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A theoretical treatment is given for the effect of intramolecular vibrational and diffusive solvent
orientational motions on the rate of electron transfer reactions. Four limiting cases are considered
for the two-electronic state problem: slow reaction, wide and narrow reaction window, and
nondiffusing limits. With the aid of a decoupling approximation, an expression is derived for the
reaction rate which reduces to the appropriate expression for each limiting case when the latter is
approached. Under certain conditions the time dependence of the survival probability is
multiexponential rather than single exponential. Because of this behavior two average survival
times are defined and expressions for each are obtained. Experimental data are considered with
the present treatment in mind. One feature of the present work is a more general analysis for the
case that both vibrational and solvent diffusive motion contribute to the activation process. The

relation to previous works in the literature is described.

I.INTRODUCTION

In traditional theories of reaction rates such as transi-
tion state theory it is frequently assumed that the states from
which reaction occurs have a thermal equilibrium popula-
tion unperturbed by the reaction.! This approximation ap-
pears to be adequate for most reactions.? In some cases, how-
ever, this assumption does not seem to be satisfied.>’” There
is another approach to reactions, which was begun . by
Kramers® and includes some recent applications and exten-
sions to electron transfer reactions.®'2 It takes into account
the diffusive nature of the dielectric relaxation of the solvent.
In sufficiently viscous solvents the relaxation time can be-
come long, and then the population of the reacting systems
in the transition state region can become smaller than the
equilibrium one. In these treatments,>'? however, the ef-
fects of any vibrational changes within the reactants were
either omitted or treated in a rather approximate manner as
described later. In some reactions the vibrational motion,
while fast, is important and needs to be included in a detailed
manner.

_Experimentally, the observation of the dynamical effect
of a slow dielectric relaxation of the solvent can be expected
when the intramolecular vibrational contribution to the free
energy barrier to reaction is not too large. Recently several
experimental examples have been reported®* in which the
lifetime for an intramolecular electron transfer Texp 4t TOOM
temperature roughly equals a constant charge dielectric re-
laxation time>*!3 7, :

Ty = Tp€/€,, (1.1)
where 7,, represents the usual (constant electric field) di-
electric relaxation time, €, represents the static dielectric
constant of the solvent, and ¢, the optical one given by the
square of the refractive index. (A discrepancy, namely that
increasingly one has 7, <7, with increasing 7, atlow tem-
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peratures for the system in Ref. 4, is described later.) When a
solvent (acetonitrile) with a fast dielectric relaxation time
was used the reaction rate constant was much slower than
7' A few somewhat different experimental examples
that are indicative of a slow dielectric relaxation effect have
also been described.5’

In the present paper we treat the effect of slow dielectric
relaxation and include the effect of intramolecular vibration-
al motion, motion which is required when there is any differ-
ence in bond lengths or angles in reactant as compared with
product. In the analysis it is also shown that under certain

conditions the rate of decay of the reactants is multiexponen--

tial, rather than being a single exponential. In particular, for
a brief time at the start of the reaction the reaction can pro-
ceed with the initial distribution in phase space of the reac-
tants, but when the dielectric relaxation rate is slow relative
to this inherent reaction rate, the distribution becomes per-
turbed from the initial one and a slower rate ensues.
Dielectric relaxation has been treated by a diffusive type
of mechanism (Debye relaxation) because its rate shows a
thermally activated behavior. The fundamental framework
of chemical reactions activated by a diffusional fluctuation
has been given in the pioneering work of Kramers® under the
condition of a steady state. An explicit application of this
theory was made by Calef and Wolynes®® to an electron
transfer reaction in polar solvents with the Debye-type di-
electric dispersion. In the latter case a concrete form of the
potential for the diffusional fluctuation of the polarization of
the solvent molecules was included. The expression for the

reaction rate obtained by Kramers and hence by Calef and -

Wolynes can adequately be used when the rate constant.is
much smaller than the relaxation rate of the solvent fluctu-
ation. The numerical calculation for this steady-state case
was performed by Calef and Wolynes and gave an elec-
tron transfer rate smaller than 77!, about
77 ' exp( —2)=0.177 '™ which is smaller than the ex-
perimental value of 7' mentioned earlier.>* Moreover,
with a model which omits any vibrational contribution one
cannot obtain a rate constant substantially larger than 7; ',
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the maximum rate with which the solvent orientational fluc-
tuations can activate the reaction.

Kramers’ model gives a rate constant inversely propor-
tional to the relaxation time 7, of the solvent orientational
fluctuations, which characterizes the kinetics within the sys-
tem. In this aspect, it is essentially different from the tradi-
tional theories which assume thermal equilibrium among
the reactants. Many attempts have been devoted to extend-
ing the model. Considering that the matrix element J of elec-
tron tunneling between the reactant and the product states

-gives rise to a transition at the crossing point of the two
potential curves, Burshtein and Kofman'® and Zusman''®
studied the connection between the Kramers’ adiabatic limit
obtained for large J and the nonadiabatic behavior for small
J. Alexandrov!? studied this aspect and also compared the
Kramers’ limit with the adiabatic limit of the traditional the-
ories. On the other hand, a number of investigators took into
account intramolecular vibrational motion, in addition to
the diffusional solvent orientational one, and regarded the
former as activating the system to the transition state. In this
case, not only the electronic matrix element J but also the
intramolecular reorganization energy play important roles.
This case, however, has been investigated only for particular
specialized situations. In a study by Ovchinnikova'® or in a
case examined by Helman'® intramolecular vibrational
changes were very small, so small that the potential surface
for reaction was essentially one-dimensional with a transi-
tion occurring only at a crossing point of two one-dimen-
sional potential curves, and the problem became mathemat-
ically equivalent to one of the cases treated by Kramers. Ina
study of Zusman'!® the reaction activated by the intramo-
lecular vibrational fluctuation was very rapid, so much so
that an equilibrium between reactants and products was al-
‘ways maintained at any value of the solvent polarization,
and the problem could then be reduced to the Kramers’ one,
with a reinterpretation of the reaction potential.

In studies of internal diffusive motions in other reac-
tions Agmon and Hopfield'’ treated CO rebinding to the
heme in myoglobin. They took into account a reaction acti-
vated by vibrational motion within the heme group which
occurs in a cage of the surrounding protein with diffusive
conformational fluctuations. They used a general starting
point and gave a numerical solution of the resulting differen-
tial equation. Van der Zwan and Hynes'® approximated a
solution reaction by a surmounting of a potential barrier by a
classical particle in a viscous fluid.

An outline of the present paper is described in the next
section. It should perhaps be explicitly noted that through-
out this paper the “diffusive” motion treated is that of the
solvent motion along a polarization coordinate. The role of
translational diffusion of the reactants, in the case of a bimo-
lecular reaction, is not treated. Although the treatment giv-
en below is phrased in terms of an intramolecular electron
‘transfer, analogous considerations apply to bimolecular re-
actions, when translational diffusion is not a slow step.

_Il. THEORY. GENERAL REMARKS AND OUTLINE

An approximation can frequently be adopted in which
the vibrational relaxation is treated as “fast” relative to the

other motion of the molecules: Typically such relaxation oc-
curs in the picosecond domain in analogous systems.'* Com-
pared with this time period, the relaxation time 7, given by
Eq. (1.1) for the orientational fluctuation of the solvent mol-
ecules is much longer, being, for example, about 45 ps at 20°
when the solvent is 1-propanol.?° (There may also be inter-
nal rotational motions in the reactant, which can be of a
diffusive nature in viscous solvents.?* Unless the latter is also
fast,?? it will be omitted in the present paper in the interests
of simplicity.)

Typically, the orientational polarization should be de-
scribed by a vector function of position and the free energy
expressed in terms of its contribution and that of intramole-
cular vibrations.”> However, within the Debye model in
which the free energy for polarization fluctuations is qua-
dratic in polarization components, we can single out for no-
tational brevity a scalar variable X proportional to a certain
component of the polarization vector which passes through
the two minimum energy points associated with reactants
and products in the polarization coordinate space.’® Only
this component X is relevant to the reaction, while the other
two ones perpendicular to X have no coupling with the elec-
tron transfer. We introduce this variable X only phenomeno-
logically, but, in the final expression we replace any energy
term for this X polarization by the appropriate free energy
term available from an earlier analysis.?

The intramolecular coordinates involved in the electron
transfer will be represented for the present purpose by a co-
ordinate ¢, which can be immediately generalized to include
more coordinates. When the reactant can be represented by
one potential energy surface in (X,q) space and the product
by another, and when the electronic coupling between these

two is very small, the transition state lies at the intersection

of these two surfaces (A different situation® involving orien-
tational polarization and vibrational motion on a single ex-
cited-state surface is discussed elsewhere.2*) Because of the
fast vibrational relaxation mentioned earlier, it will be sup-
posed that while the distribution of X on the reactant’s sur-
face may not be an equilibrium one, that of ¢ is. Thereby, one
can define a rate constant k(X), which involves at each X a
suitable averaging over the population in the g coordinate. If
there are norelevant g coordinates, k (X) will be proportion-
al to a delta function which is peaked at some value of X, X,
the value at the transition state. The reverse reaction at each
X from the product to the reactant surface is neglected for
simplicity, but the general case including this feature will be
treated in a future paper.”® The reaction can be viewed as
being described by the diffusion-reaction equation in which

"the coordinate X diffuses via a Brownian motion under the

influence of a potential ¥(X), while the reaction occurs at
each X with a rate constant k(X) during the diffusion.

