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ABSTRACT

Intramolecular vibrational effects can modify considerably the effect of solvent dynamics on the rates
of electron transfer reactions, even for a fixed free energy barrier. Results of a previous paper by the
authors are applied in an approximate way to provide a simplified formula for the reaction rate. The
formula includes these effects and reduces to a well-known one of Kramers under appropriate conditions
and when, in addition, vibrational effects are absent. '

INTRODUCTION

It was with a sense of shock that we learned about the untimely death of our
colleague Rezo Dogonadze. One of us (R.A.M.) met Rezo only infrequently — and
not since 1971 — but his cheerfulness and the depth of his insight so evident in his
work will always be remembered.

Nowadays, in the electron transfer field to which Rezo devoted so much of his
interest, there have been an increasing number of studies on the possible extent of
solvent dynamics effects on some electron transfer rates. The work has been both
experimental and theoretical. Although Rezo’s bent was often towards the quantum
side of the electron transfer, his interest in relaxation was evident, and we could well
have imagined his plunging into this new area. In the present paper, dedicated to his
memory, we would like to describe some of our recent work in this field [1,2]. Our
study revealed to us the richness of the phenomenon involved, which includes the
role of inner (vibrational) and outer (solvent) contributions, the potential occurrence
of a non-exponential decay rate in the relaxation and, in general, various aspects
which sometimes require the supplementing of transition state theory. A number of
the salient findings are described, together with a relatively simple expression which
summarizes to a reasonable approximation the extensive results we obtained for one
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of the important relaxation times in ref. 1. The reader is referred to that article for
the derivation of the formula.

THEORETICAL CONSIDERATIONS

We have considered earlier experimental [3-7] and theoretical {§-15] literature in
solvent dynamics and electron transfers [1,16]. These theoretical studies have been
concerned, for the most part, with systems in which there is little or no vibrational
contribution to the Gibbs energy * barrier, and in which, typically, the lowest
eigenvalue (“steady-state behavior”) has been calculated for the dynamics. The
influence of the vibrational contribution can be nevertheless quite dramatic, in-
fluencing the rate even by orders of magnitude for a fixed total activation Gibbs
energy barrier AG* [1]. When AG* was small and when, in addition, the solvent
contribution was dominant, the reaction time approached a solvent dielectric
relaxation time 7, defined later in eqn. (13) [1]. At fixed AG*, the vibrational term
influenced the conditions under which this reaction time came closer to the
reciprocal of the usual thermal equilibrium rate constant k. given by current
theories of electron transfer [1]. At fixed AG* the vibrational term affected not only
the pre-exponential factor in the rate constant, an effect sometimes treated, but also
the other factors.

We first outline briefly the treatment given in ref. 1. Typically, an electron
transfer reaction requires suitable fluctuations in the solvent dielectric polarization
at each point in the solvent. The fluctuations are needed so that this polarization
can change from a function appropriate to the charge distribution of the reactants
to one appropriate to that of the products. In treating the solvent dynamics it is
convenient to introduce a scaled progress variable (coordinate) X describing these
fluctuations along the most probable path in some “polarization space”. An
example of X is given by Zusman [9] and by Calef and Wolynes [13]. One can well
imagine that a Lagrangian multiplier m which appeared in an early paper [17]
would also serve as this X.

With this generalized solvent polarization coordinate X the differential equation
for the probability P(X;¢) of finding the system with a particular X at time ¢
satisfies, in the “overdamped case”, a diffusion equation containing a reaction term
k(X):

P P . Dd dv

a1 _D3X2+kBT8X(PdX) k(x)P (1)
Here, D is related to the solvent relaxation time 7, being equal to kgT/7;; V(X)is
a “potential”’, namely the Gibbs energy of formation of the fluctuation defined by
X. The k(X) depends on X in the following way: For each X there is an
intersection of the reactants’ and products’ potential energy surfaces, and electron
transfer can occur there (thereby satisfying the Franck-Condon principle). The

