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Reactive transition probabilities and Boltzmann-averaged reactive transition probabilities for a
slightly off-resonant model H-atom transfer system with an appreciable energy barrier are
calculated using the approximate methods of Babamov et al. and of Crothers—Stiickelberg. Both
are compared with the corresponding quantities obtained from a numerical two-state treatment of
the same model system. The method of Babamov et al. is seen to give more accurate results for the
transition probabilities at energies below and around the reaction threshold, and much more
accurate results for the Boltzmann-averaged probabilities in a wide range of temperatures than
the second method. The relative merits of the two formulas are discussed.

I. INTRODUCTION

There have been a number of recent theoretical studies
of the dynamics of chemical reactions in which an H atom is
exchanged between two different heavier atoms or molecu-
lar fragments.’~** A method for reducing the dynamics of
the reactive collision to two coupled ordinary differential
equations, in the case when the initial reactant state and the
final product state are nearly degenerate, was proposed re-

~ cently by Babamov et al.>” and applied to a collinear colli-
sion using a model LEPS potential energy surface for such
reaction. This two-state method, which is only applicable to
reactions with a substantial potential energy barrier to the
reaction, has been shown’® to give results for the transition
probabilities in good agreement with the corresponding ac-
curate (many states) coupled-channel calculations.®

A simple analytical formula for the reactive transition
probabilities within the two-state approximation has also
been proposed by Babamov ez al.® and shown to give results
in good agreement in the threshold region with those ob-
tained from a numerical solution of the two-state model, and
thus with the results of the accurate coupled-channel calcu-
lations. The principal purpose of these treatments®® has
been to provide a practical simplified treatment of the dy-
namics of chemical reactions which correctly simulates the
quantum mechanical tunneling of the light H atom and is
also accurate in the range of energies which contribute sig-
nificantly to the kinetics of the reaction under typical condi-
tions.

More recently the use of the Crothers—Stiickelberg
(CS) perturbed symmetric resonance formula'>'® has been
suggested'!!? as an alternative simplified analytical treat-
ment of the two-state model. The two methods have been
applied'? to an approximate analytical fit of the two-state
representation of Babamov et al. for comparison purposes.
However, the use of an incorrect analytical fit to the two-
state model'” and the overlooking of the importance of the
near-threshold region led to an incorrect conclusion'? about
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the relative usefulness of the two methods.

In this paper reactive transition probabilities from the
two approximate methods are compared with those obtained
from the exact two-state (numerical) treatment, for the
model system of Ref. 9, as a function of the total energy. The
results are also given in terms of Boltzmann-averaged reac-
tion rate probabilities P, (7). Limitations of the CS method,
already specifically mentioned by Barany and Crothers,'®
will be seen to appear here in the threshold region.

1. TWO-STATE APPROXIMATION AND REACTIVE
TRANSITION PROBABILITY CALCULATIONS

Starting with the Schrodinger equation for the collision
in mass-weighted polar (hyperspherical'®) coordinates and
expanding the solution in terms of the eigenfunctions for the
“vibrational” motion™>'® 5, (6,0):

Y(6,p) = @1(p)1:(6p) + @2(p)72(63p), (1)
one obtains, after some manipulation, a pair of coupled ordi-

nary dlﬁ'erentlal equations in the adiabatic representa-
t10n5 19,20
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where my, is the mass of the H atom, E is the energy, the
€; (p)’s are the eigenvalues associated with the 7;, and the
P;;’s and Q,;’s are matrix elements defined in Ref. 19. A
closely related, but not entirely equivalent pair of coupled
equations in the dlabatlc representation can also be de-
fined”?'
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The V¥, in Eq. (3) are the coefficients in an expansion

Y(0,p) =¥, (p)S,(0;p) + ¥,(p)52(6p) (4)
in which the £; are localized vibrational wave functions ob-
tained as linear combinations of the #,. The matrix V in Eq.
(3), with elements V;;, can be obtained by applying to the
diagonal matrix of the ¢;’s the orthogonal transforma-
tion?"?2 that converts the adiabatic vibrational basis 77, (8;p)
into a diabatic one £, (0;0). The €,’s in Eq. (2) are then
related to the V;;’s by

61,2=%(V11+sz)—i——\/%(sz_Vu)z‘*—V%z, (5)

where the minus sign is for €,.

