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The dynamics of energy transfer is discussed for a model system in which two ligands are
separated by a heavy atom. Numerical and analytical results are given for the case that each ligand
is a CC. In the quasiperiodic regime, the dynamics are interpreted using perturbation theory..
Local group modes involved in an intramolecular energy localization which can occur in this
regime are identified. An approximate separation of the primarily ligand-ligand motions from the
primarily ligand-metal-ligand ones occurs in the clearly quasiperiodic regime and also at an
energy where the power spectra of the bond coordinates are “grassy.” The overall analysis is used
tomake predictions for systems with larger ligands, when the primarily metal atom-ligand modes

are, as above, approximately separable from the primarily intraligand ones.

I. INTRODUCTION

“In a previous paper' we considered the energy transfer
between two ligands attached to a heavy atom M. Classical
trajectories were calculated for model system C-C-C-M-
C-C-C. While energy transfer occurred at low energies,
there was only a restricted energy transfer when the energy
of one ligand was high enough that the vibration frequencies
in the twoligands were no longer “resonant.” More recently,
calculations® were also reported for a system with more co-

- ordinates, including bending motions. For excitation ener-
gies of 50 kcal mol—!, the energy transfer was restricted for
the potential energy surface used.

In the present paper we treat the motion analytically for
the five-atom_ system C-C-M-C-C. The extent of energy
transfer in the quasiperiodic regime is analyzed in terms of
the “local group modes”—the anharmonic modes for each
ligand—using perturbation theory to calculate the proper-
ties of these modes. The perturbation theory is also tested by
comparison of semiclassical and quantum eigenvalues of a
ligand. At high energies a regime that may be partially chao-
tic occurs for the five-atom system and is discussed.

Based on the analytical and numerical findings in the
present paper it is shown how certain features of the results
can be extended to larger systems, provided an approximate
separation condition is fulfilled.

i EXCITATION ENERGY AND ENERGY TRANSFER

In this section the results of numerical trajectory calcu-
lations are described for the C-C-M—-C~C system, where the
bonds are, as before, Morse oscillators coupled by the
stretching momenta cross terms and where the masses have
been chosen to roughly reproduce the C/Sn mass ratio.'
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These calculations are aimed at exploring the range of be-
havior found in the previous model. Because of the smaller
number of coordinates now, a perturbation analysis is
simpler. Nevertheless, the qualitative numerical behavior is
similar to that found' for the seven-atom chain. In the analy-
sis we focus attention on local group modes of each metal-
ligand subsystem, the present system being the simplest ex-
ample where these group modes can be studied. N
The model Hamiltonian used is

H—% z g, 0,0 + ZD [1_ —a(r—r‘)]2 (1)
ij=1

where the g;’s are the usual Wilson G-matrix elements’ that
couple adjacent bonds. The Morse potential parameters are
the same as those in Ref. 1, namely, D, = 84.1 kcal mol !,
a=154A"", and ¥ =154 A (cf. Ref. 1 for precise values
in a.u.). The r,’s in Eq. (1) are the bond distances and the
p;’s denote their canonically conjugate momenta. In order to
describe the energy transfer across the heavy atom, approxi-
mate energies E, and E, for both halves of the model chain
(the left containing / = 1,2 and the right containing / = 3,4)
are defined in such a way that the Hamiltonian (1) can be
rewritten as

H=HL +HR+VLR7 (2)
where

E, =H, =H,+H,+8,p P2 (3a)

Ex =Hy =H;+ H,+ 83,03 P4 (3b)

Vir =82P2P3 (3¢)

and H; (i = 1-4) denotes the Hamiltonian 6f the jith Morse
bond given by

H,~=£g,-,-p,?+D[l—e_a(’i_r;)]z. (4)
Equation (4) can be reduced to its normal form
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H, = Jo(1 —x.J}) (5)
using the usual action-angle variables* related to the bond
coordinates and momenta according to

2 1/2
= (1—[71—? g”p'] ) (6)
2 2D

2
= cos_'( z, — 1 4 (g, pi/22,D) ) . G
[1—2z + 27 + (g,-,-p?/ZD)]m
Here,

5’-’? = [wazgﬁ ] e Xiti— w;{/4D,

z;=exp[ —a(r, —ri)]. (8)

The trajectories were calculated with an initial excita-
tion energy E, of bond 1. All other bonds were taken to have,
at time zero, the zero-point energy value with the action
variable J; = 1 (in units of #i = 1), r; = r; and p, > 0. A pre-
dictor—corrector method® with double precision arithmetic
was first used to perform the numerical integration of Ham-
ilton’s equations of motion. All forward trajectories were
back integrated to check their reliability and the initial con-
ditions were found to be preserved for all but one trajectory,
discussed later, that at £, = 0.5 D. To back integrate the
latter it was necessary to go to the unusual step of using
quadruple precision.” All trajectory data given in the present
paper are now quadruple precision, with initial conditions
being preserved, on back integration, to within 0.01%.