The plan of the present paper is as follows. We treat for
the present an intramolecular electron-transfer (or charge-
separation) reaction within a molecule in a condensed phase
environment or an electron transfer between two molecules
at a fixed intermolecular separation distance in that environ-
ment. In Sec. III the two-dimensional free-energy surface is
given for the reaction, as a function of the coordinates g of
the intramolecular distortion in the reacting system and of
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the orientational coordinates in the surrounding environ-
ment, represented by X. From the former coordinate one has
the intramolecular contribution A, to a reorganizational en-
ergy parameter A in electron transfer, while from the X coor-
dinate one has “outer” reorganizational energy contribution
Ao Tt is shown in Sec. IV that the reaction rate constant
k(X) is determined by the ratio A;/4, and by other factors.
The presence of the four limits in the diffusion-reaction
equation is pointed out also in Sec. IV. A solution interpolat-
ing among the four limits is given in Sec. V using a particular
decoupling approximation and the Laplace transform. It is
shown in Sec. VI that the survival probability can be ob-
tained, using an expression which is rigorous up to and in-
cluding the fourth order derivative at the initial time, when
the initial distribution of X is given by the thermal equilibri-
um one. )

Two kinds of average survival times are introduced in
Sec. VII, one being the customary first mean passage time.
When a reaction is so slow that the thermal equilibrium dis-
tribution of X is always maintained during the reaction,
these two average survival times are equal, giving the inverse
of a reaction rate which is determined mainly by the sum
A; + A, and by the standard free energy of reaction AG ° (as
in Ref. 23, for example). A more general condition for a
single exponential decay of the survival probability is that
the survival time be much longer than the relaxation time of
the solvent orientational fluctuation 7, in Eq. (1.1), as
shown in Sec. VIII. The reaction rate in the general steady-
state case (as opposed to the special case of thermal equilib-
rium) then depends on 4,/4, and 7, as well as on A and
AG°. When the shorter of these survival times is substantial-
ly smaller than the relaxation time 7,, an essentially mul-
tiexponential decay results with the two kinds of the average
survival times much different from each other, as shown in
Sec. IX. Experimental data are discussed in Sec. X.

lll. TWO-DIMENSIONAL FREE ENERGY SURFACE

A free-energy surface for the reaction is shown schema-
- tically in Fig. 1, drawn in a two-dimensional plane spanned
by coordinates X and g described earlier. Shown are the con-
tours of the surface for the reactant (or of reactants, held
fixed ) on one side of the transition state curve C, and those of
the product (or of products), on the other side of curve C.
There are two minima for the surface, located at and at O’
on the reactant’s side and on the product’s side, respectively.
On C this free energy has a minimum at S. The point on the
line C at ¢ = 0 is denoted as X, where the free energy is, in
general, larger than at S. For simplicity, it will be assumed
that both the reactant and the product surfaces are quadratic
functions, diagonal in the X and ¢ coordinates and with force
constants for these surfaces that are the same for reactants as
for products. The symbol g denotes the totality of vibrational
coordinates, and for these we really employ a “symmetrized
force constant approximation” described in Ref. 23(b),
rather than the more restrictive approximation of equal
force constants of reactant and product.
The sum of the solvation free energy of the reactant, a
free energy associated with coordinate X and represented by
41X ?, and of the potential energy of the g motion, represented

Product surface

o X 7T T T Reo—,m— -

Reactant surface ¢
FIG. 1. Free energy surface for reactant and for product. Contours are

drawn for evenly spaced energies. The two surfaces intersect on curve C. A
minimum on C occurs at S. C and abscissa intersect at X = X.

by lag?, is denoted by V" (¢,X):

ViigX) = %aqz + V(X), (3.1
where
V(X) =%X2. (3.2)

The corresponding quantity for the product is denoted by
V?(q,X), measured relative to the same energy zero:

V?(g.X) =a(g —qo)* + (X — Xp)* + AG®,  (3.3)

where AG° is the standard free energy of reaction. (The vi-
brational entropy of reaction in the above model is negligible
or zero.) The equilibrium values of g and of X for the product
are denoted by g, and X,,. The quantities jagi and 1.X 3 repre-
sent the A, and A, in earlier publications.?

The equation of the transition state is obtained by equat-
ing Egs. (3.1) and (3.3), thus defining the intersection of the
two surfaces. Thereby, on this intersection we have

XX + agog = A + AG® (3.4)
-~ with
A=A, + A, (3.5)

The free energy barrier to reaction AG *(X) at a given
value of X equals V"(¢",.X) — V"(0,X) = Jaq', with ¢" giv-
en by the g in Eq. (3.4) as a function of X. Thereby,

CAGH*(X) =3(X — X,)*(A/A), (3.6)
where v
X, = (A+AG%/(24,) "2 (3.7)

The point X, is the value of X for which AG *(X) vanishes on
the transition state curve Cin Fig. 1.

- We consider next the diffusion-reaction equation and a
number of limiting cases. ’

IV. DIFFUSION-REACTION EQUATION AND FOUR
LIMITING CASES

Because of the fast relaxation time for vibrational mo-
tion we shall assume, as previously stated, that one can de-
fine a rate constant at each X, say k(X). Using electron
transfer theory we write

k(X) =v, exp[ — AG*(X)/ksT ], (4.1)
where AG *(X) is given by Eq. (3.6) when the ¢ motion is
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treated classically. [When the vibrations are treated quan-
tum mechanically, other expressions, noted in Ref. 2, can be
used for kK(X) instead.] The frequency factor v, is given
later. As noted earlier the reverse reaction will be omitted for
simplicity in the present paper.

The coordinate X diffuses under the mﬂuence of a po-
tential V' (X), which represents the free energy of the reac-
tant’s surface. In a harmonic approximation ¥(X) is the
second term in Eq. (3.1). During the diffusion, the reactant
changes into product with a probability rate constant k(X))
at each value of X. Then, the distribution function P(X;t)
present for the coordinate X at time ¢ satisfies the diffusion-
reaction equation

a_P__DaZP D i(pdV

ot dX?*  kaT dX\ dX

where D represents the diffusion constant.?® If k(X) vanish-
es in Eq. (4.2) with V(X) given by the second term in Eq.
(3.1), the average value of X at time ¢ given by
X(t) = SP(X;)XdX, satisfies dX(1)/dt= —X(t)/7,
with a relaxation time 7, for the coordinate X givenby

7, =k T/D. (4.3y

Therefore, if the reaction does not occur, 7 ! determines the
rate with which P(X;?) approaches the thermal equilibrium
distribution function determined by the potential V' (X). Be-
cause of the reaction, P(X;¢) at any time ¢ can differ from the
equilibrium distribution function. Frequently, the quantity
of interest is not P(X;t) but rather the survival probability

a(n):
o) = f P(X;t)dX

with
Q(0) = 1 and Q(w) =0. (4.5)

An exact solution to Eq. (4.2) can easily be obtained for
each of the four limiting cases given below.

(1) The slow reaction limit. In this limit the reactxon
which perturbs the thermal equilibrium distribution is very
slow compared with the rate of reorientational fluctuation of
the solvent molecules which attempts to restore the equilib-
rium distribution of X. In this slow reaction limiting case a
thermal equilibrium for X is maintained during the course of
the reaction and hence P(X;t) is proportional to
exp[ — V(X)/kpT ]. Thesurvival probability Q(¢) of (4.4)
should show then a single exponential decay with a rate con-
stant independent of the relaxation time 7, of the reorienta-
tional fluctuations. This thermally equilibrated reaction rate
constant k, is given by

k, =fk(X)e_ V(X)/k,TdX/[e—V(X)/k,TdX ’

=vexp(— AG*/k,T), (4.6)

where v and AG * can easily be calculated from Eqgs. (3.2),
(3.5)-(3.7), and (4.1). One obtains

v=yv,(4,/4)"?
and .
AG* = (A + AG®)*/4A.

4.2)

) k(X)P,

44)

4.7)

(4.8)

Equation (4.8) is the same as obtained earlier”® when a ther-
mal equilibrium population for the orientational polariza-
tion was assumed. In terms of Fig. 1, AG * is the free energy
of formation from the reactant of a system in the vicinity of
the lowest point S on line C. In the above simple model the
preexponential factor v is readily calculated from Eq. (4.7)
and a value for v, . In the adiabatic limit the v, in Eq. (4.1) is
given by the average vibration frequency ¥, of the intramole-
cular vibrational modes contributing to. the reaction?’

/2
= ‘T’ [z ijqlijq/ﬂr ] ’

withA; = 2,4, where A, represents the contribution to the

. (4.9)

reorganization term A4, of the jth vibrational mode with fre- .

quency v;,. Then, v defined by Eq. (4.7) becomes

172
v= ( quxqu//l) , (4.10)
a known formula in the adiabatic limit, for the present case
that the energy quantum hv, of the reorientational motion of
the solvent molecules is regarded as nearly zero and ‘hence
neglected.?® In the nonadiabatic 11m1t on the other hand, v,
is given by

(Jz/ﬁ)(v//l kg T)”2 (4.11)

where J represents the matrix element for electron tunneling
between the reactant and the product states. This formula
can be justified only when this v, is much smaller than the v,
of Eq. (4.9). Then, v defined by Eq. (4.7) tends to the value

v=(J¥h) (n/AkzT)'?, (4.12)

a common formula in the nonadiabatic limit.

