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Quantum and classical vibrational energy transfer between two ligands separated by a heavy atom are compared for a model
system, one ligand being vibrationally excited initially and the other unexcited. Similarities and differences of quantum and
classical results are noted. The approximate separability of certain modes simplifies the interpretation.

1. Introduction

There has been recent interest in the effect of a
heavy central atom on intramolecular vibrational re-
distribution [1—5]. Experimental studies on some or-
ganometallic compounds have suggested that a heavy
metal atom may reduce the energy transfer between
the ligands [1], while in another study on a somewhat
different system this effect was not observed [2].
Several classical trajectory calculations on models of
ligand—metal atom systems have also been reported
[3—5]. Studies were made for a non-bending seven-
atom chain C—C—C—M—C—C—C [3], an analogous
five-atom chain [5], and a much larger system [4].
Analytical results were given for the five-atom sys-
tem (four coupled Morse oscillators) [5] and com-
pared with trajectory results. A condition that the
analysis be applicable or extendable to larger and
hence more realistic molecular systems was also de-
scribed [5].

Quantum and classical dynamical calculations are
presented and compared here for the model system
studied in ref. [5], the initial state in each case being
that of excited “local group modes” described below.
The initial classical states are chosen by a semiclas-
sical procedure to permit a direct comparison with
the quantum results. The methods used for the cal-
culations are outlined in section 2 and the preliminary
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quantum and classical results for the model system
are reported in section 3. In section 4 these results are
discussed. Implications of the quantum—classical
comparison for classical trajectory studies of uni-
molecular reactions are also noted.

2. Theory

We first recall several results obtained in our earlier
study [5], where both the C—C—M—C—C system and
the C—C—M subsystem were investigated. In this
study the C—C bond in one ligand was initially excit-
ed (the other bonds had zero-point energy) and ener-
gy transfer to the other ligand was examined, The
concept of anharmonic collective modes (local group
modes) for the C—C—M subsystem was introduced.
They were calculated using sixth-order Birkhoff—
Gustavson perturbation theory, the unperturbed
modes being the (harmonic) normal modes of the
C—C—M subsystem. The resonant coupling of the
C—C—M and M—C-C modes was then investigated
analytically, supplementing the trajectory studies.
The local group modes of the C—C—M ligand —metal
subsystem were found to be of two quite different
types. One such anharmonic group mode was largely,
though not entirely, a ligand mode (termed the X
mode). For the initial excitations studied it showed
little energy transfer at moderate energies to the un-
excited ligand but extensive exchange at low energies.
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The other (termed the Y mode) was primarily,
though not entirely, a C—C versus M vibration. It
showed extensive energy exchange with the Y mode
of the other ligand in both energy regions.

There are a number of advantages in introducing
these X and Y local group modes: (1) There is an ap-
proximate separation of variables for these two
modes, even when they are coupled to X and Y
modes in the second (M—C—C) subsystem [5]. This
approximate separation arises because of a frequency
gap of the X and Y modes, and occurs except near
the “separatrix” of the X motion in C—C-M-C-C
[5]. (2) They facilitate the comparison of classical
and quantum results, as described later. (3) Their use
in the quantum calculation itself is advantageous:
Initial quantum calculations using states of local
bond mode Morse oscillators, instead of local group
mode oscillators, as the basis functions showed con-
vergence difficulties due to the large kinetic coupling
between the zeroth-order bond mode Morse oscillator
states. To avoid this difficulty, the eigenstates for
each subsystem, C—C—M and M—C—C, were first ob-
tained by “prediagonalizing” the couplings in these
two subsystems. The new states thus obtained cor-
respond to various excitations of the two local group
modes of C—C—M (and similarly for M—C—C). Next,
symmetrical and antisymmetrical products of the
eigenstates of C—C—M and M—C—C were used as ele-
ments of a basis set to represent the Hamiltonian of
the total system, which includes the kinetic energy
coupling of the two subsystems across the heavy
mass M. In this way convergence was obtained more
readily for the full system, compared with that when
the bond mode basis set was used.

