is given initially for
the two-coordinate case follows next. The characteristics of
the method are its simplicity, ease of execution, and straight-

forwardness.

The initial conditions for any 2D trajectory involves
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four quantities. One of these can be chosen to be the energy
E. In the case of the present n:1 resonances arising from Eq.
(4) given later the fraction f, = p3/( p; + p;) is specified,
where the p’s denote initial momenta, and the initial values
of x and y are set equal to zero. In the case of the n:2 reson-

ances the initial values of E and y are assigned and those of x -

and p, are set equal zero. For a suitable initial choice for the
value of E the unperturbed Hamiltonian sufficed.

The trajectory was then integrated using the DEROOT
routine.? This routine both integrates the trajectory and,
creating a remarkable simplification, automatically deter-
mine points on it which are roots of an equation provided by
the user. In the present case we set the root-finding part of
DEROOT to save points when the equation y = 0 was satisfied
for an n:1 resonance and x = O for an 7:2 resonance. These
are the points on two surfaces of section and each set was
next expressed in terms of values of the zeroth order action-
angle variables (J and w, respectively) and then sorted, with
a simple pairwise comparison program, in order of increas-
ing w in the (0,1) interval for w. The area of the relevant
$J dw integral was calculated by a standard routine.?* For
the quantization the integral is then set equal to the right-
hand side of Eq. (5) below.

A second action variable, the total action, was obtained
as follows: When Hamilton’s equations of motion were inte-
grated to yield the classical trajectory the values of the action
S along the trajectory were obtained at the same time by
integrating an auxiliary equation

L px+p, M

After integration of only one cycle in a resonant system the
trajectory returned almost to its starting point on the surface
of section and the trapezoid rule sufficed to determine that
portion of the total action J along the surface of section. (In
nonresonant systems, not treated here, one or usually not
more than several cycles sufficed to make the ends of the
trajectory sufficiently close.) We then have for the value of
Jrs

JT=S+%(pi+p?)(qi_q?)! (2)
where ¢; is x for the n:1 resonance and y for the n:2 reso-
nance, g is its initial value, p;, the momentum conjugate to
g;, and py its initial value. For the quantization J; is then set
equal to the right-hand side of Eq. (6) below.

In the present procedure only three trajectories were
needed for each eigenvalue (or less, in the modification de-
scribed later): as initial values for £ and y we used the fol-
lowing initial pairs, y denoting f, in the n:1 case and y in the
n:2 case: (E,x,), (E2)2), (ExY,). The values of n, and N
were then used to determine the a’s, b ’s, and ¢’s in the linear
interpolation formula

n=aE+by+c,

N=a,E+ by +c,, (3)
which was then used to determine the E which gave rise to
integer values for n; and N.

Two useful and accurate extensions of the above
method have recently become available. In one of these?* the

eigenvalues for a number of states are determined simulta-
neously, and the process required on the average only one

17,24

trajectory per eigenvalue instead of the three needed in the
present procedure: From a grid of points »,(E,y) and
N(E,y) Sheppard’s method? is used to construct a surface
for each of these functions using relatively few trajectories
(points). From this surface E’s are immediately obtainable
for integer n,’s and N ’s.** Moreover, by using a grid of points
there is also no need to guess at an initial £ using, saiy, first-
order perturbation theory.

A second simple extension of the present method is to
three dimensions. In this extension a “zero-width” surface of
section is obtained'” from a 3D trajectory of only 200~300
periods. (In contrast, in an application of the adiabatic
switching method to a 3D system'*® 25 trajectories of
about 100 periods each were used in the averaging process.)
With this zero-width method one can determine a suface of
section for (in the case of an x-cross section) J, vs w,, at a
constant w, and w, and from it the integral $J_ dw, can be
calculated. (The J’s and w’s again denote action-angle vari-
ables defined for the unperturbed integrable Hamiltonian.)
Similar remarks apply to a J, vs w, surface of section at
constant w, and w, (or to the J, vs w, one.) In a three-
dimensional system, the cross-sectional line used for Eq. (2)
becomes a cross-sectional plane, and there are now two,

_rather than one, such cross-sectional phase integrals used.