It has been shown® that the reactive transition probabili-
ties Py,(E) obtained from a numerical solution of Eq. (3)
for the slightly off-resonant model system considered here

are in good agreement with those of a 12-state accurate nu- -

merical quantum mechanical calculation® for the same sys-
tem. Thus, the two-state treatment based on Eq. (3) pro-
vides an accurate simulation of the dynamics for the model
system studied.

Babamov et al. gave® a simple analytical partially “ex-
ponentiated” distorted wave expression for the reactive tran-
sition probability from state n of the reactants to state m of
the products, assuming approximately equal slopes®” in plots
of ¥, and V,, vs p at the classical turning points:

Py.(E)
e 2 Joe{ | () G vatoo [ el 55)]
_exP( oF )Sm oF) 7 2P| P\ op ’
(6)
where
A= (mﬂ/ﬁz)[sz(Po) — Vu(po) 1,
az[——iln Vlz(p)] R
dp P =Po
(7N

my d
Here, p, is the classical turning point for the p motion on a
mean potential V°(p) = [V,(p) + V22(p)1/2. The ap-
proximations contained in Eq. (6) are given in the Discus-
sion. Another formula proposed by Babamov ez al.’ is treat-
ed in the Appendix. It should be stressed that the formula in
the Appendix gives better results at higher energies than Eq.
(6), and reduces to the exact two-state answer when A van-

ishes, but gives similar results in the threshold region. Equa-

tion (6) is easier to use than the equation in the Appendix.
The Crothers-Stiickelberg expression P &, for the reac-
tive transition probability, for a transition from state n to

state m, in a perturbed symmetric resonance problem, is giv-
en by15,16

PSS (E) = sech® § sin’ (o + ¢), (8)
where
P P e
a+i6=J kl(p)dp—f ka(p)dp; 9
P1 P2

k:(p) = {2my [E — €, (p) 1/#}'%, p, is the classical turn-
ing point for the p motion on the adiabatic potential €; (p),
and p. is the complex-valued p at which €,(p) = €,(p). ¢ is
a phase correction which to a good approximation'® is zero
for the perturbed symmetric resonance problem.
Nakamura et al.'? recently suggested the application of

- Eq. (8) to the collinear H-transfer system studied in Ref. 9.

As seen from Egs. (8) and (9), the use of the formula does
not explicitly require knowledge of the full coupled equa-
tions (2). It does, however, require knowledge of the two
adiabatic potentials €, (p) in the complex plane, in order to
determine the complex-valued crossing point p. and to per-
form the integration in the complex plane. One proce-
dure'"'>!* for implementing the formula is to attempt to
construct an analytic representation of the diabatic matrix
elements V;; in Eq. (3) by making simple approximate ana-
lytic fits to a known numerical description of the latter. The
adiabatic potentials are then determined from Eq. (5), with
analytic continuation serving to extend them into the com-
plex plane. This continuation yields a value for p., namely
the value of p where the square root in Eq. (5) vanishes. This
procedure appears to be the one used by Nakamura and Oh-
saki.'

The functional form assumed by the latter authors for
the V;,’s is'?

Vir(p) = A4 exp[ -Se —p»],

Var(p) = Vip) — A,

Vi:(p) = {B+ CeXP[B(P —Pe )]}—1’
where A4, B, C, G, A,, and 3, are all constants obtained from a
fitting procedure, and p, is an arbitrarily chosen constant.