In Fig. 1 the time evolution of £, and Ej is depicted for
an initial excitation of bond 1 to E, = 0.3 D. When averaged
over an ensemble of trajectories with the same initial excita-
tion energy E, and different phases for bond 1, the oscillating
components in E, and E, disappear, while the nonequili-
brated final distribution of energy is preserved. There is an
excess of energy in the originally excited left-hand side of the
molecule. While the excitation is redistributed between the
bonds 1 and 2 in less than a picosecond, no complete energy
transfer is observed across the heavy atom for a time of inte-
gration as long as 0.25 ns for the cited initial energy E,.
(Approximately 25 harmonic oscillations of each C-C bond
occur per picosecond. ) Results for only a portion of the total
trajectory time are given in Fig. 1, the remaining portion
being similar to that depicted there.

In Fig. 2 power spectra of the dynamical variable r, and
its symmetric counterpart r, are given for the above trajec-
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FIG. 1. Energy localization for £, = 0.3 D and ¢, = 0.5. Figure depicts E;,
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tory. The spectra show that the motion is regular (quasiper-
iodic). The coordinates have the same frequencies, as they
should in a coupled system, with a different intensity pattern
as expected. The four fundamental frequencies should ap-
pear in pairs, due to the symmetry of the model chain. The
fundamentals occur near @ = 3 and 7 (units in caption).

The trajectory used for Fig. 1 is characteristic of a group
of trajectories we will refer to as “localizing.” They are prev-
alent for initial conditions corresponding to the energy range
E, = 0.15t0 0.40 D (depending on initial phases, however).
“Nonlocalizing” trajectories prevail for energies £, <0.1 D.
In the latter, energy equilibration between the two halves of
the model chain is complete on the time scale of a C—C vibra-
tion. Power spectra for variables 7, and 7, for such trajector-
ies are rather similar to the r, power spectrum displayed in
Fig. 2.

When the excitation energy exceeds 0.4 D, the behavior
is different, although it is difficult to be precise about the
energy range in which this new behavior appears. In Fig. 3
the time evolution of E, is shown after an initial excitation of
bond 1 to an energy of 0.5 D. The trajectory is nonlocalizing
and its power spectra (Fig. 4) have a number of grassy
peaks; the model chain achieves a complete energy equilibra-
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FIG. 3. E;, fora (possibly) chaotic trajectory for £, = 0.5 D and ¢, = 0.5
(the same units as in Fig. 2).
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tion across the heavy atom after some induction period has
elapsed. In the corresponding power spectra for 7, and 7, in
Fig. 4, a grasslike collection of lines appears that partially
replaces the high frequency mode peak found in the previous
quasiperiodic trajectories. On the other hand, the two low-
frequency mode peaks, red shifted from their values in Fig. 2,
still appear to be sharply defined. A combination band at an
intermediate frequency has also become grassy.

Finally, at a still higher excitation energy of E; = 0.7 D,
the seeming chaos has disappeared. A typical result is shown
in Fig. 5 for the time evolution of E; and E, and in Fig. 6 for
the power spectra of r, and 7,. This result is an example ofa
localizing trajectory occurring for excitation energies E,
near D. The intensity pattern in Fig. 6 differs from that in
Fig. 1.

The above results summarize the different types of mo-
tion and energy transfer that we have encountered in this
model system.

Il. LOCAL GROUP MODE ANALYSIS

In this section the localization of energy described in
Sec. II is analyzed in terms of resonances between the local
group modes in each ligand, when the initial excitation of the
left ligand is in the moderate energy range, namely for quasi-
periodic trajectories in the range E, <0.4 D. Local group
modes involve a collective motion of the atoms of each li-
gand. The motion may be compared with that in a symmet-

ric triatomic molecule ABA, with m,>m . Here, the local-

ization is due to nonlinear resonances between the two local
bond modes®’ AB and BA. A similar phenomenon is expect-
ed to occur in the present symmetric model chain, with a
resonance now occurring between corresponding local
group modes of each ligand. Only one of the two local group
modes in each ligand, it will be shown, actively participates
in the localization of energy in the present case.

Relative Amplitude

FIG. 4. Power spectra of bond
distances r, and 7, for E, = 0.5
D and ¢, = 0.5 for the trajec-

tory used for Fig. 3 (the same
units as in Fig. 2).
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FIG. 5. Energy localization shown in the time evolution of E; and Eg.
E, =0.7D and ¢, = 0.5 (the same units as in Fig. 1).