Thus, in this slow reaction limit one has the usual ther-
mal equilibrium expression for the reaction rate constant.
Whether the reorientational motion of the solvent molecules
is diffusional or not is unimportant in this limit, and the
reaction rate is determined mainly by the energetics charac-
terized by the total reorganizational energy A and by AG°.

(2) The “wide reaction window” limit (1,/A,»1). The
reaction window has a “width” in X space of (k, TA,/4,) "2,
as seen from Egs. (3.6) and (4.1). In this limit this “win-
dow” is much wider than the width (kz T)'/2, in X space, of
the thermal equilibrium distribution of X in the potential

. V(X) of Eq. (3.2). In this case, one can approximate the rate

constant k(X) by a constant independent of X, which is giv-
en by the average of k(X) over the X distribution in V(X),
written as k, in Eq. (4.6), as
(A, + AG®)? ]

44k, T |
Since the reaction now occurs at each X with the same rate
constant k,, there should be a single exponential decay of
Q(?), with a rate constant k, independent of the relaxation
time 7, of the reorientational fluctuation of the solvent mol-
ecules.

(3) The “narrow reaction window” limit (A,/A,41). In
this limit, which is just opposite from the preceding one, the
k(X) in Eq. (4.1) can be approximated as proportional to a
delta function

k(X)=k,=v, exp[ - (4.13)

(4.14)

J. Chem. Phys., Vol. 84, No. 9, 1 May 1986



s

pmenss L agn e e o

o

4898 H. Sumi and R. A. Marcus: Electron transfer reactions

where k, is a constant. With this approximation one can,-in
fact, obtain a rigorous solution for the P(X;t) of Eq. (4.2)
and for the Q(¢) of Eq. (4.4) (using the method given in Sec.
V). In general, Q(#) now displays a multiexponential decay,
being composed of terms with different decay rates, which

_ also depend on the relaxation time 7, of the reorientational

fluctuation of the solvent molecules. The case treated by Ov-
chinnikova'® with a starting equation similar to Eq. (4.2),

~corresponded to a steady-state analysis of this limit. Hel-

man'® examined a case very similar to this limiting case.
While this limit requires that 4,/1,<1, the actual value of
A;/As for a reaction generally depends very much on the
particular reaction studied.? This case of 4,/4,<1 is math-

, ematlcally closely related to one of the cases treated by

Kramers,® as discussed later.
(4) The nondiffusing limit. In this limit the reaction from

" the reactant to the product proceeds so rapidly at the initial

values of the slow coordinate X that the distribution of X is
not restored by diffusion in the course of the reaction. Then,
the reactant population P(X;t) decreases independently

- from its initial value P(X;0) at each X with a rate constant

k(X). Thereby,
P(X;t) = P(X;0)e ¥, (4.15)
Since Q(t) is given by Eq. (4.4) we have

o) = J P(X:0)e kXt gx (4.16)

which shows a multiexponential decay. In this limit, the de-
cay characteristics of @(#) no longer depend on the relaxa-
tion time 7, of the X coordinate, in contrast with limit (3). A

" case treated by Zusman' is close to this limit, but he as-

sumed a still stronger condition that at any X both the for-
ward and reverse reactions between the reactant and pro-
duct states are so much faster than the relaxation rate 77 ' of
the X coordinate that an equilibrium between the two states
is always maintained at any X. In his case, Kramers’ theory
can be applied in which the free energy of the equilibrated
state obtained at each X is reinterpreted as the potential for
the X diffusion. Thereby, the reaction proceeds with the help

- ofthe X diffusion towards an X value with the lowest value of

the free energy, and its rate becomes inversely proportional
tor,. h

In the limit (4) it is required that the condition
k(X)»7. ' be satisfied for each significantly contributing
value of X on the reactant’s side of curve Cin Fig. 1. Since the
magnitude of k(X) in Eq. (4.1) is frequently determined by

an exponential factor which varies rapidly with the activa-

tion free energy AG * (X), this case is expected to be encoun-
tered relatively rarely.

The first two limits (1) and (2) are covered by the tradi-
tional theories of the reaction rate or by extending them.
Most examples in the experimental literature would appear
to fall within these limits. Nevertheless, particularly with the
advances of the short-pulse laser techniques, a few examples
of reactions have been found in which the reaction rate is
comparable to or larger than the relaxation rate 77 ! of the
reorientational fluctuation of the solvent molecules, as noted
in Sec. I. More generally, it is expected that some reactions
will be intermediate in behavior between these two sets of

limiting cases, and so a reliable theory for describing such
reactions and making predictions regarding their occurrence
should be based on an approximation which is valid in at
least the four limiting situations. In this way there is a rea-
sonable likelihood that the resultant theory is applicable
more generally. Such a treatment has not previously been
given and is the subject of the present paper.

V. SOLUTION INTERPOLATING AMONG THE FOUR
LIMITS

A function g(X) is first introduced to convert the X-
dependent operator in Eq. (4.2) to a self-adjoint form*®:

Ly 172
) =e” 2V(X)/k,,T/ [J'e_ V(X)/k,,TdX] (5.1)

which satisfies the normalization condition

[scozax=1. ’ (52)
The solution P(X;t) to Eq. (4.2) is then written as
P(X;t) = g(X)p(X;t), (5.3)
where, using Eq. (4.2), the equation for p(X;t) is
2 ptin) = — LH +kCO1p(K) (5.4)
/
with

32 D[l{dV) dxv

H= —D av
axz " 2k, T2k, T\dX) dX?

The time-evolution operator H + k(X) in the trans-
formed equation (5.4) is a self-adjoint (Hermitian) opera-
tor, unlike that in the original equation (4.2). We further
note that g(X) is the ground-state wave function of H with
the eigenvalue zero:

Hg(X) =0. (5.6)

When the potential V(X) is given by the form (3.2), the
operator H is essentially the same as the Hamiltonian of a
harmonic oscillator.?® In this case, it is easily shown that the
nonvanishing eigenvalues of H are equal to n/r,, with
n = 1,2,3,..., where 7, defined by Eq. (4.3) represents the
relaxation time of the X motion.

If the initial value p(X;0) of p(X;¢) at t = O is written as

] (5.5)

p(X;0) = f(X) ' (5.7)
then the initial distribution P(X;0) of X is
P(X;0) =g(X)A(X). (5.8)

If P(X;0) is given by the thermal equilibrium distribution
within the potential ¥'(X), one should obtain f(X) = g(X).
In general, f(X)#g(X), but the normalization
Q(0) = fP(X;0)dX = 1 imposes on f(X) the condition

f gX)AX)dX = 1. (5.9)

We introduce the Laplace transform p(X;s) of p(X;t) as

B(X5) =f e~p(Xit)dL. (5.10)
0 .

Since the Laplace transform of dp(X;t)/dt s
5p(X;s) — f(X), Eq. (5.4) yields
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[s + H + k(X)]p(X;s) = f(X). (5.11)

Itis convenient notationally to rewrite Eq. (5.11) in terms of
bra and ket vectors such as |[5(s) ), | g) and | ), whose coor-

"dinate representatives are 5(X;s), g(X) and f(X). We thus
have

(s+H+K)Ip) =|f) (5.11)
Here, k denotes an operator diagonal in the coordinate rep-
resentation, (X |k |[X') = k(X)8(X — X '), with the diag-
onal element k(X), while H represents an operator given in
the coordinate representation by Eq. (5.5). The formal solu-
tion to Eq. (5.11") is given by

() = (s +H+K)'f), (5.12)
where (s + H + k) ! represents the Laplace transform of
the operator exp[ — (H + k)t]. Using Eq. (5.3), the La-
place transform of Q(#), defined by Eq. (4.4), can be written
as

() = f " e=ug()dt = (glF()»
0

~ where (glp(s)) equals fg(X)p(X;s)dX. Moreover, Egs.
(5.2), (5.9), and (5.6) can be rewritten as

(5.13)

(glg)=(glf)=1, (5.142)
H|g)=0. (5.14b)
We introduce next an operator identity

1 1 1 k 1 (5.15)

s+H+k s+H s+H s+H+k
If Eq. (5.15) is used iteratively an expansion of
(s+H+k)~' with respect to k is obtained. Since
(s + H) ~ ' describes the thermalization process of the distri-
bution function P(X;t) of X within the potential ¥(X) in the
absence of reaction, this expansion is advantageous in de-
scribing a case close to the slow reaction limit (1) in Sec. IV.
On the other hand, that expansion is not suitable for describ-
ing the nondiffusing limit (4). In this limit, the reaction

should occur with the rate k(X) at each X before the therma-

lization within V(X)) occurs, and this situation can be de-
~ scribed by the operator (s + k) ~!, i.e., the details of H play a
smaller role in this case. For this reason we introduce a sec-
ond operator identity

1 1
s+H+k s+h+k
1 o g-m—1
s+ H+k s+h+k

(5.16)

where A is at present an arbitrary operator diagonal in the
coordinate representation with the diagonal element 4 (X).
An explicit form of 4 is given in Sec. VI so as to describe the
process of thermalization among different X’s due to H
around ¢ = 0, although the whole process of thermalization
cannot be described by A. We consider, therefore, that# hasa
magnitude (norm) of the order of H, that is, of the order of
the relaxation rate constant 7; ! for the reorientational fluc-
tuation of the solvent molecules.