The total phase integral in Eq. (6) is evaluated over one
cycle of the trajectory as before. In practice several cycles of

. atrajectory are needed in the 3D resonant case to return to a

point close to the initial one.

Perhaps surprisingly, the zero-width surface of section
method,'” in which a multidimensional interpolation is used,
requires only a small Fortran program and little computer
time."” The analog of Eq. (3), now for two n,’s and for W, is
then used to obtain the eigenvalue. Once again, the number
of trajectories (now four per eigenvalue in this 3D case) can
be further reduced by applying the method in Ref. 24,

HI. CALCULATIONS

The Hamiltonian used for the present illustration for
n:m resonances is

=3P} +p} + 0lx + @) y?)
—a(x® +y?) 4+ bx™y" + cx¥?, (4)

where m and n are integers. This Hamiltonian was chosen
because its simplicity permits an accurate quantum mechan-
ical variational calculation of the eigenvalues needed for the
comparison. (The semiclassical trajectory-based method is
readily used, on the other hand, with much more complicat-
ed Hamiltonians.?®) In a resonance havingw, = n, w, =m,
the resonant‘coupling term is bx™y". Examples of the trajec-
tories for these systems are given in Figs. 1-5, which also
serve to identify the difficulty in finding a practical analyti-
cal coordinate system for these cases were it needed.'®®
The cross-sectional line used for joining the two ends of a
cycle of the trajectory as well as for calculating an indepen-
dent phase integral is given below. The phase integral for this
cross section is (in units of i=1)

_ §pi dq; =2m(n; +1). (5)
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FIG. 1. 3:1 resonant classical trajectory for state (3,0™ ) in Table I. Param-
eters used were w, = 3, w, = 1, a = 0.005, b = 0.05, and ¢ = 0.01.

For an eigentrajectory, 7, is an integer. The total phase inte-
gral along one cycle of the trajectory, the ends joined, is given
by

§ZP| dq,=2?7N+(ﬂ+.’H)7T, {6)

where &, an integer, is the principal quantum number for the
state, and the (n + m)7 term arises because the trajectory
touches its caustics 2(n + m) times during one cycle. There
is a loss of phase 77/2 each time, which must be included in
semiclassical quantization, asin Eq. (6). Asalready noted in
Sec. II the phase integral on the left-hand side of Eq. (6)
includes a portion from joining the ends of the trajectory on
the line used for the integral in Eq. (5). For n:1 resonances,
the Poincaré surface of section chosen for Eq. (5) wasy =0
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FIG. 2. 4:1 resonant classical trajectory for state (4,07 ) in Table I. Param-
eters used werew, =4, w, = 1,a = ¢=0.001, and 5 =0.01.

FIG. 3. 5:1 resonant classical trajectory for state (5,07 ) in Table I. Param-
eters used were w, = 5, 0, = 1, @ = ¢ = 0.0001, and b = 0.001.

and consisted of one ellipse. For the #:2 resonances, the sur-
face of section chosen was that for x = 0. There were # is-
lands in this n:2 resonance, each of the same area. The area
evaluated for Eq. (5) was for the island indicated in the
figure captions (Figs. 4 and 5). The phase integral for Eq.
(5) was, as already noted, computed in terms of action-angle
variables rather than of ordinary coordinates and mo-
menta.”’

The states considered in Figs. 1-5 each occur in pairs,
only one member of each pair being shown. They are the
lowest zeroth-order degenerate pairs in each case, and so
each figure represents only one state of the pair. The other
state is approximately the y reflection for the #:1 resonance
and the x reflection for the n:2 resonances. With increasing
energy, some of the higher pairs became multifold degener-
ate in zeroth order, because of the increased number of ways
of selecting pairs of integers (,,n, ) such that their weighted
sum n.n + n,m equals the integer N. A simple pattern

n

X

FIG. 4. 3:2 resonant classical trajectory for state (6,0 ) in Table I. Param-
eters used werew, = 3, w, = 2,a = 0.005, b = 0.08, and ¢ = 0.01. The sur-
face of section used for Eq. (5) was on the line x = 0 and constituted the
island between y~0.6 and y~2.
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-1 ' 0 i
X