The analysis of results in Sec. II is performed by first
identifying the local group modes of each ligand—metal sub-
system. In the moderate to low energy range in which they
occur (E, <0.4 D), we will presume they are somewhat per-
turbed from the harmonic local group modes, i.e., from the
standard normal modes of the ligand—metal subsystem. The
corrections to normal modes are found in Appendix A using
a Birkhoff-Gustavson perturbation scheme. In that analysis
the Hamiltonians H; and Hy in Eq. (3) are each cast into
normal form [Eqgs. (A11) and (A13)]. They are thereby

“expressed in terms of a polynomial in the local group mode

actions, a polynomial generated here using terms up to and
including fourth order analytically and sixth order numeri-
cally. The resulting H; and Hy do not depend upon the new
angle variables. The corresponding new action variables are
thereby, within this order of approximation, constants of
motion for L-M and M-R, respectively. Physically, the two
anharmonic local group modes in a ligand represent a pri-
marily C—C stretching motion (termed the “X mode”) and a
primarily C-C group vs M motion (termed the “Y mode”) B
The Y mode has a lower frequency of oscillation, due to a
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higher effective mass. This perturbation scheme also yields
the generating function needed to transform the original to
the new action-angle variables.

Once an approximation to H, and H, has been con-
structed in terms of the actions of the local group modes,
these expressions are introduced into Eq. (2), while the
complicated expression for ¥, in terms of action-angle co-
ordinates is expressed in terms of a Fourier series in the angle
coordinates @, and @, for the X and ¥ modes for the left
ligand and @, and @, for the equivalent X and ¥ modes for
the right ligand. The resulting equation is

o0

H='S 'S G UL )

n=1li4+j=n
+ Z Vk.’nm (Jx t] Jx’ L] "ry L] Jy‘ }
k. nm
xexp[ilke, + lp, +me, +ne,)]. (9)

In the standard Chirikov analysis”'® of nonlinear reson-

ances, only the leading terms of the expansion are usually
taken into account. In the present problem we make the
same approximation and see how well the results serve to
interpret the trajectory results. From Eq. (A11) and leading
terms of the Fourier expansion of ¥, the resulting reso-
nance Hamiltonian is''

H = mﬂx (‘fr + J:) + ﬂ'—’ny (Jy + Jy' ) _’{.\' (J‘-: + Ji,}
e )
— €& (‘Ix"rx' ) L2 COS(@X — Py )

—€,(J,J,)"? cos(@, — @) (10)
where the A >s are given in Eq. (A12) in Appendix A and the
s in Ref. 11. One omits thereby terms such as
cos 2(@, — @x) and crossterms such as
cos(@, — @y )cos(@, — @, ). However, the omission does
not decouple the (X,X ') modes from the (Y,Y") ones, since
there remain in Eq. (10) the A, crossterms.

New variables are next introduced via a canonical trans-
formation

I.=J +J., 0,=(@:+@)2,
I,=J,—J, 0.=(@.—@:)/2 i
I,=J,+J,, 6,=(p +@y)/2
_1' =Jy, —Jdy, 0, = (@, —@y)/2.

The new action variables 7, and Ty are particularly suited for
monitoring the extent of energy transfer across the heavy
atom, They describe what we shall call the X and ¥ motion of
the molecular system. Equation (10) becomes

2H =200, 1, + 200,I, — A, (T2 +12%)
— A, (I3 +12) — A, (LI, +1.1,)
— . (2 —T%)2c0820,
—€,(I2 —1%)"?c0s20),. (12)

As seen from the Hamiltonian in Eq. (12), /, and I, are
constants of motion in this approximation. Including all the
constants in a single term H,, Eq. (12) may be rewritten as

Time

FIG. 7. Time evolution of E, and Ej for nonlocalizing trajectory. E; = 0.1
D, 4, =0.5.

2H.—E) =412+ 4,12 +4,11,
e (12 —T2)Ccos 26,
+€,(I3 -?f,}"'lcosZ@y. (13)

The resulting Hamiltonian is equivalent to that of two cou-
pled hindered rotors, each having a potential which is depen-
dent on the action variables. Their momenta I, and }y repre-
sent differences between left and right local group mode
actions, as in Eq. (11).

Numerical calculations for the energy and the actions
are given in Figs. 7-14. They are made using the trajectory
data for the conditions in Figs. 7 and 10 and using the sixth
order actions (Appendix A) and the transformation equa-
tion (11). The time evolution of £, and of Ej is depicted in
Fig. 7 for a nonlocalizing group mode trajectory, and /, and
I, for this trajectory are plotted vs time in Fig. 8. It is clear
thatboth I, and I, are, as previously suggested, approximate
constants of motion. On the other hand, it can be seen in
Figs. 9 and 10 that both I, and ;"J. each undergo a change of
sign, i.e., they undergo an oscillatory motion. For the loca-
lizing trajectory whose energy in each ligand is plotted in

e 320

Time

FIG. 8. Approximate invariants of the motion for the I, and /, (sixth or-
der) modes of the molecule, corresponding to the trajectory used for Fig. 7.
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FIG. 9. Oxcillating regime near the resonance for I, for the trajectory of
Fig. 7.