Both the situation described by Eq. (5.15) and that de-
scribed by Eq. (5.16) should be incorporated in the approxi-
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mation we are seeking. We do so by introducing the right-
hand side of Eq. (5.16) into (s+H+ k)™ ' on the
right-hand side of Eq. (5.15), and obtain an operator identi-
ty

1 _ 1 s+ h
s+H+k s+Hs+h+k
IR TSRS Sy N S M N
s+H s+H+k s+h+k
(5.17)

In this identity H is, in effect, replaced by 4 in the first term,
and the second term is second order in the expansion varia-
bles k and H — h. Equation (5.17) and Eq. (5.18) given

below provide the starting point of the present development.

We introduce the following decoupling approximation:

1 1
k —
s+H s+H+k

1
kol——k ———
oy | &) (gl .

where k, denotes the thermal equilibrium rate constant giv-
en by Eq. (4.6), which can be rewritten in terms of the bra-
ket notation as
k,=(glk|g. (5.19)
Equation (5.18) is motivated, as described in Appendix A,
by the idea of approximating the average of a product by the

product of averages. As such, Eq. (5.18) is shown in Appen-
dix A to be exact in the case of limits (1) and (3), while the

final equation (5.24) will be shown in Appendix A to be

exact also in the case of the limits (2) and (4).

The next idea in the present development is to choose &
so that Q(#) and its first several time derivatives have the
correct value at ¢ = 0. To this end we first obtain an expres-
sion for Q(s), the Laplace transform of Q(), as follows.

Introducing the decoupling approximation Eq. (5.18)
into Eq. (5.17) and rewriting H—h as
s+ H + k — (s + h + k) we obtain

1 1
—_ =k '—k
THLF F i H | &) {gl
1 o s+ h
— [1—k %k _—
+S+H[ . |g>(g|]s+h+k
1 1
—k - '——k k——. (5.20
Sy | g) (gl oy (5.20)
Applying the operator ( glk yields
1 a(s) 1
(gl s+H+k 1+a(s) gl 1+a(s)
1 s+ h
X k——— ]———- 5.21)
[(gl TH a(s)(g| oy (5.21)
with
1
)=k Yglk——k\|g). 5.22);
a(s) =k; (g|s+H | g) (5.22)

Introducing Eq. (5.21) into Eq. (5.20) gives
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1,1 1,
s+H+k = ° 1+a(s)s+H"|g)<gl
1 1 1
— kS k
+[S+H ¢ 1+4+a(s) s+ H &)

X{(gl +(glk 1 (5.23)

” s+ h
s+Hs+h+k’

The Laplace transform of the survival probability Q(¢)
is given by Egs. (5.12) and (5.13). Computing this matrix
element of Eq. (5.23) and making extensive use of Egs.
(5.14b) and of (5.19) one obtains

—I——II + [a(S)(gl
s+ sa(s)
] s+ h

1
— (glk
(gl sthtk

0@s) =

(5.24)

— ).

Equation (5.24) is the net result of the present approxima-
tion, the explicit form of 4 being given in Sec. VI. The time
dependence of Q(¢), obtained by the inverse Laplace trans-
formation of Q(s), is given in Appendix B.

The validity of Eq. (5.24) for Q(s) in the four limits in -

Sec. IV can be verified as shown below, without using the
explicit form of A, as long as it is required that 54 have a
magnitude of the order of H. '

(1) The slow reaction limit. The typical magnitude of s
can be estimated as being the decay rate. Both &, which is
assumed to be small in the slow reaction limit, and s can be
neglected in this limit compared with either 4 or with the
lowest nonvanishing eigenvalue of H. We can then introduce
the approximations (s+A)/(s+h+k)=1, and
(s+H) '=|g)s™'(g| (cf. Appendix A, the latter of
which gives a(s) =k,s™ ! from Eq. (5.22). Thus, from Eq.
(5.24) one obtains Q(s)=(s+k,)~' which gives
Q(t) =exp( — k,t) as the inverse transform. Thus, @(¢) de-
cays with a single exponential and with the rate constant
given by the thermal equilibrium value k, of Eq. (5.19). The
result does not depend on the initial distribution g(X) f (X)
of the coordinate X of the orientation of the solvent mole-
cules, because of rapid thermalization due to H.

(2) The wide reaction window limit. In this limit k(X)
canbe regarded as a constant £, , asin Eq. (4.13), and we get
a(s)=k,s~' from Egs. (5.22) and (5.6), and
(glk=k, <g|. Then, the resulting relation
(glk(s + H)™"' —a(s)( g| =0 can be introduced into Eq.
(5.24) and one obtains Q(s) = (s + k,) ~'. The latter yields
the expected result Q(¢) =exp( — k) as the inverse trans-
form.

(3) The narrow reaction window limit. This limit is de-
scribed by Eq. (4.14). Then, as already noted, the decou-
pling procedure of Eq. (5.18) becomes exact, and hence the
result obtained is valid. However, the validity of Q(s) of Eq.
(5.24) can also be verified from direct calculation by using
(s+h)/(s+h+k)=1,exceptat X = X_, for Eq. (4.14).
At X = X_, apoint of measure zero, this operator vanishes in
the coordinate representation and so does not contribute to
an integral.

(4) The nondiffusing limit. In this limit, s is of the order
of k. Both H and % can be neglected compared with k and
hence with s. It then follows that (s +A)/(s + h + k) =s/

(s+k)and (s + H) " '==s'. Using ( g| f) = 1, Eq. (5.24)
yields O(s) =( 8|(s + k)| £). Thus, its inverse transform
is Eq. (4.16), where P(X;0) = g(X) f (X) denotes the ini-
tial distribution of X. It can be noted here that although A
was neglected above in this limit, it was essential in proving
that Eq. (5.24) reduces to the correct result for the slow
reaction limit (1) that 4 be nonvanishing and of the order of
H. :

VI. DETERMINATION OF h

Since & describes the process of thermalization among
different X ’s around ¢ = 0, it should be determined by the
behavior of the formal solution exp[ — (H + k)¢t] to Eq.
(5.4) in the neighborhood of ¢t = 0 or, in terms of the La-
place transformation, by that of (s + H + k) ~!in the neigh-
borhood of s = «. Moreover, % should be independent of the
initial distribution g(X) f (X), since (s + H + k) " 'isalin-
ear operator. Therefore, we consider that 4 can be obtained
by the comparison of { g[(s + H + k)~ '| g) with its ap-
proximate value Q(s) of Eq. (5.24) obtained with | f) re-
placed by | g).

We expand ( g|(s + H + k) ~'| g) in powers of s~ ! at
S~ 0, as

(gl +H+k) "' g)=s"—s"%, +s(glk? g)
—s7*[(glk> g) + (glkHkK | g)]
+57°[(glk*| g) + 2( g|kHK?| g)
+ (glkH?k | g)] + -,

where Eq. (5.14b) has been extensively used.

It can be shown that in the expansion of Q(s) of Eq.
(5.24) with | f) replaced by | g) the terms proportional to
s~1, 572, and s> do not contain 4 and just coincide with the
corresponding terms in Eq. (6.1). Equating the correspond-
ing terms proportional to s~* one obtains a requirement
that

(glk? g)(glkh|g) — (glk|g)(glk?h|g) =0.

(6.2)
This requirement can be satisfied when 4 (.X), the coordinate
representative of 4, is chosen to be a constant independent of
X, irrespective of the magnitude of the constant. That is,

h(X) = h, a constant. (6.3)
The integral equation (6.2) may have solutions besides the
one given by Eq. (6.3). However, when they are expressed as
a polynomial in k, its order must be at least equal to or larger
than two since a function / linear in k is not allowed as a
solution of Eq. (6.2) when £(X) is not a constant. There-
fore, the solution given by Eq. (6.3) is the simplest. More-
over, the functions given on the right-hand side of Eqs.
(5.23) and (5.24) must be analytic in the half-complex s
plane with Re 50, since H + k has only positive eigenval-
ues. The solution given by Eq. (6.3) causes no inconvenience
in ensuring the analyticity, as will be shown later. Thereby,
we adopt Eq. (6.3) in the present work, and we do not
further examine whether or not the other solutions satisfy
also the condition imposed on terms proportional tos ™ and
ensure also the analyticity mentioned above.

The constant / can be determined by comparing the
terms proportional to s~°. After some manipulation, one
obtains

(6.1)
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(glk |g)( glk2HK | g) — ( glk>|g)( glkHk|g)

1
b= —
2 (glk|g)(glk?® g) — ({glk? g))?

(6.4)

Since the numerator is proportional to k 4and to H, while the

denominator is proportional to k %, the & given by Eq. (6.4) -

has in fact a magnitude of the order of H or, to be more exact,
of the order of the lowest nonvanishing eigenvalue of H. This
condition was required in introducing 4 into Eq. (5.16).