In our applications we adopt the functional form of Na-
kamura and Ohsaki given by Eq. (10) and determine the
parameters by fitting the values of ¥y, V5, Vi, the first
derivative of ¥'°, and the first and second derivatives of ¥, to
the corresponding quantities in the numerical two-state rep-
resentation, all at a given p,. The parameter p, in Eq. (10)
was chosen in Sec. III to be 31.75 bohr, which is approxi-
mately the value of p at the classical turning point at energies
near the threshold energy. Other possible ways of applying
the formula and of choosing p. are explored in the Appen-
dix.

(10)

lll. RESULTS AND DISCUSSION

Since both the method of Babamov et al. and the CS
method are based on the two-state approximation the results
for these methods are compared with those from a numerical
solution of the two-state model. The two-state representa-
tion was used for a model LEPS surface for H-atom transfer
between two heavy atoms.?* The transition probability

J. Chem. Phys., Vol. 85, No. 4, 15 August 1986



1926 Klippenstein, Babamov, and Marcus: Dynamiés of H-atom transfers

PROBABILITY

0.0L >
Og 10 I i2 13 14 15

TOTAL ENERGY (KCAL/MOL)

FIG. 1. The probabilities Py, as a function of the total energy E measured
relative to the minimum of the HBr potential. The translational energy is
3.83 kcal/mol (i.e., the zero-point energy of the HBr well) less than E.
P,,(E) is the two-state numerical reactive transition probability and is de-
noted by —. PB, (E) is the reactive transition probability of Babamov et al.,

calculated from Eq. (6), and is denoted by ———..P$F(E) is the reactive
transition probability calculated from the CS expression, Egs. (8) and (9),
and is denoted by ---.

P,,(E) obtained from the exact numerical solution of the
two coupled equations as well as those from the two approxi-
mate formulas, P2 (E) and P§(E), were calculated for
various energies. A plot of these quantities vs total energy is
given in Fig. 1. One can see that at the lower energies the
results of the formula of Babamov et al. P §, (E) are in excel-
lent agreement with those of the numerical solution of the
two-state model P, (E). The agreement gradually becomes
worse as the energy increases well above the threshold. The

s
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FIG. 2. Log,, of the probabilities Py, as a function of 1/T (K). Py, (T) is the
Boltzmann-averaged numerical transition probability and is denoted by —.
PB, (1), the Boltzmann-averaged transition probability from the method of
Babamov et al., is denoted by — — —. [ This plot is not visible since it coincides
with that of Py,(T).} PS3(T), the Boltzmann averaged transition probabil-
ity from the CS method, is denoted by ---.

results of the Crothers—Stiickelberg formula P53 (E) on the
other hand are quite inaccurate at energies near and below
the reaction threshold and become more accurate at higher
energies. At a total collision energy of 10.0 kcal/mol P S(E)

‘is seen to be too large by a factor of about 6. At higher ener-

gies, PS5 (E) is still not in good agreement with Po,(E) al-
though it does have the correct shape and is in better agree-
ment than PZ (E). Another formula of Babamov et al.
which is more accurate than Eq. (6) at higher energies, al-
beit somewhat more laborious to evaluate, is discussed in the
Appendix.

In chemical reactions the quantity of primary interest is
the reaction rate constant. For a collinear reaction a one-
dimensional rate constant for the reaction from quantum
state 1 of the reactants to form state m of the products can be
defined as

1/
kn,,.(T)=(i-T—) P (D), (11)
2w
where
* — dE
p (D=| P, (E LS 12
(D) f o )exp(kT “ (12)

p is the CI-HBr reduced mass and E is the translational

energy of the reactants.

In Fig. 2 plots of log,, Po,(T),log,, P3, (T), and
log,, PSS (T) vs 1/T are given. At T = 300 K, the values of
Py, (T), PE(T), and PSS(T) are 6.2X107% 6.3X 1075,
and 2.8X107°%, respectively. At T =600K, they are
1.6 1073, 1.5%x 1073, and 2.7x 1077, respectively. The
corresponding one-dimensional rates [k, (T), k 8, (T),and
kS3(T)] given by Eq. (11) are 7.9 1072, 8.0 1072, and
3.6x 107 'cm molecule"!s 'at T=300K. At T= 600K
they are 29, 27, and 49 cm molecule ™' s~