In the quantum calculations the initial non-station-
ary wavefunction was chosen to be the product of
two local group mode wavefunctions, one for each
subsystem, which was then propagated in time. The
identity of each eigenstate of a subsystem was de-
termined using a classical analysis for local group
modes and semiclassical methods. The Hamiltonian
and the molecular parameters used were those in ref.
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where the g are the usual Wilson G-matrix elements
[6] that couple adjacent bonds i and j. The Morse
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potential parameters are the same as those in refs.
[3,5], the r; are the bond distances and the p; are
their canonically conjugate momenta. From the eigen-
values and eigenvectors of the system C—C-M—-C—C
and a knowledge of the initial state, all determined as
above, the expectation value of the energy in the ex-
cited subsystem, C—C—M, was then determined as a
function of time. (The kinetic energy coupling term
873D, D3 across the heavy mass was small and was not
included in the energy of the C—C—M subsystem dis-
played in figs. 1-4.)

Classical trajectories were also calculated to com-
pare with the quantum results. The adiabatic switch-
ing method [7] was used to prepare an initial classic-
al state having the desired quantized anharmonic
local group mode action variables for the C—C—M
and M—C—C subsystems, These initial action variables
correspond semiclassically to the initial local group
mode quantum numbers of the two uncoupled sub-
systems in the quantum calculation. Results for the
eigenvalues of C—C—M obtained in this way are
given in section 3.

Because of the absence of degeneracies, the adia-
batic switching method gave excellent results. In par-
ticular, the final C—C—M—C—C energy, after the
adiabatic switching but before the g3p,p; term was
introduced, was independent of the initial phase of
the trajectory. An initial zeroth-order (harmonic)
classical state before adiabatic switching consisted of
some excitation of the normal modes of C—C—M
(M—C—C) in a harmonic Hamiltonian and had speci-
fied action variables. It was used to prepare by adia-
batic switching an actual group mode state of C—C—M
(M—C—C) having the same action variables. (The
fourth- or sixth-order perturbation theory had establish-
ed earlier the correspondence between the harmonic
states of C—C—M and those of the anharmonic
C—C-M [5].) The adiabatic switching thus involved
the slow conversion of the harmonic potentials to the
Morse bond potentials to obtain the desired anhar-
monic group mode trajectories. Switching times of
50, 100 and 200 C—C vibrational periods (1.9, 3.8
and 7.6 ps) were used and gave essentially the same
results for the eigenvalues. The 100-period switching
time was used in the calculations reported below.

An ensemble of these trajectories, each prepared
by adiabatic switching and having the same initial ac-
tion variables and a random selection of the four ini-
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tial phases for the harmonic system, was then used
to calculate the ensuing dynamics. Only forty such
trajectories were used for the present preliminary
calculations in each case. The average energy in the
C—C—M subsystem was then computed as a function
of time after this C—M—C coupling was initiated.

3. Results

The 1n1t1a1 exc1tat10n is denoted by (nx, nY)
where the nx and nY denote the number of quanta
in the X and Y group modes in the first subsystem
(the “left subsystem”) C—C—M. (This description of
the states is the one used in table 2 of ref. [5].) The
initial state assigned to the X and Y group modes in the
second subsystem M—C—C was the ground state
[(n n%) (0,0)]. Thus, the initial state of the entire
system is a product of the (nX, nY) state of C—C—-M
and the (0,0) state of M—C--C. In the figures the ener-
gy of the C—C—M in atomic units is plotted versus
time in picoseconds. Results were obtained using ini-
tial C—C—M states of (nk, n¥) = (4,0), (0,10), and
33).