Thus, the ( g|(s + H + k) ™'| g) given by the present
approximation is now seen to be valid up to and including
the term proportional tos > in the expansion ins ™' ats~ oo.
We note, moreover, that the coefficient of the term propor-
tional tos — " for n = 1,2,3,... in the expansion just equals the
(n — 1)th order derivative in ¢ of { glexp[ — (H + k)t]| &)
at ¢ = 0. Therefore, when f (X) equals g(X), that is, when
the initial distribution of X is given by the thermal equilibri-
um one within the potential ¥(X), the survival probability
Q(2) calculated from Q(s) of Eq. (5.24) by the present ap-
proximation is valid up to and including the fourth order
derivative in ¢ at £ = 0. When the initial distribution is not
the thermal equilibrium one, it can be shown that Q(#) cal-
culated by the present approximation is valid up to and in-
cluding the second order derivativeinzat ¢ =0, i.e., that the
equations

Q(0)=1,0'(0) = —(glk|f),
Q"(0) =(glk? f) + (glkH| f)

are correctly obeyed irrespective of the form of f (X).

The / of Eq. (6.4) can be calculated by using the coordi-
nate representations of k and H given by Eqgs. (4.1) and
(5.5), respectively. The calculation can be simplified by us-
ing Hk | g) = [H,k]| g) = — D[d*/8X?k]| g) which fol-
lows from Eq. (5.14b), where [4,B] represents the commu-
tator of operators A and B. (The simplification arises since H
contains many more terms than just d2/dX*.) When the
form of Eq. (3.2) is adopted for potential ¥'(X), with which
g(X) is defined by Eq. (5.1), it can be shown by direct calcu-
lation (Appendix C) that the numerator of Eq. (6.4) for A is
positive definite; the positive definiteness of the denominator
of Eq. (6.4) is ensured by Schwarz’s inequality without rely-
ing upon a direct calculation. Then, A given by Eq. (6.4)
turns out to be a positive definite quantity. This fact has a
significant consequence: when £ is positive definite, it can be
shown® using the positive definiteness of k(X), that the
right-hand sides gf Egs. (5.23) and (5.24) for
(s + H + k) ! and Q(s), respectively, are analytic in the
half-complex s plane with Re s3>0, especially, in the neigh-
borhood of s = 0. This result ensures, for example, that the
survival probability Q(¢), whose Laplace transform is Q(s)
by Eq. (5.13), not only vanishes at t = e as assumed in Eq.
(4.5), but also that it decays so swiftly as #— oo that £” Q(¢) is
a function integrable until = o for any positive integer n,
as seen in the next section.

(6.5)

VII. TWO KINDS OF AVERAGE SURVIVAL TIME

The quantity [ — dQ(¢)/dt]dt equals the fraction of the
reactant which is transformed into the product state during

the time interval (z,# + dt). Therefore, an average survival
time, the “mean first passage time,” is usually defined by

r. =f el —dQ(t)/dt]dt:f Q1. (1.1)
0 0

It will be shown later, however, that as 7, becomes short
compared with the relaxation time 7, of the reorientational
fluctuation of the solvent molecules two stages of the reac-
tion become apparent, one of which occurs rapidly before
the scrambling due to the reorientational fluctuation of the
solvent molecules, and another which is stimulated by that
reorientational fluctuation. The definition of 7, given by Eq.
(7.1) emphasizes the fast decaying part of Q(z). However,
the fast decaying part is sometimes obscured or neglected in
estimating the decay rate from experimental data on Q(#), if
there is some overlap in time with the rapidly changing pro-
file of an exciting laser pulse. Therefore we introduce an
average survival time 7, of the second kind by

7, =f°°tQ(t)dr/ “owmar,
0 0

which detects the information contained by @(¢) in a time
region later than does 7, . If Q(#) shows a single exponential
decay as exp( — k, ) we obtain 7, = 7, = k' and there is
no difference between 7, and 7,. If it is not the case, 7,
differs from 7. If Q(¢) shows a multiexponential decay, as in

(7.2)

Q) =J F(y)e~"dy, (7.3)
0

with a normalized spectral function satfsfying SF(y)dy=1
and F(y) > 0, one obtains

Ta = fF(r)r“dr

and

Ty = fF (7)7'2d7/f F(y)yy~'dy,

(7.4)

(7.5)

“and it can be shown that 7, >7, from Schwarz’s inequality.

Since Q(s) given by Eq. (5.24) is analytic in the neigh-
borhood of s = 0, it can be expanded in a Taylor series in s
around s = 0 as Q(s) = 0(0) + sQ'(0) + --. Since Q(s) is
also the Laplace transform of Q(¢), as given by Eq. (5.13), it
can also be expanded in s in a form

0(s) = Jmed’ — sttQ(t)dt + e (7.6)
0 (4]

Thus, the two kindﬁ of average survival times can be ex-
pressed in terms of Q(0) and Q'(0) as

r, =0(0), and 7, = — 0'(0)/Q(0). (7.7

Expanding Q(s) given by Eq. (5.24), one can obtain
00) =k "+k *(glkH
h

, 7.8
h+k|f) (7.8)

X [k|g){el —k.]

and
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explicit form for Q(¢).
We consider first the calculation of the { g|kH ~'|j) and
( g|kH ~2| j),with ( g| j) = 0,appearinginQ(0)and Q' (0).

It is first noted that ;

Colkt 1) = [ dglke =) a (7.10)
and »

Calktt 713y = [ dglke | e (11

When V(X) is given by Eq. (3.2), the operator H given by
Eq. (5.5) with this V(X)) is essentially the same as the Ha-
miltonian of a harmonic oscillator. For the harmonic oscilla-
tor, the matrix element, (X |e ~#*|Y ), of e ~ #*in the coordi-
nate representation is well known.?! In the present case, we
have

(X]e_Htly> — [(1 _ e-—2t/7'1_)2ﬂ,kBT] —1/2

tanh(

o)
27,

+(X——Y)2coth( ! )” (7.12)
21,

Xe —
XP[ 8k, T

Then one can calculate { g|ke ~ Ht | /) as

(glke=5| j) =ffg(X)k(X)(X|e‘”’[Y)j(Y)dXdY.
(7.13)

Since ( g|7) =0, for each | j) considered, Eq. (7.13) can be
rewritten as

(glke™"| )

- ”gm (KO — k.](X |e~#|¥) J(V)dX dY
(7.14)

withwhich ( g|kH ~'| j) and ( g|kH ~2| j) canbe calculated
from Eqgs. (7.10)and (7.11).

Since the X integrand in Egs. (7.13) or (7.14) is a Gaus-
sian function of X, the integration over X can easily be per-
formed. However, the Y integral must, in general, be calcu-
lated by a numerical quadrature. In this case, the form of Eq.
(7.14) is more convenient than that of Eq. (7.13), since the
integrand of the former changes more gradually with Y.

VIil. SINGLE EXPONENTIAL DECAY

When the initial distribution g(X) f (X) of the coordi-
nate X is different from the thermal equilibrium one g(X)?2,
the decay of the survival probability Q(¢) should in general
be more complex than a sum of exponentially decaying

- ——————————_
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0'(0) terms such as described by Eq. (7.3): In this case, two pro-
= —k, ' [1+k;(glkH ™ '(k—k.)] £)]1Q(0) cesses occur simultaneously, the approach of the initial dis-
tribution of the reactants to the thermal equilibrium one due
_2 2 to the diffusion of X, and the reaction by which the reactants
—k ekl [ klg) (el - ] | £ are changed to the products; the first process is not a primary
' cause for the decay of Q(¢). When the initial distribution of
+k XN glkH " '[k|g) (gl —k.] —— |/ X is the same as the thermal equilibrium one, the former does
S (h+ k) (7.9)  Dotoccur, and Q(¢) should be given then by a sum of expon-
’ entially decaying terms.>? Even in this case, the decay is in

which enable one to calculate 7, -and 7, without using an general multiexponential.

In this section we investigate a case in which the decay of
Q(?) is a single exponential when the initial distribution of X
is given by the thermal equilibrium one. It can be expected
that this case can be realized when the reaction rate constant
k, definable thereby is much smaller than the rate 7; ! of the
X motion. We shall find below that this expectation 1s indeed
confirmed. Under this condition, there should be formed a
certain steady-state distribution of X maintained during the
reaction, and the reaction rate constant k, should be the
average of k (X) over this distribution, although the distribu-
tion is in general different from the thermal equilibrium one.
The distribution is determined later in Appendix D.