The rate constants k,,(7") calculated using the Py, (E)
obtained from the exact numerical solution of the two-state
problem are in good agreement with the rate constants cal-
culated by Garrett et al."® using the Py,(E) obtained from
the accurate 12 channel® numerical solution. For example at
T = 300K the 12 channel rate constant'® is 6.37X1072
cm molecule ™! s ™' as compared with the above two channel
rate constant of 7.9X 1072 cmmolecule™'s™'. At
T = 600 K the 12 channel result is 24.9 cm molecule™'s™*
as compared with the above two channel result of 29 cm
molecule ~'s™ .

Approximate semiclassical calculations of one-dimen-
sional rate constants summed over the final states have been
reported by Garrett et al.'® for the same model system using
various versions of variational transition state theory.”
Those rates, which are also in good agreement with the cor-
responding results obtained from the accurate twelve chan-
nel quantum mechanical calculations,'’ are not directly
comparable to the 0—2 state to state rates presented here.

The effective reaction threshold occurs at a transla-
tional energy of ~7 kcal/mol* which, when equated to k7,
corresponds to a temperature T of 3500 K. Hence, for tem-
peratures of practical interest the major contribution to
P,,,, (T) arises from the reaction probabilities P,,,, (E) in the

- near-threshold region. Thus, although the application of the
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CS expression is better at high energies than the method of
Babamov et al., one sees that as far as the important tempera-
ture region is concerned, the Boltzmann-averaged Babamov
probabilities P&, (T) are in better agreement with the exact
two-state result Py,(7) than are the Boltzmann-averaged
CS probabilities P 53 ( T'), for the model system studied (high
energy barrier).

Some remarks about the “threshold region” are perhaps
relevant here: At 125 K, 80% of the integral P,,(T) in Eq.
(12) is contributed by energies < 11.0 kcal/mol. At 250 K
and 500 K the corresponding energies are <11.3 and < 11.8
kcal/mol, respectively. In these energy regions the P§, (E)
curve in Fig. 1 is seen to be accurate.

In order to study the possibility that the differences
between the P $>’s and the P,,’s are due to problems with the
analytical fits, calculations were performed assuming that
the dynamics occur on given analytical diabatic potentials of
the form of Eq. (10). In Fig. 3 the quantities Py, (E),
P (E), and PS;(E) are shown, as calculated using these
analytic diabatic potentials, P 5 (E) thus being the same as
before. They are compared there as a function of total ener-
gy. Once again one sees that P, (E) is much better than
PSI(E) at energies near and below the reaction threshold.
Also, the superiority of the P §3 (E) over the P&, (E) at high-
er energies is again evident. Comparison of Figs. 1 and 3 also
shows that at high energies there is a large discrepancy
between Py, (E) for the exact potentials and P, (E) calculat-
ed for the dynamics on the analytical fit in Eq. (10)

In Fig. 4 plots of log,o Pp,(T),log,, P&, (T), and
log,, PSS(T) vs 1/T for the analytic diabatic potentials are
given. The results observed in Fig. 4 reemphasize the fact
that the transition probability vs energy dependence at high

PROBABILITY

TOTAL ENERGY (KCAL/MOL)

FIG. 3. The probabilities P,,, as a function of the total energy measured
relative to the minimum of the HBr potential, obtained using model analyti-
cal diabatic potentials for all the calculations. The potential parameters
used, as defined in Eq. (10), were 4 = 6.880 kcal/mol, G = 1.062 kcal/
(mol bohr), p, = 31.75 bohr, A, =0.4162 kcal/mol, B = 0.9269 mol/
kcal, C = 4.228 mol/kcal, and S = 2.052 bohr~'. Py, (E) is denoted by
—, P& (E)by-—— and PSS(E) by ---. The discrepancy between the solid
and long-dashed lines for E > 12 kcal/mol is discussed in the text.
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FIG. 4. Log,, of the probabilities Py, as a function of 1/T (K) for which
model analytical diabatic potentials are used for all the calculations. The
potential parameters used were as in Fig. 4. Py, (T) is denoted by —.
PZ, (T) is denoted by — — —. [This plot is not visible since it coincides with

that of Py, (T)]. PSS(T) is denoted by ---- .

energies is not important for this model system, in determin-
ing the low to moderate temperature Boltzmann-averaged
reactive transition probabilities. Thus, one can conclude that
the discrepancies between P $; (1) and Py, (T) found in Fig.
2 are not due to the analytical fit, but to the breakdown of the
CS approximation in the threshold region.