We first report the results of the semiclassical quan-
tization procedure used to identify the local group
mode quantum numbers in the quantum calculations
and to prepare the corresponding trajectories in the
classical calculations. The semiclassical eigenvalues ob-
tained by the adiabatic switching method for these
states were 3923.16, 4067.60 and 4161.25 cm ™!,
respectively, for energies in excess of the zero-point
energy, while those obtained [5] by sixth-order Birk-
hoff—-Gustavson perturbation theory were 3923.13,
406782 and 4161.34 cm™! . The quantum mechanic-
al eigenvalues which were closest to these semiclassic-
al eigenvalues were 3923.21, 4067.42,and 4161.27
cm™1 , respectively [5], and this matching provided
a simple identification of the local group mode quan-
tum numbers of these states in the quantum mechanic-
al calculations. The convergence of the quantum cal-
culations themselves was tested by increasing the basis
set for C-C—M—C—C from 1764 to 2500 basis func-
tions, and no significant difference in eigenvalues, to
twelve places, was found. In addition, no significant
difference was found for the various expectation
value plots in figs. 1—4.

The quantum and classical results for the
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Fig. 1. Energy of C—C—M subsystem in C—C—~M—C—C versus
time, when the initial excitation is (4,0), and the M—C—-C s
initially in the state (0,0). Upper curve: classical. Lower curve:
quantum.

C—C—M—C—C system with an initial state of (4,0)
for C—C—M are given in fig. 1, and the quantum re-
sults for a longer time are given in fig. 2. This excita-
tion represents one of an X-type group mode with a
C—C—M energy of 0.021 auor 0.16 D. In figs. 1 and
2 it is seen that in the quantum case there is a periodic
transfer of energy from one side of the molecule to
the other. The corresponding classical results, also
given in fig. 1, show no energy transfer.

In fig. 3 the energy of the C—C—M subsystem is
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Fig. 2. Quantum results for conditions same as fig. 1 but plot-
ted for a longer time.
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Fig. 3. Same as fig. 1 but for a (0,10) and (0,0) excitation of
C—C—-M and M—-C—-C, respectively.

plotted for an initial excitation of (0,10), which cor-
responds to the excitation of a Y-type group mode of
C—C—M. The rate of transfer is much more rapid,
both classically and quantum mechanically.

The time behavior of the energy of the C—C—M
subsystem for an excitation of the initial state (3,3) is
given in fig. 4. This state is a combination state of ex-
cited X- and Y-group modes, and shows a behavior
characteristic of each (cf. figs. 2 and 3).

The mean energies (H) for the wavepackets describ-
ing the states with initial excitations of (4,0), (0,10)
and (3,3) for C—C—M and (0,0) for M—C—C were
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Fig. 4. Same as fig. 1 but for a (3,3) and (0,0) excitation of
C—-C-Mand M—C—C, respectively.
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calculated to be 2.44 X 1072, 2.50 X 10~2, and 2.55
%1072 au, respectively. (/ denotes the full Hamiltoni-
an of C—C—M—C—C.) The root mean square deviation
(H?) — ()Y of the energies of the initial wave
packet was, in each case, relatively small, being 2.6
X107*,7.2 X10~*, and 4.5 X 104, respectively.

4. Discussion

In the case of the excitation of the (4,0) state in
fig. 1, no energy transfer occurs classically for the
sample of trajectories used. In contrast, a periodic
energy transfer (figs. 1 and 2) occurs quantum
mechanically and is apparently due, therefore, to a
classically forbidden process (“tunneling”). The period
of the energy transfer is seen to be about 50 ps.

The behavior when the initial excitation is (0,10),
namely of the Y mode, is seen in fig. 3 to be quite
different, although the initial energy is approximate-
ly the same. The transfer of energy in both the clas-
sical and quantum cases occurs much more rapidly,
each with the same period of about 0.5 ps for the
high-frequency oscillation. This period agrees well
with that computed numerically from the relatively
simple classical resonance Hamiltonian derived using
perturbation theory in ref. [5] (eq. (13)). The oscil-
lation in energy of C—C—M is approximately from
the initial excitation of the C—C—M subsystem to its
zero-point energy and then back again. Also seen in

-« quantum plot in fig. 3 is a damping to a near-
stationary value which corresponds to an equal en-
ergy on each side of the molecule. Subsequently the
amplitude of oscillation again increases and ultimate-
ly the slow time behavior observed in this figure will
repeat itself, A detailed comparison of the quantum
and classical longer time behavior is not appropriate
at this time, in virtue of the small sample of classical
trajectories.