Fig. 11, 1, and /, are again approximate constants of motion
(Fig. 12), I st111 oscillates (Fig. 13), but the motion of I
has become ‘rotational”, i.e., it no longer changessign dur-
ing the motion (Fig. 14). As a consequence there is no longer
a complete equilibration of energy between the two ligands.
That is, the X motion (primarily an antisymmetric ligand-
ligand motion) is responsible for the energy localization.

The above results and the behavior of the apparently
only partially grassy spectrum in Fig. 4 indicate that the X
and Y motions behave rather 1ndependently They also indi-
cate that although the ¥ motion is only oscillatory in the
examples given, the X motion has two accessible possibili-
ties, oscillation and rotation. A detailed understandmg of
this behavior is based on the following analysis.

When the frequency of the ] motion is significantly
faster than that for 7, as it is in Flgs 9 and 10 and Figs. 13
and 14, the A, term tends to average to zero during the slow
1, motion. Indeed, a subsequent numerical solution of the
equations of motion based on the Hamiltonian (13) showed,
for the conditions in Figs. 9 and 10, relatively little effect of
the coupling term /1xy7£7 - It produces the slow modulation
of the amplitude of the I, motion noticeable in Fig. 10 and, to
alesser extent, in Fig. 14. For the solution based on Eq. (13),
this modulation disappeared when A xp Was set equal to zero.
In what follows, we shall assume the I, and I motions to be

i

Tk e R
fmmm”‘”imi’f‘,
S S
0 160 320
Time
FIG. 10. Oscillating regime near the resonance for 7y for the trajectory of
Fig. 7.

Energy

Time
FIG. 11. Time evolution of E, and E for a localizing trajectory. E, = 0.15
D, ¢, =0.5.

largely decoupled by neglecting this A,, term. However,
when the frequencies of those motions become comparable
that term should be considered.

With the neglect of A,,, we may define an “energy” E,,,
where a refers to X or ¥:

2E, =A% +€,(J2 —T12)"c0s20, (a=2X,7Y).

(14)

The domain of interest in the phase space for g, and @,. is
(0,27) and, as one sees from Eq. (11), the correspondmg
domain for 6 and for 9 is ( — m,7). The potential in Eq.
(14) is periodic in b,, w1th period 7. Its maximum occurs at
8, =0and + 7 and its minimum at <9 = = 7. When the
full ( — 7,77) domain of 9 is covered in the motion, the
motion is “rotational”; when this domain is not fully ex-
plored 8, oscillates about the point 8, = 7/2 (or — 7/2).

A separatrix in the (7,,d,) phase plane separates the
rotational from the oscillatory I, motion. The energy E 3 for
the separatrix found by noting that T, vanishes on the separ-
atrix when cos 26’ reaches its maximum + 1. Thereby,
from Eq. (14), we have

Ei:%eala. (15
We next consider the conditions for’ L to oscillate (i.e., that

Time

FIG. 12. Approximate invariants of the motion for I, and I, modes of the
molecule (sixth order), corresponding to the trajectory of Fig. 11.
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FIG. 13. Rotating regime for I, for the trajectory of Fig. 11.

E, <ES) or rotate (E, > E3 ), and to understand why the
ease in attaining the “rotational” condition differs markedly
for I, and 7, (cf. Figs. 13 and 14).

We denote the maximum in I, during the motion by
I, Since it occurs at cos 20, = — 1, Eq. (14) shows that

OE, = ALT2 = e (T2 =72 )0 (16)
In the particular case that the initial value of J,, (@ = X or
Y) is either small or if, due to energy transfer with J,,,J,
becomes very small at some time during the motion, the

maximum value of 7, is seen from Eq. (11) tobe close to /.
In this case, Eq. (16) simplifies to

E, =, I%. (17)

From Egs. (15) and (17), one can easily determine the
conditions for the 7, motion to become localized on the hot
ligand (i.e., for the motion of 1, to become rotational),
namely for E, > ES. Since E,, grows quadratically with .,
as in Eq. (17), while ES grows only linearly with /,, as in
Eq. (15), the condition E, > E is realized when /, be-
comes large enough. When A, is small, as it is for the I,
motion, the condition E, > E3 becomes difficult to attain
and so the ?y motion remains oscillatory, as in Figs. 10 and
14, From Egs. (15) and (17), one sees that this condition
E,>ES is attained when I, exceeds a critical value of / <
given by

IS =¢,/A,. (18)
45}

o) {8 R I A R

O-ifliri,'llgll?|1!lllfI]|1.i]1|'|'IF'I!

T )
Time

FIG. 14. Oscillating regime resonance for ?,. for the trajectory of Fig. 11.

For the values of the parameters considered in Sec. II, one
finds A, = 6.24, €, = 11.44, 4, = 0.99, and €, = 65.98, all
in units of cm . Thereby, I =1.83 and / § =66.6. Examin-
ing the I,’s and /,’s in Figs. 8 and 12, it becomes clear why in
both cases the motion of 7, (Figs. 10 and 14) is oscillatory,
why it should remain so even at much higher values of ,,,
and why the I, motion is oscillatory in Fig. 9 (the Z, in the
corresponding Fig. 8 is about 1.5), but rotational in Fig. 13
(I. in the corresponding Fig. 12 is about 2.1).