In the above case k appearing in Eq. (7.8) should be of
the order of k, and so k can be neglected compared with A,
which is of the order of 7. Thus, &/ (h + k) can be ap-
proximated by unity in Eq. (7.8) for Q(0), with | f) re-
placed by | g). The first term on the right-hand side of Eq.
(7.9) for Q (0) then equals — [Q(0) ]2 The second term is
of the order of Q(0) divided by the nonvanishing eigenvalues
of H, while the third term is of the order of @(0)/h, and
hence both of them are of the order of TLQ(O). Since the
reaction rate k, is expected to be given by 7, ! = [Q(0)] !
from Eq. (7.7), both the second and the third terms on the
right-hand side of Eq. (7.9) can be neglected in comparison
with the first term under the condition of k, €7 ! which we
assumed. Thus, we get -Q_’(O) o= — [@(0) 1% and from Eq.
(1.7,

T, =1, for r,»7,. ’ (8.1)
This equation combined with Egs. (7.4) and (7.5) gives
fF(r)(n —y Y4y =0. (8.2)

Since the spectral function F(y) is nonnegative, Eq. (8.2)
means that F(y)(7, — ¥~ ')? vanishes irrespective of .
This is satisfied only when F(y) = 8(y — 7, ). Thus, Q(¢)

given by Eq. (7.3) decays with a single exponential, with a

rate constant X, equal to 7, !. Hence, Egs. (7.7) and (7.8)
yield

k, —k/[1+k_‘(g|kH“(k k,)| g)] for k., "
(8.3)

We note here that &k, given above does not contain 4. This
result is consistent with the consideration that 2 describes
the initial effect of thermalization within the potential ¥ (X)
and 4 should not influence the reaction rate k,, which is
determined in a time region much later than 7, .

In this case of single exponential decay, the distribution
function P(X; t) for the solvent configuration X at time ¢
must have a form separable in X and ¢ as
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PX s 1) = P(X)exp( — k,t) with the reaction rate constant
- k, given by Eq. (8.3). The steady-state distribution of X
- written as P(X) above deviates in general from the thermal-
- equilibrium one g(X)?, and its explicit form is given in Ap-

pendix D.
' The reaction rate constant obtained by Eq. (8.3) canbe
" applied only to an exothermic reaction with a free energy
difference |AG °| much larger than &, T, since we neglected a
trajectory which returns to the reactant surface after once
- surmounting the transition-state barrier from the reactant to
- the product surface. The rate constant k / of the reverse reac-
- tion can be obtained by using the equilibrium constant
. K=exp( ~ |AG°|/kyT) as k| = K k, in the present situa-
tion. A more accurate treatment? is given in a future paper,
. in which not only a forward reaction but also a reverse one
from the product to the reactant surface are taken into ac-
count at each solvent configuration X.

The right-hand side of Eq. (8.3) can be calculated using

" the procedure sketched at the end of Sec. VII. One obtains

k/k, =1+ k,rL(ln[z(l + A/ +0)%
1
+ ZJ- dx{exp[(1 —x*)AG*/kyT | — 1}/
(1 -—xz)) (8.3")
with
e=[(A—A0)/ (A +A) 1> = [4,/(4; + 240) ]2

When exp[(1 —c®)AG*/kyT}»1, the integral in
Eq. (8.3') can be estimated to be (wkpT/
AG*)'2(1 — ¢®) ~lexp(AG */ky Terfc[c(AG */ky T)/?]
with the use of the complementary error function defined by

erfe(x) = (2/\/E)J. e~ dt.
. Thereby, when

( 24, AG*)
exp| ————
A +24, kT

- (8.3)

* we have
k= {( p/r.)exp( — AG*/k,T) forvr,>u
" k,=vexp(—AG*/k;T)

where u is defined by

AG*\\2 24,
a= (ﬁkB T) A, + 24

1727y -1
el (i) |
Ai+24y kgT

.and v represents the preexponential factor of the thermal

for vr, €u, (3.6)

(8.7)

_1
1 (AG"‘)V2 ( AG*) (AG*
—_ exp| — for vr. >
b= 7, \7wkpT kyT \7kgT
T k= ( AG*) (AG*
.=vexp| — for vr; <
kgT kg

(8.4)

172
)"

equilibrium rate constant k.. It may be noted here that
defined by Eq. (8.7) also has a strong temperature depen-
dence except for the narrow reaction window limit, where
A;/A,«1. Therefore, in general, the three terms u, 7, , and
exp( — AG */kg T') have strong (essentially thermally acti- |
vated) temperature dependencies in Eq. (8.6).

It is seen from Egs. (8.6) and (8.7) that in the large 7,
limit k, does not include v and, thereby, does not include any
nonadiabatic factor: the properties on which &, depends are
those of the potential energy surface of the reactant and the |
height AG * of its lowest region of intersection with the pro-
duct’s surface. In the small 7, region, one sees from Eq.
(8.6) that k, depends on v and can thereby be either in the
nonadiabatic or adiabatic limit, according as v is given by
Eq. (4.12) or by (4.10) (or it can be in between). When v is
given by a nonadiabatic expression, Eq. (8.6) shows that the
nonadiabatic limit changes to an adiabatic one with increas-
ing 7, . When v is given by an adiabatic expression, Eq. (8.6)
serves to connect the low 7, and high 7, regions within the ;
adiabatic limit. The crossover in the rate constant at the
boundary of the two regions in 7, was pointed out qualita-
tively for the case of A; = 0 by Frauenfelder and Wolynes**

‘together with a qualitative discussion about the high 7,

adiabatic regime.

Differences in the expressions of the rate constant given
by Eq. (8.6) in the small and large 7, regions and the change |
between them with changing 7, can be understood as fol-
lows. In the small 7, thermal-equilibrium regime the rate |
limiting step is'a reactive transition of the system through the
transition state from the most favorable value of X where
V(X) + AG *(X) becomes minimum. In this regime, there- |
fore, a distinction between the two limits arises depending on !
the strength of the matrix element J of electron transfer at
the transition state: In the nonadiabatic limit, J is so small
that the preexponential factor v of the rate constant is pro-
portional to J 2 as given by Eq. (4.12), while in the adiabatic |
limit, v tends to the average phonon frequency given by Eq.
(4.10) since J is so large in this limit that a reaction surely
occurs at the transition state. In the large 7, nonthermal-
equilibrium regime, on the other hand, the X motion is so
slow that the rate limiting step is not a reactive transition of
the system, but its supply to an X value from which a reactive
transition occurs most dominantly. Therefore, the preex- |
ponential factor of the rate constant is proportional to the
relaxation rate 77 ! of the X motion. Moreover, the rate con- |
stant does not depend on the quantities determining the tran-
sition rate k(X) and hence purely nonadiabatic factors do
not affect the rate in this case. A more detailed discussion on
these points will be given in a forthcoming paper. |

In the narrow reaction window limit, the result obtained
above can be simplified further, yielding

(8.8)

172
)"
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under the conditions of
exp( — AG*/k, T) <1 and A,/A.<1. (8.9)

The rate constant obtained above for the condition of
vr. »[AG */ (kg T) ]'/? just coincides with the rate obtain-
able by Kramers’ method?® for the situation that the potential
curve for reaction has a cusp (as in Fig. 1) at the transition
state configuration X = X, but such that the slope of the
surface there is much steéper on the product’s side than on
the reactant’s side. In Kramers’ diffusion equation, the diffu-
sion constant D in Eq. (4.2) was given in terms of the viscos-
ity 7 of the solvent molecules as k5 T /7. Since 7, is related to
Dby Eq. (4.3), 5 is given by

n=r1L (8.10)

in terms of 7, . We note here that Eq. (8.10) is obtained
when the potential in which the coordinate X relaxes is writ-
ten as the reduced form } X 2. When it is writtenas} 56X %, Eq.
(8.10) becomes 77 = br, . Kramers did not give the explicit
expression of the rate obtained in the situation mentioned
above. However, it is easy to verify that it is just twice the
rate calculated by him [in an unnumbered equation below
Eq. (17) in Ref. 8] under the condition that the slope of the
potential curve at the transition state configuration is the
same on the reactant’s and the product’s sides (except for the
difference in sign). Although the Kramer’s problem is math-
ematically equivalent to the present one in the narrow reac-
tion window limit, the physics underlying them is somewhat
different: Kramers treated reactions activated only by diffu-
sional fluctuation of the solvent orientation, whereas we in-
clude also the case where intramolecular motions of the reac-
tant can contribute.

In this narrow reaction window limit, multiexponentia-
lity of the decay of the survival probability Q(#) is small in
any situation, as will be shown in the next section. In fact, the
lower limit of (7,/7,)(<1,/7. ) realized in this limit is
about 0.7 obtained when AG */k; T«€1 and v, > 1; a situa-
tion of 7, /7, €1, where the decay of Q(¢) becomes essential-
ly a multiexponential one, cannot be attained. .

It is seen from Eq. (8.6) that when v7, >y, the reaction
rate constant k, is proportional to the relaxation rate con-
stant 7, ! of the orientational fluctuation of the solvent mol-

“ecules, solong as k, €77 . Although the survival probability

" Q(t) shows a single exponential decay in this case, the tradi-
tional theories assuming a thermal equilibrium distribution

~of the solvent coordinate during the reaction have become
inapplicable. The distribution function of the solvent coordi-
nate X, given in Appendix D, deviates substantially from the
thermal equilibrium one in the neighborhood of the transi-
tion state configuration of X where the reaction occurs do-
minantly. The reaction rate constant k, proportional to 7, !
represents the rate with which the modified distribution is
recovered or maintained by the solvent fluctuation.

IX. NUMERICAL RESULTS

The dependence of the average survival times 7, and 7,
on the rate constant 7, ! for the solvent fluctuations is con-
sidered in this section using numerical calculations of the
expressions in Egs. (7.7)-(7.14).