FIG. 5. 5:2 resonant classical trajectory for state (10,0~ ) in Table I. Param-
eters used were w, =5, w, = 2, a = 0.005, b = 0.04, and ¢ = 0.007. The
surface of section used for Eq. (5) was on the line x = O and constituted the
island between y~ 1.4 and y~2.5.

emerges for the degeneracy of such states in the n:1 case: n
singly degenerate levels are followed by n doubly degenerate
levels, then 7 triply degenerates levels, etc. For #:2 reson-
ances the pattern is more complex. For example, in the 3:2
case, the sequence of degeneracies is 1, then 1 four times, 2,1,
then 2 four times, 3, 2, then 3 four times, etc.

The plots of |¥|* for the states given in the previous
figures are given in Figs. 6-10. A comparison with the plots
for the trajectory shapes reveals their parallelism. Omitted in
the present paper are plots of the surfaces of section, since
they are similar to those given previously [ p vsgin Ref. 2(c)
and J vs w in Ref. 27]. The shapes of the trajectories suffice
for our purposes to provide the desired topological informa-
tion and, as seen later, are particularly useful for the other
methods as well.

FIG. 6. |¢?| for state (3,07 ) in Table I.

FIG. 7. |¢?] for state (4,07 ) in Table I.

IV. DISCUSSION

The agreement in Table I with the quantum mechanical
eigenvalues is in each case seen to be very good. All of these
states were doubly degenerate in zeroth order. Not shown
are the states of lower energy, each of which is nondegener-
ate. Like the / = 0 states for a 1:1 case® and the K = 0 states
(we realize now) for a 2:1 case® their semiclassical treatment
would require either a uniform semiclassical (USC) quanti-
zation or the equivalent, perhaps, of a presently ad hoc
Langer-type correction used in Ref. 12(b) for the /=0
states of the 1:1 resonance.'*® More generally, USC is
needed whenever the trajectory involved is close to a separa-
trix of the motion (separating two types of motion), e.g.,
Ref. 15.%°

We consider next,for comparison, several other meth-
ods actually used to calculate semiclassical eigenvalues in

FIG. 8. [¢?| for state (5,0~ ) in Table L.
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FIG. 9. |¢7| for state (6,0~ ) in Table L.

resonance systems. We begin with the trajectory methods.
One such method is the Sorbie-Handy method.” In this
method coordinate axes are chosen so that they intersect
opposite caustics. When the shape of the trajectory is distort-
ed sufficiently by a resonance, Cartesian coordinates become
inadequate and curvilinear coordinates are then used.>**
The method was successfully used for a resonance system in
Ref. 2. Recently problems have been reported in Ref. 29, but

FIG. 10. |¢7] for state (10,0™) in Table L

TABLE I. Quantum and semiclassical eigenvalues.

Resonance  State* State® Figures®
(r1,m) (Naym) (order) E, E,. traj., quan.
(3,1) (3,07) 4 4.977 4,976 1,6

(3,0") 5 5.015 5.009
(4,1) (4,07) 5 6.494 6.492 2
(4,0%) 6 6.503 6.502
(5,1) (507) 6 7.999 7.999 3,8
(5;0) 7 8.000 8.001
(3,2) (6,07) 6 8.499 8.500 49
(6,07) 7 8.506 8.505
(5,2) (10,07) 9 13.494 13.499 5,10
(10,0") 10 13.501 13.501

*The minus denotes the member of the degenerate pair with lower energy.

bThe states are ordered by energy, the lowest state being the ground state,
and all states lower in order than the cited ones being nondegenerate.

¢ Figures 1-5 also give the parameters used in the Hamiltonian in Eq. (4).

no plots of the trajectories were given there, and so it is diffi-
cult to ascertain the source of the difficulty. The method
itself tacitly uses an approximation described in an analysis
of it in Ref. 3.