Whether or not ,, ,, in Eq. (16) can attain a value near-
ly equal to I, during the motion and hence permit use of the
very simple Eq. (17), rather than requiring the use of Eq.
(16), depends on the initial conditions. If J. is made rela-
tively small initially, as in the present examples, Eq. (17)
becomes an increasingly good approximation to Eg. (16).

From Eq. (14), the frequency of the motion for I, can
also be calculated, for any E, and I,,. Equation (14) can be
rearranged to give an equation containing second and zeroth
powers of 12, expressed as a function of powers of cos® 28,
and E,,. This quadratic equation for the variable 12 canbe
solved and the phase integral I, then calculated:

i, =fﬁ?ﬂ(@“,gﬂ )dd,,. (19)

Here, the domain of @‘, is ( — m,m) for a rotational motion of
T, and from turning point to turning point in the case that T,
is oscillatory. The frequency @, of the I, motion is then
calculated from the standard formula

@, =dE,/dl, = (dI,/dE,)~". (20)

We omit any further details of @,, but merely note that a
numerical solution of the equations of motion based on the
Hamiltonian (13) gave good results for the frequency for the
I, motion when thereis a frequency gap of 7, and TJ. motions,
with or without the 4, term, at least if the system is not near
the separatrix. The 7, motion for the conditions in Fig. 13 is
a very close to the separatrix and so whether or not it is
localized (i.e., rotational) can also be sensitive to the initial
conditions. A choice of the initial value of 7, very close to I,
produced a rotational motion for the energy for Fig. 10.

We conclude this section by relating the preceding anal-
ysis to the matching or near matching of frequencies of the
subsystems. The Hamiltonian (14) serves as a “resonance’
Hamiltonian for transfer of action between the J,, and J,.
modes. It is more complicated than the standard Chirikov
Hamiltonian,®'° because the amplitude of this cosine term in
Eq. (14) can vary markedly from nearly zero to some appre-
ciable value, rather than being a nearly constant. The fre-
quency @, of theJ, motion within a ligand is seen from Eq.
(10), with the coupling terms 4,,, €,, and €, set equal to
zero, to be

w0, =0H /0], = 0oy —2AaJq- (21)

A resonance condition, and hence an extensive transfer of
energy between the J,, and J,, modes (a = X or ¥), occurs
when o, =, i.e., when J,, =J,., for similar ligands. If the
conditions are such that J, and J,, are sufficiently different,
which may require a high value of J, +J, and an initially
small J,., @, and , can be sufficiently different that a lo-
calization of the energy in the J, mode can be achieved. We

J. Chem. Phys., Vol. 84, No. 10, 15 May 1986
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have seen that this condition is difficult to achieve for the ¥
and Y’ modes (i.e., for the 7y motion)—there is too easy an
energy transfer between the L-M and M-R modes—but it is
achievable for the X and X ' modes. Thereby, the restriction
tothe energy transfer is concentrated primarily in the intrali-
gand modes J, and J,..

IV. DISCUSSION

From the results of Secs. II and I1I, the following profile
of the response of the system to increasing the excitation
energy can be given: The local group modes involve collec-
tive motions of the ligands of the heavy central mass. A low-
frequency mode in each ligand (the ¥ mode) has as its mo-
tion primarily that of the center of mass of a ligand vs the
heavy atom; a high-frequency mode (the X mode) can be
viewed as a relative motion of atoms within this ligand. Two
key couplings occur in the local mode interaction: that
between the modes of a particular ligand—metal atom sub-
system, and that leading to the resonances between modes of
the two subsystems. The rate and extent of energy transfer
results from the interplay of both mechanisms. The former
governs energy exchange within one ligand, while the latter
regulates its flow between ligands.

At least for a moderate degree of excitation, the I, and
Ty motions appear to be approximately separable. Simuita-
neously, the ligand-ligand interaction may be explained as a
1:1 resonance between equivalent modes (J, withJ,. andJ,
with J, ). For very low excitations, namely for E, less than
0.1D, the I, andI motions are both oscillatory. The motion
of the system is mdeed expected to be largely that of some-
what perturbed normal modes of the whole chain. As the
initial excitation energy is increased slightly, both the 7, and
the I motion continue to be oscillatory, with the I motion
havmg the higher frequency of oscillation for the llgand to