* More commonly known in the U.S. as the Gibbs free energy.
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vibrational reorganization needed to reach the “intersection surface” depends on
this X. (The connection is given by eqn. (3.4) of ref. 1 and is seen graphically in Fig.
1 there.) The vibrational Gibbs energy barrier for the reaction of a system at that X,
AG*(X), is given in terms of the usual [16] A-reorganization terms and the standard
Gibbs energy of reaction in the prevailing medium AG® by [1]

AGH(X) =3(X = X.)’(Ao/A)) (2)

where A_ is the A from the solvent outside any inner coordination shell of each
reactant and A, is the vibrational contribution. Further,

X.=(A+46°)/(24,)""" (3)
and the rate constant k( X) for a system at that X is given by
k(X)=», exp| —AG*(X)/kyT] (4)

In turn, », is given in ref. 1. The standard (thermal equilibrium) expression for the
rate constant k., is obtained by multiplying k(X) by the thermal equilibrium
distribution of X and integrating over all X; k_ can be written as » exp(—AG* /kpT),
where AG* has the usual value (A/4)(1+ AG°/A)? [1,16], with A=A_+ A,. De-
pending on whether the k. is for an adiabatic or non-adiabatic reaction, » is given
by its usual values, as in eqn. (4.10) (and footnote 28) or eqn. (4.12), respectively, of
ref. 1.

Equation (1) has been written for the case of an intramolecular electron transfer,
or for the case of a bimolecular electron transfer in which, to simplify the
calculation, the reactants are regarded during the polarization fluctuation process as
being held in some solvent cage. In the latter case one also considers the transla-
tional diffusion of the two reactants towards and away from each other, resulting in
their entering and leaving the cage. The D in eqn. (1) refers, instead, to the solvent
orientational relaxation “diffusion constant”.

Solution of the partial differential equation (1) is, of course, not a straightforward
problem. Solutions or approximate solutions have been given earlier for special
cases, such as when there is essentially no vibrational contribution to the barrier,
[e.g. 9,11,18]. In the latter case k(X) becomes proportional to a delta function of
X — X_. A steady-state approximation to the latter problem was given, for example,
in a different context, in a pioneering paper by Kramers [18]. However, because the
vibrational contribution plays such a major role in many electron transfers it was
desirable to obtain a more general solution.

Because of the solvent orientational diffusion, the kinetic decay law associated
with the solution of eqn. (1) is not necessarily a single exponential. An initial
transient setting-up of a steady-state distribution of X occurs, for example. Because
of this potentially highly non-exponential behavior it was convenient to introduce a
survival probability Q(7)

0(1) =fP(X;t)dX (5)

and then to define [1] two kinds of average survival time, 7, and 7,. The first of
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these is the “mean first passage time” and characterizes, particularly, the behavior
at short times:

= [ l-do() arde= [0 (r)ar (6)

This 7, (and indeed 7, below) can be much less than the dielectric relaxation time
T when there is some vibrational contrlbutlon to the activation barrier (cf. Figs.
2-4 [1)D.

In intramolecular electron transfers the initial transient may be obscured by the
experiment. For example, the transient can occur in some photo-induced intramo-
lecular electron transfers within the laser pulse used to initiate the reaction. We
therefore introduced in ref. 1 an average survival time r, of the second kind, defined

by
n= [ 10()ay [“o(ar (7)

The 7, describes information for a time regime later than that described by .

Only in the case of single-exponential decay are 7, and T, equal. Indeed they
then also equal the reciprocal of the steady-state rate constant k.. The approximate
calculation of 7, and 7, is somewhat simpler than that of Q(r) and serves to provide
experimentally useful information.