The first Fourier transform method was introduced by
Noid et al."” for the purpose of calculating spacings of eigen-
values (infrared spectra),'” for intensities of the spectral
lines,'? and for detecting classical chaos.'” The method has
been widely used for one or other of these purposes. Good
agreement with quantum mechanical eigenvalue spacings
and intensities has been found for nonresonant systems. In
the case of resonant systems good agreement was found
when the two eigenstates for the given spectral transition
had wave functions (or trajectory plots) of the same sha-
pe.19®

Later, a Fourier transform method was used to calculate
the individual eigenvalues themselves, both without™'"' and
with *''® the use of the SH method. We denote these two
methods by FT and FT-SH, respectively. FT—calculated
eigenvalues have been obtained for a 1:1 resonance™'' and a
2:1 resonance.® In Ref. 11 curvilinear coordinates were in-
troduced appropriate to the shape of the trajectory. A 1:1
resonance was treated in Ref. 11(a) for a 2D case, and many
more eigenvalues were obtained with FT-SH and with the
present trajectory-close method than with FT. Eigenvalues
for all three methods, however, agreed with each other. The
FT-SH method was reported to yield eigenvalues less sensi-
tive to the spectral frequencies than were those obtained by
FT.!! Of the two methods FT-SH was indeed the one used
by some of those authors.” To overcome these “‘stability”’
problems of FT, a “window”” technique has been introduced
to disentangle the determination of the frequencies and the
amplitudes.”’!

Spectral methods can be very convenient. They also
have some shortcomings: They require long-time trajector-
ies to resolve the spectral frequencies when the latter are
closely spaced (a problem avoidable with the present meth-
0d).?® In a resonance system peaks are split and can have
side peaks. In one instance, to “resolve” two peaks, the sys-
tem was deliberately perturbed to be off-resonant and an
interpolation was then used.”' A second problem with any
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spectral method arises, of course, when the spectrum is com-
plicated. As we ourselves noticed, there is then the problem
of identifying the many individual spectral lines.

A newer proposed FT method is one which uses only a
single trajectory and first order perturbation theory.'>'* It
has been applied to an electronic—vibrational problem.*! (In
the absence of trajectory plots it is not clear whether this
problem is a resonance case. It probably is.) A USC method
would have been needed to obtain good agreement for the
problem. In a second application to a resonance system diffi-
culties were reported,®” but in the absence of trajectory
shapes their origin is not clear. With the use of first order
perturbation theory and a single trajectory one must choose
actions for the single trajectory which are near enough the
desired actions.?'

The “adiabatic switching” method (AS)*'? appears to
be a good one for calculating eigenvalues when resonances
are absent from the Hamiltonian H and when at the same
time they are either absent or not “‘strong” along the adiaba-
tic path from the initial (unperturbed) H, to H. The method
has been also used for a 1:1 resonance®'2®12® and fora 2:1
resonance,'>> with encouraging results, usually making
use of coordinates appropriate to the shape of the trajector-
ies.*!2 To use the method for such resonance systems a pres-
ently ad hoc procedure of averaging over a suitably chosen
ensemble of trajectories is used to obtain a single eigenvalue.
Remarkably enough, quantization results were obtained in
the chaotic regime, the mean square width of final energies in
the ensemble being quite large in that case.'** Various prob-
lems, reported in Ref. 12 for resonance systems, may or may
not require special manipulation.

Several perturbation methods have also been used. to
calculate semiclassical eigenvalues for resonance systems.
Such methods can be very effective. While the algebra for
each method can become very complicated (for the higher
states one needs to use high order perturbation theory), sym-
bolic manipulation programs have been very useful for that
purpose. The limitations of perturbation theory lie in the
evaluation of the expressions (when H is complicated) and
in the approximation of perturbation theory itself (small di-
visors problem). Birkoff-Gustavson perturbation theory
with eighth degree normal form has been used with good
results for the calculation of primitive semiclassical® and
uniform semiclassical (USC) eigenvalues’ for a 2D 1:1 reso-
nance system. In the USC case certain splittings of degener-
acies were obtained. Implementation for the USC required
the use of curvilinear coordinates (polar coordinates®) ap-
propriate to the shape of the “trajectory:” In the primitive
SC case, topologically appropriate (curvilinear) quantiza-
tion paths were employed.