We turn next to a discussion of the error of the CS ap-
proximation in the threshold region. Barany and Crothers
pointed out'® that as one condition of validity of Eq. (8) the
real phase o in Eq. (9) should not be small, more specifically
not 1. Values of ¢ are given in Table I. Comparison with
Fig. 4 shows that Eq. (8) for P 53 (E) indeed becomes invalid
when o S 1, confirming their prediction. At least in part, it is
the smallness of the p momentum which makes o smallin the
threshold region.

We mention here some pertinent approximations used
in obtaining Eq. (6) for P}, (E), though they are evident in
the derivation given in Refs. 5 and 6: (1) There are no poten-
tial wells in the V;’s as a function of p contributing impor-
tantly at the energy of interest. (This point, explicitly noted

elsewhere,>?” follows from the derivation®"*® which ex-
TABLEL Crothers'—Stiickelberg o as a function of energy.
E ? (kcal/mol) o E # (kcal/mol) o
7.0 0.22 10.5 0.72
7.5 0.24 11.0 1.25
8.0 0.26 11.5 2.10
8.5 0.29 12.0 2.95
9.0 0.33 12.5 3.70
9.5 0.39 13.0 4.39
10.0 0.50 135 4.99

*Total energy measured relative to the minimum of the HBr potential.
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FIG. 5. The probabilities P;, as a function of the total energy measured
relative to the minimum of the HBr potential. Py,(E) is denoted by —,
P§, (E) by - ——,and P§, (E) by —.

cludes®” this possibility.) (2) The transition is largely local-
ized in the vicinity of the classical turning-point p,. 2> (3)
The resonance defect A at p,, is small relative to the vibra-
tional spacing, at least if Eq. (6) is used in the higher energy
region.

In virtue of (3) the accuracy of the formula at energies
above the threshold region can be expected to gradually de-
teriorate with increasing resonance defect. However, it
should be kept in mind that a good two-state approximation
for the type of problem discussed above, valid in a wide ener-
gy region (as distinct from the threshold region), can only be
made if the resonance defect A is small compared to the
vibrational level spacing.

IV. CONCLUDING REMARKS

The formula of Babamov et al., as shown in Figs. 1-4
above and Fig. 5 given in the Appendix, is an accurate ap-
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PROBABILITY
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FIG. 6. The probabilities Py, as a function of the total energy measured ‘

relative to the minimum of the HBr potential. P,,(E) is denoted by —,
PSS (E) by ~—, PSS’ (E) by ———and PSS (E) by .

proximation for energies near and below the reaction thresh-
old, for this case of a high barrier slightly off-resonant reac-
tion. At high energies the method is less accurate, but as seen
in the previous section, these higher energies are not as im-
portant in determining the quantity of chemical interest
k... (T) for such reactions. In addition, the formula of Baba-
mov et al., given by Eq. (6), is a simple analytical formula
and is expressed in terms of parameters that can be readily
extracted from the numerical diabatic potentials.