To solve eqn. (1) approximately, a “decoupling” approximation was introduced
into a second-order term [1] and, via a function k, added care was taken to
represent the short-time behavior. It was then shown that the resulting solution led
to the correct description for four limiting situations and hence there was some hope
that it was a reasonable approximation for the more general case. These limiting
situations consisted of:

(1) the slow reaction limit, where the orientational diffusional process is rapid
relative to the intrinsic reaction rate (77! > k),

(2) the “wide reaction window” limit (A,/A, > 1), where the “width” of the
“reaction window” in X-space is larger than the thermal width of the distribution of
X,

(3) the “narrow reaction window” limit (X,/A, < 1), which in the limit corre-
sponds to k( X)) being a delta function and

(4) the non-diffusing limit, where 7, approaches a value so large that Q(t)
becomes independent of 7. In effect, reaction occurs without solvent orientational
dipolar fluctuations.

Upon obtaining an approximate solution of eqn. (1) or more precisely a solution
for 7, and 7, plots were made of the quantity Tk, (j=ab) vs. 7k, for various
values of AG*/kyT and of A,/A . (It was shown in ref. 1 that 1k, depended only
on these dimensionless variables.) In these plots each of the four limiting regions
could be seen, as could the regimes where there is single-exponential (1, =,) and
non-single-exponential decay. The plots are given in ref. 1. However, it would be
particularly desirable for comparison with experiments to have an easily used simple
formula, particularly for 7.
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TABLE 1
Values of the factor F for the various values of AG*/kgT and of A; /A,

A/N,  AG*/kgT

0 1 2 3 5 10 15
0 0.6932 3.583 9.696 23.42 133.1 13,090 1,552,000
0.2 0.2531 2.125 5.551 12.17 53.54 2686 174,100
0.5 0.1362 1.547 3.883 7.930 28.77 805 29,180
1 0.06934 1.095 2.627 4.989 14.87 216.8 3929
2 0.02901 0.7020 1.597 2.811 6.850 48.61 378.5
5 0.007025 0.3410 0.7305 1.188 2.371 8.216 24.69

A simple formula was indeed derived in ref. 1, but seemingly for the relatively
stringent condition that the reaction time k/ ! be substantially greater than 7,
where k., is the rate constant given by the formula. In this case, the decay of Q(7)
was single-exponential and so 7, and 7, became equal to each other and to the
reciprocal of the “steady-state” rate constant. However, this condition is too
stringent for many interesting applications. If, instead, in an equation for 7, (eqns.
(7.7) and (7.9) of ref. 1) the sum of the k. 2 terms were relatively small (perhaps by
partial cancellation), then one sees there that 7, is given by the same relatively
simple formula (the right hand side of eqn. (8.3) and, hence, of eqn. (8.3")). The
conditions for this possibility remain to be investigated, but for the moment we shall
use it as a hypothesis and test it for the range of variables considered in ref. 1.

This expression for 7, is then given by

o=k '+ Fr, | (8)
where F(A,/\,,AG* /kgT) is (1]

F=In[201+¢?) /(1 +¢)’] + 2f’dx[exp{(1 — X?)AG* kT —1]/(1-x%) (9)
with

C=[>\i/(>\i+2>‘o)]l/2 (10)

Equation (8) has the right functional form: 7, equals k, ! when 7, is very small,
and is expected to be proportional to 7, when 7,_is large. The integral in eqn. (9) is
readily calculated using a standard numerical integration technique *. Values of F
for various values of AG* /k,T and X,/ are given in Table 1. The reciprocal of
the 7, in eqn. (8) is the quantity typically to be compared with experimentally

* A Gaussian quadrature technique was used, employing Legendre polynomials {19]. We are indebted to
Mr. Steve Klippenstein for the integration.
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measured rate constants. An approximation to the integral in eqn. (9) is also
available *.