An initial excitation of the (3,3) state (fig. 4)
yields a time dependence in the quantum case for the
energy of the C—C—M subsystem whose qualitative
appearance is that of a combination of that in figs. 2
and 3. It shows the rapid oscillations of energy found
for a Y-mode excitation (fig. 3) and the slower oscilla-
tion seen for an X-mode excitation (fig. 2). The clas-
sical result itself does not show the slow energy oscil-
lation found in the quantum result (nor did it for the
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(4,0) case). The high-frequency oscillation is again
similar for the two results. This behaviour for the
(3,3) excitation, namely being approximately the
superposition of that for the X-mode and for the Y-
mode excitation, can be interpreted in terms of the
approximate separation of variables used to analyze
the classical results in ref. {5].

Further support for an approximate separation
of variables in the energy regime examined in the
present paper comes from a comparison of the quan-
tum results with those obtained (but not cited in
section 3) using smaller basis sets: To compare with

- the results for the (4,0) excitation in figs. 1 and 2, a
basis set was used consisting purely of X-mode exci-
tations for the left and right subsystems, and using
the ground state for the Y mode. The results for the
energy of C—-C—M subsystem versus time were es-
sentially the same as in fig. 2. Indeed, even a five-state
basis set having ng“( + n§ = 4 provided good agreement
with this plot. A similar remark applies to an analo-
gous calculation for an excitation of the (0,10) state
in fig. 3 using purely Y-mode excitations and also
such excitations with n{‘{ + n% =10.

The lack of classical energy transfer when the X
mode of C—C—M is excited, in contrast to the ready
transfer when the Y mode is excited to about the
same energy, was explained in ref. [5]: A classical res-
onance theory was described there and applied to
those local group modes and to those of the M—C—C
subsystem, The analysis also applies, semiclassically,
to the quantum case. However, in the case of a high
X-mode excitation, e.g., the (4,0) state, a classically
forbidden transfer between two symmetrically relat-
ed classical tori can occur and permits quantum
mechanical energy transfer where it did not occur
classically.

The present comparison of classical and quantum
results also illustrates a potential shortcoming of
classical trajectory calculations of unimolecular pro-
cesses, a shortcoming sometimes overlooked in such
studies when classical tori exist. In fig. 1 an example
is given where there is essentially no energy transfer
between two parts of a molecule classically (between
two tori [5]), but there is a slow transfer quantum
mechanically. In this way classical trajectories can
give the appearance of less energy redistribution in an
isolated molecule than would occur for a wave packet
in a corresponding quantum mechanical and hence
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more realistic calculation. This type of behavior is
well known for ABA triatomic systems [8].

If there is an approximate separation of the intra-
ligand and metal—ligand modes in a real molecule (X
and Y modes, respectively), energy localization in a
ligand may be obtained by an appropriate excitation
of the X modes. For example, in the case of alkyl
ligands, the X modes would involve the stretching and
bending modes of the ligand’s carbon and hydrogen
atoms. Excitation of X modes of a particular ligand
can then be made either via a single-photon high C—H
stretching overtone excitation or via an infrared multi-
photon excitation of CH bends. (The other ligands
could contain D atoms rather than H atoms, to reduce
their absorption at the relevant frequencies.) These
methods for exciting X modes are suitable, unless
some overtone of the metal—ligand Y mode has suf-
ficiently large absorption in the excitation range. It
may also be noted that the shorter the excitation pulse,
for a given total integrated intensity, the more likely
that a localized excitation would cause the excited
ligand to react before its energy decays by classical
or tunneling processes to the remaining ligands. A
direct excitation of the metal-ligand (Y mode)
states is perhaps possible using a suitable laser, but
would not be useful for the purpose of energy locali-
zation and subsequent reaction within one ligand.

The main question to be resolved, of course, is
whether the Y-mode states are, in real molecules, reso-
nantly coupled to X-mode states, thereby eliminating
any separability of the two types of motion.

A more detailed paper amplifying and extending
the present results will be submitted for publication, in-
cluding the extension to larger systems.
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