T T T T
AG/KT =0
10 N/ Ao 7
(a) 00
(b) 02 .
(c) 05 )
0% (d) 1O % ¢
Take
10
' 3
10
o
loals
Tbke
10 |
|
102

FIG. 2. (a) Plotof r, k, vs 7.k, for AG */kz T = 0 and for various values
of A;/A4,. On the dashed line 7, equals 7,. (b) Plot of 7,k, vs 7k, for
AG*/ky T = Oand for various values of 4, /4,. On the dashed line 7, equals

T

‘Explicit calculations were made for the case that the
initial distribution g (X) f (X) of the coordinate X of the ori-
entation of the solvent molecules is given by the thermal
equilibrium one g(X)? within the potential ¥ (X). This case
is applicable to experiments in whith a nonpolar excited
state is formed from a nonpolar ground state by photoexcita-
tion, and both have the same potential }'(X). Since the dis-
tribution of X was a thermal equilibrium one in the ground
state, it is thereby in this case a thermal equilibrium one in
the nonpolar excited state. The process investigated in Refs.
3 and 4 is the decay of that state to a charge transfer state. In
general, however, the initial distribution of the coordinate X
can differ from the thermal equilibrium one, a case treated in
a future paper.

In the initially thermal equilibrated case mentioned
above, g(X) can be adopted as f (X) in Egs. (7.8) and (7.9)
for Q(0) and Q'(0). In this case, it can be shown that both
7.k, and 7, k, depend only on the dimensionless quantities
AG*/kyT,A; /A, and 1, k,.>* Figures 2 to 4 show the calcu-
lated dependence of 7, &k, and 7,k, on 7, k, for various val-
ues of 4, /A, with the dimensionless free energy of activation
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FIG.3. (a) Plotof 7, k, vs 7.k, for AG*/ks T == 1 and for various values
of A;/A,. On the dashed line.r, equals 7. (b) Plot of r,k, vs 7.k, for
AG*/ky T = 1and for various values of 4, /4,. On the dashed line 7, equals

T

AG */ky Tequalto0, 1,and 2, where AG * is determined by A
and AG°in Eq. (4.8). It will be recalled that AG * gives, in
effect, the height of the saddle point S for the reaction, mea-
sured from the minimum point O on the reactant surface
shown in Fig. 1, and that k, is the thermal equilibrium rate
constant given by Eq. (4.6).

When thermal equilibrium on the reactant surface is lar-
gely maintained during the reaction, we noted earlier that
one should obtain 7k, =7, k, =1, irrespective of the magni-
tude 7, k.. The onset of the deviation of these quantities
from unity is seen, when AG */kz T = O, to appear, with in-
creasing 7, k,, when 7, k, approaches unity [Figs. 2(a) and
2(b)]. Withincreasing AG */k T the deviation begins even
when7, k, €1 [e.g., Figs.4(a)and4(b) forAG*/k; T =2].
The condition for this deviation can be estimated in the sin-
gle-exponential decay case treated in the previous section,
anditis giveninalarge AG */k, T situation described by Eq.
(8.5) by the condition vr, R i, i.e., by the condition &k, 7,
Ruexp( — AG*/kgT) [cf. Eq. (8.6)] with u defined by
Eq. (8.7). The condition for any value of AG */kg T is ob-
tained from Eq. (8.3), namely when the second term on the
right-hand side is not negligible compared with unity.

T T T T

DGk T =2
0*F N/
(a) 00

102 (on | 10 10? 0

FIG. 4. (a) Plotof r,k, vs T, k, for AG */k, T = 2'and for various values
of A,/A,. On the dashed line 7, equals 7. (b) Plot of 7,k, vs 7.k, for
AG */ky T = 2 and for various values of 4, /44. On the dashed line 7, equals

T

When the deviation of 7, k., and 7, k, from unity occurs,
7, and 7, become dependenton 7 , A;/A,, A, and AG °, while
the thermal equilibrium rate constant &, is dependent main-
lyonA and AG°[Egs. (4.6) to (4.12) ]. Even when 7k, and
7, k, deviate from unity, depending on the value of 7, k,, the
survival probability Q(#) shows a single exponential decay
with 7, =7, (as in Figs. 2 to 4) solong as 7, ( <7, ) is suffi-
ciently larger than 7,. This result confirms the discussion
given in the previous section, by an explicit calculation.

The deviation between 7, and 7, when AG*/kzT=0
[Figs.2(a) and 2(b) ] starts when 7, becomes, with increas-
ing 7, k., comparable with 7. As the condition of 7, »7, is
approached, (namely, when 7, k, is sufficiently larger than
unity and when A4,/4, is not small) the difference between 7,
and 7, increases substantially (Figs. 2 to 4). Then, the decay
of the survival probability Q(z) becomes essentially multiex-
ponential. Moreover, in this case, 7, ( > 7, ) is more strongly
affected by 7, than r,; 7,, particularly, tends to increase
nearly proportionally to 7, withincreasing r, (Figs.2t04).
Ultimately it is expected that with further increase in 7, both
1, and 7, should become independent of 7, , when 4,/4, is
not too small. This approach to the “nondiffusing limit” dis-
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cussed in Sec. IV is seen in curves (e) and (f) of Figs. 3(a)
and 4(a). .

The multiexponential behavior described above can be
understood by considering that when 7, is very large, and
when at the same time the reaction window is.not too nar-
row, the decay of Q(¢) is more or less composed of two
stages. Firstly, in the fast stage the initial distribution of the
coordinate X of the solvent orientation should acquire a hole
with a size the same as that of the window of the reaction

" described by k(X) in Eq. (4.1), with a rate much faster than
the relaxation rate 77 ! of the solvent fluctuation. Then, in
the slow stage the widening of the hole, in which the two
walls of the hole collapse and disappear into the hole succes-
sively, should occur with a rate constant of the order of 7 *.
The shorter of the average survival times (7, ) contains more
information on the fast stage than the longer one 7, , while 7,
contains more information about the slow stage. In fact, as
seen in Figs. 2 to 4, the difference between 7, and 7, de-
creases with decreasing size of the reaction window, i.e., with

decreasing 4, /A,, since the contribution of the fast stage de-.

creases in both 7, and 7,. The explanation in terms of the
two stages is also consistent with the result that 7, is almost
- proportional to 7, and that the difference between 7, and 7,
increases with increasing 7, .
In the limit of a very narrow reaction window, where
A;/A €1 as described in Sec. IV, the extent of multiexponen-
tial decay of Q(#) is not large: 7, is only slightly smaller than
7, and both are nearly equal to 7, when AG*/k, T = 0and
. k.>»1 [Figs. 2(a) and 2(b)]. In this limit, therefore, the
decay of Q(¢) should nearly be a single exponential and, in
particular, the decay rate should nearly be equal to 1/7,, as
longas AG */kz T¢1and 7, k,» 1. Asshown in Appendix E,
when AG*/k,T €1 and 7, k,>1 in this narrow reaction
window limit, we can get the analytical form of the survival
probability Q(¢) as
0(1) = 2 sin—'(e "), 9.1)
T
We note here that at long times Q(#) decays just with a rate
constant 77 '. In this case, 7, and 7, are given by

7, =7, In2=0.697,,

- (9.2)
7, =7, [4In2 + 77/(241n 2) ] =0.947,.

These equations give the lower limits of 7, /7, .and 7, /7,
obtained in this limit.

Equation (9.1) for Q(¢) does not depend on the ampli-
tude k, of the reaction function k(X)) written in this limit as
k(X — X, ), since we are in the adiabatic limit. In investi-
gating a similar problem but with a narrow Lorentzian
expression for k(X) Burshtein and Kofman'® reached the
same expression as Eq. (9.1), in the limit of a very narrow
Lorentzian. Their derivation is quite different from that used
in Appendix E.

The four limiting cases discussed earlier can be seen in
the above figures, e.g., in Figs. 3(a) and 3(b). First, in the
lower left-hand corner, namely when 7, k., is small, both
7.k, and 7, k, tend to be about unity irrespective of A,/4,,.
This neighborhood is the region of the limiting case (1).

The limiting case (3) is realized when 4,/4,<]1, that is

3
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FIG.5. (a) Plotof r,/7% vs E; /ky T for AG*/E; =0.1,72v = 0.1and for
various values of A,/4,. Indicated also are dashed lines for 7, =k !,
7,=7,, and a dash-dot line for the slope of the function
exp[(AG* + E_)/kpT). (b) Plot of 7,/72 vs E /kzT for AG*/E,

= 0.1, 7 v = 0.1 and for various values of 1, /4,. Indicated also are dashed
lines for 7, = k!, 7, = 7., and a dash—dot line for the slope of the func-
tion exp[(AG* + E; )/kzT}.

in the curve (a). The limiting case (2) is, on the other hand,
realized when 4,/4,>1, and 7, =7, =k [ ! should be ob-
tained thereby, irrespective of the value of 7; k, . In the actu-
al calculation, however, the largest value of 4,/4, adopted
was five, rather than a very large number. As a consequence,
the behavior expected in this limiting case (2) can be seen
only when 7.k, S1. (The condition 7, =7, =k [ ! is ob-
tained more easily in the region of smaller 7, k,.) In the
regions of both the limiting cases (1) and (2) it is seen that
single exponential decay prevails since 7, =7,, and the mul-
tiexponentiality of the decay is weak in the limiting case (3),
since 7, is not very different from 7.