In ref. 1 and hence in eqn. (8) one approximation used was that a reacting system
which crossed to the products’ potential energy surface upon electron transfer did
not diffuse back to the reactants’ surface. This approximation affects the results by
a factor of between one and two for a reaction for which —AG® > 0, depending on
the conditions, and was made purely for simplicity of presentation of an already
complicated analysis. (It will be removed in a subsequent article.) The closeness of
7, and of the steady-state value for 7 was already seen in the treatment of Q(¢) for
the “narrow reaction-window” limit (Appendix E of ref. 1). Here, for the case of

| AG* /kyT | < 1, Q(t) was found to be

Q(t) =(2/m)sin ~"exp(—t/7) (11)
In this case, Q(1) is seen to behave as (2/7) exp(—¢/7 ) when 1> 7. Thus, the
reciprocal of the “steady-state” rate constant is 7. For comparison, 7, and 7, are
seen in ref. 1 (eqns. 9.1, 9.2) to be about 0.697, and 0.947, respectively. Thus, the
steady-state 7 is only 6% different from 7, in this limiting case. The difference
between 7, and ,, (here, about 25%) increases markedly when both A,/A, and
AG* /k T are increased from this limiting region where they are both zero, particu-
larly when 7k, is large [1]. The difference between 7, and 7, may then be orders of
magnitude. :
It was shown [1] that Kramers’ well-known equation [18] for the steady-state rate
constant can be obtained as a limiting case of eqn. (8), apart from the factor of two
mentioned earlier, namely when (2A,/[2A, + A;])AG* /kT and 7 are sufficiently
Jarge. The precise conditions are given in ref. 1. The equation, apart from a factor of
two, is [1]
k' =1 (AG*/mkyT) "> exp(AG*/kyT) (12)
We next compare eqn. (8) with a sampling of the results for 7, in Figs. 2-4 of ref.
1. The comparison, on a logarithmic basis, is made in Table 2. (In ref. 1 7,k was
obtained for AG* /kzT=0,1,2, for \;/A,=0,02,0.5, 1, 2, 5 and for 7 k., varying
from 10~2 to 10%) Remembering that a factor of 2 corresponds to a logarithm of
0.3, it is seen that eqn. (8) indeed gives a good description of the results, considering
that 7 k, varies by over three orders of magnitude, and that it differs from 7 k.
under some conditions by more than two orders of magnitude in one direction and
under other conditions by two orders of magnitude in the opposite direction. Thus,
the differences between the 7k, calculated from eqn. (8) and that obtained in ref. 1
are relatively small (a factor of two in several instances not shown in Table 2).

* For some purpose it is useful to have an approximation to the integral in eqn. (9). The grid of points
mentioned in the text lie in the domain 0 < AG*/kpT <15, 0 < A; /A, < 5. When tested for this grid of
points the expression [1] (m/4x) 21— 1)1 exp(x) erfc ,/czx agreed with the value of the integral to
about 30% or better. Here, x is AG*/kT and erfc Z is the tabulated complimentary error function. For
points outside the domain the expression should be tested further. (It is low at low x. With increasing x,
at fixed c, it overshoots the exact value of the integral until at very large x it approaches the latter.)
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TABLE 2

Comparison of values of log 7,k obtained from eqn. (8) and from ref. 1

Tk, ref. 1 eqn. (8) ref. 1 eqn. (8) ref. 1 eqn. (8)
(Ai/k():O) (Ax/xo=0) (Ai/xo=1) (>\l/}\0=l) (Al/A():S) (Ai/xo':s)

AG* /k T =0
1072 0.00 0.00 0.00 0.00 0.00 0.00
1071 0.03 0.03 0.00 0.00 0.00 0.00

1 0.25 0.23 0.03 0.03 0.00 0.00
10 1.00 0.90 0.23 0.23 0.02 0.03
102 1.98 1.85 0.84 0.90 0.14 0.23
103 2.97 2.84 1.72 1.85 0.67 0.90
AG* /k T =2
1072 0.04 0.04 0.01 0.01 0.00 0.00
107! 0.30 0.29 0.11 0.10 0.03 0.03

1 1.05 1.03 0.61 0.56 0.26 0.24
10 2.01 1.99 1.52 1.44 0.89 0.92
102 3.01 2.99 2.50 242 1.73 1.87
10° 401 3.99 3.49 3.42 2.68 2.86

Moreover, the accuracy of eqn. (8) is expected to increase with increasing AG* /k T
(cf. conditions [1] for the validity of eqn. 8.3). We indeed intend to test eqn. (8) for
larger values of AG* /k T elsewhere.