. ligand energy transfer. There is no barrier to the energy flow

in this region. Ultimately, the relatively small energy needed
to exceed that of the separatrix of the resonance in the I,
motion is responsible for the energy localization. Because of
this small critical energy, the 7,( motion changes, for higher
excitation, rapidly from oscillation about the resonance cen-
ter to rotation, while the 7 , motion is still quasiharmonically
oscillating. That is, the former, a primarily asymmetric li-
gand-ligand motion, serves to localize the energy while the
other, a primarily asymmetric ligand—M-ligand motion, still
transfers it. '
The 1:1 resonance approximation used in Sec. II ceases
to be valid when, at higher excitations, other X mode réson-
ances become accessible to the system. These resonances
arise from the neglected terms in the double Fourier expan-
sion of the coupling term ¥, in Eq. (9). As is well known,
the presence of several accessible resonances leads to an ir-
regular (“chaotic’”) motion whenever the resonances begin
to “overlap” (Chirikov theory), and power spectra then be-
come grassy. With this aspect in mind we next consider the
behavior in Figs. 3 and 4. A detailed analysis of this trajec-
tory is beyond the scope of the present paper, which focuses
instead on an analysis of the clearly quasiperiodic regime of
E,<0.4 D. However, a few remarks are in order. The most
striking feature in Fig. 4 (E, = 0.5 D) is that the low fre-

quency peaks remain sharp while the high frequency ones
and the combination band have become grassy. It follows
that the approximate separation of the (X,X ') motions from
the (Y,Y') ones found at E,<0.4 D continues at £, = 0.5 D.
The sharp low frequency lines show that the motion of I, and
I continues to be quasiperiodic. The grassy appearance of
the other bands cannot be due to I, moving outside a reso-
nance: A comparison of Fig. 9 with Fig. 13 shows that it

already did so at an E; = 0.15 D and indeed such a move is
expected to simplify the spectra. It could, of course, be due to
I, moving into a new isolated resonance. Then to explain the
grassy behavior in Fig. 4 one would presumably need to pos-
tulate that , and r, are complicated functions of I, ,Ty and of
the (X,X ') variables at £, = 0.5 D. (An isolated resonance
yields a simple spectrum, a set of equally spaced lines in a
single coordinate case, and hence the need to invoke compli-
cated functions for 7, and for 7,, yielding many Fourier com-
ponents.) Alternatively, the grassy appearance could be due
to the onset of chaotic behavior'? in the (X,.X ') motion. In-
deed, the inability to back integrate this trajectory in double
precision provides some evidence for this possibility. We
shall not attempt to resolve this interesting question in the
present paper.

Noting the above behavior of reducing to two separate
two-coordinate problems for this five-atom system, one in-
volving the X and X' motion and the other the Y and Y’
motion, we briefly consider the induction period observed in
Fig. 3. This induction period has been presumed in systems
of two (chaotic) degrees of freedom to be related to the mean
time'® needed to exit an area of phase space confined by the
remnants of an invariant torus.'*'¢ Such a confinement
need not occur in systems having a higher number of coupled
anharmonic degrees of freedom.

At very high values of E,( = 0.7 D) a second clearly
quasiperiodic regime for the entire system enters. We have
not studied and attempted to characterize it as yet.

The 7 motion was seen earlier to occur deep in a poten-
tial well, in virtue of the small value of A, and the large value
fore,, for the given I,. The 1, motion was seen to be closer to
the separatrlx Perhaps for this reason the I motion appears
to remain quasiperiodic in Figs. 3 and 4, wh11e the I, motion
showed a greater tendency to have a more complicated pow-
er spectrum (Fig. 4).

Using the above results, we next consider the behavior
which might be predicted for system with many coordinates,
i.e., for systems which approximate real molecules more clo-
sely. The Yand Y’ modes were primarily the low frequency L
vs M and M vs R motions, and are expected to remain so
when L and R each become larger than a mere CC bond. For
the conditions studied for Figs. 10 and 14, there was an easy
energy exchange between these L vs M and M vs R modes.
However, in large molecules this energy becomes typically
only a small fraction of the total. The X and X’ modes were
primarily CC vibrations and now become primarily vibra-
tions within L and R, respectively. At moderate energies
they ceased to exchange energy significantly, but at energies
where the power spectra became grassy they did so, though
only after an induction period. A similar behavior can occur
for the larger molecular system under certain conditions.

J. Chem. Phys., Vol. 84, No. 10, 15 May 1986



Lopez et al. : Intramolecular energy transfer 5501

One condition for this energy localization in the excited
ligand in larger systems is that there continue to be an ap-
proximate separation of the (X,X ') from the (Y,Y’) varia-
bles. In the present case, the frequency of the L vs M (and M
vs R) motion was substantially less than that of the modes
within L and R. Larger ligands will have some low frequency
modes. If they are not coupled to the (Y,Y ') variables, the
approximate separation of variables can again occur. It is
interesting to note therefore that in Ref. 2, which gave nu-
merical results for larger systems, there was little energy
transfer at moderate energies.