The results obtained using the CS expression, on the
other hand, are inaccurate at energies near and below the
threshold for the present system, and begin to be accurate
only at energies well above the threshold energy. Thus, the
important quantity k,,,, (T) is not accurately given for this
system at low and moderate temperatures by the CS expres-
sion. A second difficulty with the CS formula [Eqs. (8) and
(9) 1, which may hinder its wide applicability at present, is
that the adiabatic potentials must be known in the complex
plane and the complex integrals must somehow be evaluat-
ed. Thus far, for that reason, the only applications of the CS

formula to H-atom transfers have involved constructing a

set of approximate diabatic potentials rather than using the
adiabatic potentials directly. )

It may be emphasized that the results presented here do
not bear any relation to the applicability of the Crothers—
Stiickelberg formula to problems inewhich the energies of
interest are well above the threshold. The CS formula, as
well as other simpler semiclassical formulas, should be appli-
cable to problems for which the transition probabilities at
higher energies are the important ones. One example is the
calculation of electron-transfer cross sections in medium en-
ergy (kev) atomic collisions for which such formulas are
frequently used. The applicability of the CS formula to a low
barrier reaction has been discussed elsewhere. 11227

ACKNOWLEDGMENTS

It is a pleasure to acknowledge support of this Research
by the Office of Naval Research. SJK gratefully acknowl-
edges the support of a Natural Sciences and Engineering
Research Council of Canada postgraduate scholarship,
1984-1986. '

APPENDIX: ALTERNATIVE PROBABILITY
CALCULATIONS

An alternative expression for the transition probability
obtained by Babamov et al.%" is
P2 (E) =exp( — A¥/aF)sin®(£3 — £2), (A1)

where £ ¢ and £ § are the elastic phase shifts for the p motion
on the “symmetrized” potentials:

€P) =31V11(p) + Var(p) 1 = Via(p),
ea(P) =%[V11(p) + sz(P)] + Vlz(P),
In Fig. 5 plots of Py, (E), P, (E), and P (E) vs ener-

gy are given. At energies near the reaction threshold and
below they are all equivalent. However, at higher energies

P§, (E) is seen to have the correct phase, whereas P&, (E)
does not. This difference in phase does not significantly af-

(A2)
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fect the calculation of the Boltzmann-averaged transition
probabilities for moderate and low temperatures. Two other
expressions®! given by Babamov et al. are not examined here.
Our current calculations showed that they lead to reaction
probabilities very similar to those of PJ, (E) and P§, (E).
When A vanishes Eq. (A1) reduces to the exact two-state
formula.'®

We turn next to the choice of the value of p, used in the
functional forms for the V;;’s [Eq. (10)] in the CS calcula-
tions. The choice of this p, depends on the p region which
needs to be the best represented. One can either use a single
p., regardless of the collision energy, or let the choice of p,
depend on that energy.

In obtaining the real parts of the integrals in Eq. (9) one
may use either the adiabatic potentials calculated from the
analytic diabatic potentials of Eq. (10), or the adiabatic po-
tentials calculated from the analytic diabatic potentials of
Eq. (10}, or the adiabatic potentials calculated from the real
(numerical) diabatic potentials (i.e., not the fits to the dia-
batics). The adiabatic potentials calculated from the analyt-
ic diabatic potentials of Eq. (10) must be used in the deter-
mination of the imaginary parts of the integrals in Eq. (9).

For Fig. 6 we introduce the following notation: PSS (E)
corresponds (as before) to calculations using the analytic
fits of Eq. (10) at p, = 31.75 bohr, independent of the ener-
gy, for both the real agd imaginary parts of the integrals in

Eq. (9). PSS (E) corresponds to calculations using the fits
of Eq. (10), with p, = p, [the classical turning point for the
mean potential ¥ °(p) previously defined ] at every collision
energy, for both the real and imaginary parts of the integrals.

Finally, P$Y (E) corresponds to using the actual diabatic
potentials to calculate the adiabatic ones for the real parts of
the integrals and using fits, with p, = p, at every collision
energy, for the imaginary parts of the integrals.

The P §3(E)’s are plotted along with Py, (E) as a func-

tion of total energy in Fig. 6. PS;" (E) shows the best agree-
ment at higher energies and also involves the most compli-
cated calculations. At energies well below the reaction

threshold, not shown in Fig. 6, PSS (E) and PSS (E) are
both less accurate than P 3 (E) and thus result in less accu-
rate Boltzmann-averaged reactive transition probabilities.
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