Typically, it has been formulas such as Kramers’ and related equations which
have been applied to experimental data. However, in some cases they may have
been applied under conditions for which they were not designed. Conditions for the
validity of Kramers’ expression are given in section VIII of ref. 1.

We conclude with some remarks on 7, and on the application to the experimen-

tal data. The quantity 7, is commonly written in the literature as [20] *
U TD€0/€S (13)
where 7y, is the usual (“constant field”) dielectric relaxation time (in particular, the
lowest frequency one when there are several), €, is the static dielectric constant and
€ is its “high frequency” value, interpreted by different authors in the multiple-re-
laxation case as the optical value (square of the refractive index) or the value on the
high frequency side of the lowest frequency dispersion curve (a microwave value).
We have discussed this topic elsewhere for alcohols [2] and, assuming Debye-type
relaxation, it was argued that in the multiple relaxation case the optical value for ¢,
would be appropriate if the solvent surrounding the (organic) solute were largely in
a cluster rather than a partially cluster—partially monomeric form.

On the basis of the analysis in ref. 1, i.e., without using the approximation
embodied in eqn. (8), we can consider when 7, is expected to equal to 7, . One sees
in Figs. 24 there, that this condition prevails only when AG*/k,T=0, A,/A_ =0

* A related (“dipolar”) 7 has also been employed [14] and discussed [2].
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and 7 k., > 1. Since the occurrence of 7, =7 (with ¢, equal to the optical value)
appears to have been established for the intramolecular electron transfers studied by
Kosower and co-workers [3] (photoinduced organic intramolecular charge transfers,
with some internal twisting motion) these conditions presumably apply in those
experiments.

However, there are differences in the experimental literature regarding whether
the charge transfer step (e.g., for dimethylaminobenzonitrile in 1-propanol) obeys a
single exponential or a multiexponential law [21]. The laser pulses used were in the
neighborhood of about 5-10 ps duration. By virtue of the desirability, for under-
standing the role of solvent dynamics, of determining whether or not the reaction is
described by a single exponential, it would be highly desirable to extend such
experiments by using shorter pulses, of the 1 ps or 100 fs variety. The various types
of relaxation time could then be calculated from the data and compared with
theoretical estimates [1].

It is clear from Figs. 2—4 of ref. 1 that for any AG* /k,T the deviation of 7, from
the equilibrium-calculated value k' is the greater the smaller the value of A, /Ao
With this result in mind it is interesting to consider the case of solvent effects on the
rates of electron transfer of metallocene redox couples, both for the electrochemical
and homogeneous systems. Weaver and co-workers [5,6] pointed out that the solvent
effect in this case was not well represented by the usual electron-transfer theory
expression, although it was reasonably represented in some other reactions and also
[6] in the optical transition for a bridged bi-ruthenium pentammine system. They
attributed the discrepancy in the metallocene case to solvent dynamical effects, and
showed that with some inclusion of these effects the discrepancy was reduced,
though the final results still left much to be desired. The treatment used did not
have available a proper inclusion of the role of A,/ though, to be sure A,/ is
small for these reactions. Also, unlike the intramolecular vibration frequencies
which contribute to k(X), the best choice of the contributing frequency for the
solvent is currently uncertain, an uncertainty reflected, for example, in the variety of
choices for v, in ref. 5. Because of some differences [5] found in the homogeneous
and electrochemical systems, however, any detailed interpretation of the experimen-
tal results may require some caution.

The electron transfers discussed above involve the transition from one potential
energy surface to another. A much simpler system than this is one in which the
solvent relaxation accompanies an intramolecular electron transfer on a single
potential energy surface. This problem was treated in ref. [2], together with existing
experimental data. The latter are very few (only one system thus far, it appears [4]).
The theory for such systems [2,14] is much simpler than that [1] for the two-poten-
tial energy surfaces’ problem.
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