In the present analysis, attention has been focused for
simplicity on the kinetic coupling in the C~-M-C stretching
motions. Potential energy coupling and a bending C-M-C
coupling can also occur. This bond angle motion does not,
however, appear to be involved in any major low order reso-
nance (e.g., 1:1 or 1:2) with the C-M—C stretches, for the
real molecules that we have examined. The results of Ref. 2,
which included both of these additional couplings are there-
by of added interest.

Perhaps the most striking finding in the present analysis
is the approximate separation of variables in the primarily
intraligand-intraligand motion from those in the primarily
ligand-metal-ligand motion, a separation which appears in
the clearly quasiperiodic regime for E,<0.4 D and in the new
regime (E,~0.5 D) whose power spectrum is grassy for
certain lines and sharp for others.

The present calculations are classical. Some quantum
mechanical calculations have been made in our group on the
present system.'” We found that energy transfer occurs even
when little occurred classically and hence that it occurred in
that case by a tunneling mechanism and, thereby, at a re-
duced rate. Evidence is also obtained again for the approxi-
mate separation of variables. A detailed description of the
results will be presented elsewhere.
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APPENDIX A: PERTURBATION HAMILTONIAN FOR
.METAL-LIGAND SUBSYSTEM '

A perturbation technique is used in this appendix to find
the approximate constants of the motion for H, , and for H,
and to examine the transition from nonlocalizing to localiz-
ing group mode trajectories at excitation energies £, < 0.4 D.
For this range of energies, the vibrational modes in H; and
Hy cannot be too different from normal modes. Therefore, a
perturbation scheme is used, the reference Hamiltonian be-
ing the one for which normal modes are valid. The Morse
potentials are first expanded in a Taylor series around the
equilibrium position

J. Chem. Phys:., Vol. 84,

2 © n—1__
z D(l_e—-a(r,v'f))2=2D E (_l)n (2 l) an

i=1 n=2 n!

X[(ry—=7)"+ (r—r3)"].
(A1)

The Hamiltonian H, is then divided into two parts
where H, contains the quadratic terms

Hy,= %8111’% + %32217% + 8120102

+Da[(r =)+ (1, —15)?] (A3).

and ¥ the anharmonic corrections

V=S 2Da"v,
n=3
where
(—D"@R*~'-1
n!

ym —

[(ri =)'+ (rn—r)"].
(A4)

H,is an integrable Hamiltonian of a system that can be writ-
ten as the sum of two independent harmonic oscillators of
unit mass

Hy=4(p +p; + 05,x* + 05,p°). (AS5)
where x and y are normal mode coordinates obtained from r,

~and 7, by a linear transformation. In this notation x repre-

sents the high frequency normal mode and sow,, > @y, .

The anharmonic correction ¥ has the followring formin
these new coordinates:

V= Z 2 B,xy’, (A6)
n=3i+j=n

where the B; are combinations'® of the g,,, g,,, and g,, ap-
pearing in Eq. (A3).

There is, therefore, a classical nonintegrable Hamilton-
ian

H=}(p; + o0 x) + P +aby) + Y 3 Byxy!
n=3i+j=n
(A7)

which for low energies can be approximated with a few terms
and in which the nonintegrable part is a homogeneous po-
lynomial in the coordinates.

An appropriate procedure for this case that permits the
transformation of this Hamiltonian into a normal form, con-
sisting of a power series of one dimensional uncoupled har-
monic oscillators, has been given by Birkhoff'® and modified
by Gustavson? to include systems with commensurable fre-
quencies. This procedure has been reviewed elsewhere.?!

The Birkhoff-Gustavson method was implemented
with the aid of an automatic algebraic manipulator (SMP)?
to obtain H, (Hy ) in the normal form

HLzzH(n)zz 2 Cﬁ;l)[P)(cn)z_{_X(n)z]r

n n r+s=n

X [P+ Y] (A8)

This result can be achieved by successive canonical transfor-
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TABLE I. Coefficients of the sixth order normal form of H; (Hg).*

Lopez et al.: Intramolecular energy transfer

Co 1014244245 C,, — 6235703968 Cos
Co, 420.166 950 6 C, —09851352796 Cy
Ci, — 4.567716 084 C,  0.004999 26 Co

— 0.004 006 13
—0.049 362 9
0.038 3903

*Units of the C;’s are cm ™.

mations of the so called F, type, F ™ being the mth generat-
ing function:

Fém) =P’(‘m)X(m—l) +P;m)y(m—1)
+ WP PMX™-DY =) (A9)

where P{™ and P {™ are a new momenta and X "~ "’ and
Y ("~ are the old coordinates. The transformations equa-
tions are

X(m)=X(m_|)+aW(m) ’ yom Y(m_”+aw(m) ’
8P§'") aP;m)
pm-V —pm 4 AW m ’
ax =
e - aw(m)
Py =Py ks (A10)

where X ™ and Y ¢ are new coordinates and P ("~ "’ and
P{"~" are the old momenta.