Another perturbation method, the method of “averag-
ing,” has been used in second order to treat low lying states
in a 2D 2:1 resonance, with good results.>** We have used it
for low lying states for other resonant systems, again with
good results.**® (For higher states a higher order would be
needed.) Since the method employs annihilation—creation
operators, it is not semiclassical in the strict sense. An analo-
gous method, the “algebraic quantization” method, is based
on Birkoff-Gustavson perturbation theory plus annihila-

tion—creation operators and has been used (with a fourth
degree normal form) with good results for the low lying
states of a 2D 1:1 resonance system.>*

We have used a low order perturbation theory to obtain
a functional form for designing a USC approximation'® in an
avoided crossing problem. The latter arose from a 3:1 reso-
nance.'* Trajectories were then used to calculate the canoni-
cal invariants (phase integrals) contained therein'® and to
calculate the eigenvalue splittings.

In some respects, trajectory and perturbation methods
are complimentary, as already noted. The perturbation
method can be very effectively used to treat low lying states
or, when it does not break down in the higher orders, the
higher states, when the potential energy is simple enough for
ready evaluation of the expressions, or for being expressed in
terms of annihilation—creation operators.

Trajectory methods, on the other hand, can be equally
used to low and high states, and for simple and complicated
potential, provided the trajectories themselves are quasiper-
iodic. This quasiperiodicity can pose a serious limitation to
trajectory methods (apart from some cases treated by
AS!2®:12(9) yging ensembles). In one case, for example, a
perturbation method for a 1:1 resonance was useful evenin a
regime where classical chaos occurred.®’ Presumably it
could be so used because (as in perturbation theory) the
underlying quantum spacings of sequences were “regu-
lar,””* the classical chaos apparently being on a scale too
small compared with 4 to affect the quantum mechanics.®

We summarize next some of the merits and limitations
of the present trajectory-close method.

One of its attractive features is its simplicity—it does not
break down or become ad hoc when resonances occur, does
not involve the use of curvilinear coordinates for resonance
systems, nor employ perturbative techniques, a window
technique, or a perturbation to off-resonance. Also absent is
the need for interpreting the sometimes complicated spectra
which can ocur in resonance systems or for averaging over
an ensemble of trajectories. The method is “exact” within
primitive semiclassical (EBK) approximation. It is easily
programmed and requires little computer time. In particu-
lar, with the recent developments described earlier,'** it is
roughly estimated to require about two orders of magnitude
less computer time than AS fora 2D system and one order of
magnitude less for 3D when, as in resonance systems, AS
must be ensemble averaged. (Direct comparisons would be
needed to obtain more reliable estimates.)

The present method has several limitations, three of
which it shares with the other trajectory methods (the en-
semble-averaged AS appears to suffer less from the first of
these): The trajectories should be quasiperiodic. In the case
of trajectories whose shapes are sufficiently distorted by the
resonance, some knowledge of that shape is also needed.?’
(Methods are available for determining the shapes of 3D
trajectories.’**®) Finally, a USC supplementary method is
required for trajectories which are near separatrices, as in
the / = O and K = O states referred to earlier. The trajectory-
close method itself is limited in the number of coordinates
that it can now conveniently treat (3 or perhaps 4). In prin-
ciple, at least, the other methods are more readily adapted to
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the many-coordinate case, though as judged by recently pub-

lished results described earlier the reliability of each remains’

to be established in individual cases.

One very recent development is the use of local potential
functions calculated from a grid of ab initio points.”® These
functions can be used directly in trajectory calculations and,
with no extra difficulty, the present trajectory-close method
can be used to obtain semiclassical eigenvalues. It is not clear
how the adiabatic switching method could be used in this
case.

Other more quantum mechanical methods, such as
wave packet*® (apart from the citation to Ref. 10), path inte-
gral,*! or other quantum methods lie outside the scope of the
present survey and have not been considered here. In any
event there have been relatively few accurate comparisons
with exact eigenvalues for resonance systems. Nor have we
discussed here methods which have been used to determine
semiclassical wave functions in resonant systems.*” The use
of the more coarse-grained methods is expected to become
particularly important in more complicated systems where
individual eigenvalues and spectral lines may give more in-
formation than can profitably be used.
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