The generating function # ™ was obtained analytical-
ly up to and including m = 4. The normal form of H, in-
cluding terms up to H ®is given by Eq. (A11) (the odd order
terms vanish)

H; = w0 Jy + 0oeJ, — AT % — A% — A T,

(Al1)
where
A, = __3_b + 156 % 31 (8w}, —3a},)
x 2 40 4600): 4a)0y (4w(2)x _ Cl)(z)y) ’
A= _Sp. 4 1563, | b3, (8w, —3wg,)
¥y 2 04 4a)oy 4w0x (40)%)}) _ w(z)x ) ’
Ay = —bp+ 3bosby; + 3b3obyy f“’o_y %22
@oy @ox (3 2)
2 - -
— 2a)Oxb 21 ) (Alz)

(wéy - 4w(2)x ) :
The b,’s are related to the coefficients appearing in Eq.
(A7), b; =B,-j/(a)6xa){,y)”2, and J, and J, in Eq. (A1l)
are the standard harmonic oscillator actions for the fourth
order variables X, P, Y, and P,.

These transformations have also been performed up to
sixth order when the numerical values of the model system
under study are used for wg,, @,,, and b;. The C;’s in the
resulting Hamiltonian

= : (6) y (&) (6)7

H, g;o CiIIT,
are given in Table I for all (i, j) pairs whose sum lies between
1 and 3.

This approximate Hamiltonian is well suited® for EBK
semiclassical quantization, and the accuracy of Eq. (A13)
has been tested, by comparing the EBK semiclassical eigen-

(A13)

values E 5€ obtained from Eqgs. (A11) and (A13) with the
quantum eigenvalues E £ obtained with a variational calcu-
lation using Morse wave functions as the basis set. In Table
I we present numerical values of EZ — E§ and of the
ES$€ — E5€obtained* with Egs. (A11) and (A13) fori<30,
together with the number of quantan, and », inthe Xand ¥
modes, respectively. For eigenvalues with less than ten quan-
ta in any mode, the quantity E:°— E3¢ reproduces
E 2 _ E§ within 0.1%. Therefore, it can be expected that
the actions J {* and J {* for the sixth order calculation rep-
resent with some accuracy the constants of the H; motion
for the range of energy containing at least up to the 30 quan-
tum states in Table II. Thus, for sufficiently low energy, the
motion of the C—-C-Sn model system almost lies on the sur-

TABLE I1. Comparison of variational eigenvalues E ¢ of H, and semiclas-
sical values E € obtained with Eq. (A11).2

E,Q— Eg E,-SC“) _ESCN) E?C(G) _EgC(G)
n, n, (em™1) (ecm™1) (cm™Y)
0 1 415913 415913 415.925
0 2 829.859 829.855 829.884
1 0 999.482 999.489 999.465
0 3 1241.81 1241.83 1241.85
1 1 1410.80 1410.83 1410.80
0 4 1651.75 1651.83 1651.80
1 2 1820.24 1820.21 1820.25
2 0 1986.49 1986.51 1986.45
0 5 2059.64 2059.86 2059.71
1 3 2227.76 2227.61 2227.78
2 1 2393.12 2393.28 2393.10
0 6 2465.46 2465.92 2465.55
1 4 2633.35 2633.05 2633.37
2 2 2797.92 2798.09 2797.94
0 7 2869.18 2870.01 2869.31
3 0 2961.05 2961.05 2961.00
1 5 3036.99 3036.51 3036.99
2 3 3200.90 3200.93 3200.93
0 8 3270.76 3272.13 3270.96
3 1 3362.88 3363.26 3362.86
1 6 3438.66 3438.00 3438.73
2 4 3602.03 3601.79 3602.06
0 9 3670.19 3672.29 3670.47
3 2 3762.96 3763.50 3762.98
1 7 3838.32 3837.53 3838.26
4 0 3923.22 3923.13 3923.13
2 5 4001.28 4000.69 4001.31
0 10 4067.42 4070.47 4067.82
3 3 4161.27 4161.67. 4161.34
1 8 4235.96 4235.08 4235.86

*n, and n, are the number of quanta in the X and ¥ modes. E and
E3® gare obtained to fourth order [Eq. (A11)] and sixth order, respec-
tively. E@ = 715.084 cm™!, ESC® = 714.258 cm~!, ESC® = 714257

—1
cm™
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face of an invariant torus of radii given by J {* and J {*. The
X motion in this torus mainly corresponds to the vibration
of the C-C bond with a frequency dH, /3J (* or, using Eq.
(Al13),

w0, = 3 iCPIOT TS
i=o ‘
whereas the Y motion corresponds mostly to the vibration
of the C—C center of mass against the Sn, with a lower fre-
quency

(Al4)

) (A15)

E4

N C®]© ] E
UZO JCPOIDIS
Comparison of the numerical values of these frequencies
using the C{*’s given in Table I shows the difference in
anharmonicities between the two group modes. The X mode,
with higher frequency, has also a larger anharmonicity (C,,
=6.3 Cy,).
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