The limiting case (4) is realized when 7.k, is very
large. This nondiffusing limit, however, cannot be realized
when 4, /4«1, since the width of the reaction window is so
narrow for A;/A,<1 that the reaction occurs only after diffu-
sion of the coordinate X to the reaction window. Moreover,
the limiting case (4) should be seen more easily for 7, than
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for 7,, since the former contains more information on the
initial time region, in which effects of the X diffusion are less
apparent. In the actual calculation, values of 7, k, larger
than 10° and of 4,/ larger than five were not used. There-
fore, the behavior expected in this limit (that the decay pro-
file becomes independent of 7, for large 7, k,) can be seen
only for 7, in the present calculation, namely, in the region
of 7, k, Z 10for curve (f) withA;/4, = 5and in thatof 7, k,
R 10*for curve (e) with 4, /A, = 2 in Fig. 3(a). In this limit,
it is seen that multiexponential decay prevails since 7, is
quite different from 7,.

To calculate the temperature dependence of the average
survival times 7, and 7,, information is needed on the tem-
‘perature dependence of the relaxation time 7, of the polar-
ization fluctuation of the solvent molecules. It is known that
7, shows a thermally activated temperature dependence and
hence can be written as

7, =719 exp(E./kpT).
For example, using the known temperature dependence

of the quantities in Eq. (1.1) we have estimated that the
value of the activation energy E, for various alcohols® is

9.3)

20,35

about 1600 to 1800 cm ™' (1720 cm ™~ for 1-propanol), E, /
kg for 1-propanol to be ~2480 K and the preexponential
factor 79 to be about 1.0 10~ s (cf. Fig. 9, given later).
The preexponential factor v appearing in the thermal equi-
librium rate constant k, of Eq. (4.6) approaches in the adia-
batic limit the value in Eq. (4.10), namely ~10'3s™!, and
thereby 72 v=0.1. In the highly nonadiabatic region, v is
given by Eq. (4.12), which is substantially smaller than 103
s~ 1. Accordingly, numerical calculations of the temperature
dependence of 7, and 7, were made for 73 v = 0.1 and 1073,

Figures 5(a) and 5(b) show, respectively, the depen-
dence of 7, /7% and 7,/77 for various values of 4,/A,, for
AG*/E; =0.1and 7%v = 0.1. Figures 6(a) and 6(b) show
those calculated for AG*/E; =0.1 and 79v = 1073, Al-
though the 7, and 7, values for AG */E,; = 0are not shown,
they can easily be inferred from Figs. 2(a) and 2(b) since the
thermal equilibrium rate constant k, appearing in the abscis-
sa has no temperature dependence for AG * = 0.

In each figure, the dashed line with a steeper slope repre-
sents 7, /79[ = exp(E./ksT)], while the dashed line
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FIG. 6. (a) Plotof 7,/72 vs E, /k, T for AG*/E, = 0.1, rov=10"3and
for various values of 4,/4,. Indicated also are dashed lines for 7, =k [,
7.=7;, and a dash-dot line for the slope of the function
exp[(AG* + E,; )/kT). (b) Plot of 7,/7% vs E,/k,T for AG*/E,
=0.1, #,v=10"2 and for various values of A,/4,. Indicated also are
dashed lines for 7, = k %, 7, = 7,, and a dash—dot line for the slope of the
function exp[(AG* + E; )/kyT].
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[ = (vr}) "' exp(AG */k; T) ]. The dash—dot line shows a
slope proportional toexp[ (AG * + E; )/kp T]. Tworegions
in the temperature dependence of 7, and 7, can readily be
recognized in Figs. 5 and 6: the high temperature region
where both 7, and 7, approach the thermal equilibrium val-

-uek [~ !, and the low temperature region where they become

greater than k ;! and approach the value of the relaxation
time 7, of the solvent orientational fluctuations. In the low
temperature region, both 7, and 7, depend on the ratio 4,/
Ao: when A;/4,«1, they nearly coincide and are consider-
ably larger than 7, . They become nearly proportional to
exp[(AG* + E )/k5T], asshown by the reaction rate con-
stant k, of Eq. (8.8) definable in this case and as also seen in
Figs. 5 and 6. When 4,/4,> 1, on the other hand, the differ-
ence between 7, and 7, increases and 7, becomes consider-
ably shorter than 7, (Figs. 5and 6). The decay of the surviv-
al probability then becomes multiexponential.

Figures 7(a) and 7(b) show, respectively, the depen-
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FIG. 9. Plot of 7, vs 1/T for 1-propanol (Refs. 20 and 35) (O) and for 1-
hexanol (Refs. 20 and 38) (/\), and plot of 7.,, for TNSDMA in these
solvents (Ref. 3) (@) and (A), respectively.

dence of 7,/7% and 7,/77 on E_/kyT, calculated for
AG*/E, =0.5 and 72 =0.1, while Figs. 8(a) and 8(b)
show those calculated for AG */E; = 0.5 and 73 v = 107"
The two regions in the temperature dependence of 7, and 7,
similar to those noted above in Figs. 5 and 6 for AG*/
E, = 0.1 can again be recognized. Now, however, the acti-
vation free energy for surmounting the transition region for
the reaction is so high that 7, and 7, becomes considerably
larger than 7, in the low temperature region, except for the
case of A,/4,> 1. Therefore, in the low temperature region,
7, is nearly equal to 7, and their reciprocals approach the
reaction rate constant k, of Eq. (8.6). Except when A,/
Ao«1, the effective activation free energy of the latter is a
little less than AG * + E , because of the temperature depen-
dence of u in Eq. (8.6) (cf. Figs. 7 and 8). In Figs. 7(a) and
8(a) one sees that 7,, the shorter of the average survival
times, for A,/A, = 5, approaches 7, in the low temperature
region. In this case, it can be seen that the difference between
r, and 7, develops quickly as 7, approaches 7, from above
and then falls below it.

X. DISCUSSION OF EXPERIMENTAL DATA

For several intramolecular charge transfers an approxi-
mate equality (with some scatter) has been reported
between the observed rate constant k.., (= 75,) and 77
for results obtained at room temperature.>* If this relation-
ship persists over a wide temperature region, such results are
in agreement with the case of a narrow reaction window [the
limit (3), A;/A,<1] within the present two-state model.

A particular point of interest concerns the effect of tem-
perature on the above rates. It is a prediction of the theory
that as 7, increases at low temperatures, the value of 77 ' can
fall below that of k.,,,, provided in the two-state mechanism
there is an intramolecular contribution to the barrier and the
reaction window is not too narrow. In this case, the reaction
can occur without X diffusion [e.g., as in the nondiffusing
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E’ limit (4) in Sec. IV]. Because of the possibility of nuclear
“ tunneling at low temperatures, particularly vibrational nu-
clear tunneling, £(X) at X #X, may decrease less rapidly
; than exponentially with decreasing temperature at low tem-
peratures®® and provide a reaction window wider than it
would have without nuclear tunneling. In Fig. 9 we compare
' data®*>* for log 7, vs 1/T for 1-propanol with data for
- log 7.5, vs 1/T for an aminonaphthalene sulphonic acid
* TNSDMA in 1-propanol.®> A deviation between the two
< plots occurs at low temperatures. Experimental data for
- log 7, vs 1/T for 1-hexanol’>*"** and for log 7., vs 1/Tare
" also given for TNSDMA in a solution of 1-hexanol.> More
extensive data in each case, particularly in the latter, are
clearly needed.

_ Ifthe 1-propanol data for 7., in Fig. 9 are described (as
" in Ref. 3) roughly by a straight line, it is seen to cross the
- log 7, vs 1/T plot. Then, this result can be explained by the
2 present model, as in the behavior of curve (d) in Fig. 6(a) in
the vicinity of E; /k T = 8.5. If, however, the data for 7,
in Fig. 9 are better described by an approximate equality of
Tep a0d 7. in the high temperature range (as in Ref. 4),
- then there is seen to be simultaneously a “‘saturation tenden-
* ¢y” of 7,,, in the low temperature range. The present model
. could be consistent with such data only if nuclear tunneling
- becomes important at low temperatures: An equality of
‘and 7., in the high temperature range of the plot requires a
° narrow reaction window, while the saturation behavior
(with 7, <7, ) requires a wide reaction window or, via
> nuclear tunneling, the equivalent of a wide reaction window.
- In the region where 7,,, <7,, multiexponential behavior is
* predicted, and it would be interesting to see if this behavior
" indeed occurs,?®-and indeed which of the two situations the
" data in Fig. 9 describe, namely intersecting or merging be-
havior.

~~ We consider next a high temperature region. At suffi-
- ciently high temperatures, 7, should become very small be-

N

cause of the significant values of E;, smaller than k ! if

- there is some barrier to reaction and if the activation energy
* of the latter is less than E, . In this case the reaction rate
- constant 7} should approach the thermal equilibrium rate
- constant k, which is now small in comparison with 7 '.

Experimental data for this behavior are presently absent in
* Fig. 9, and such higher temperature data would be desirable.

An example where the 7.,,, for a dimethyl aminobenzonitrile

- DMABN exceeds 7, was reported in Ref. 14, using a fast

solvent acetonitrile, though based on indirect measurements

(competition with quenching by O,) rather than real time
measurements.
: Data showing viscosity effects in water—dextrose solu-
-~ tions have been given for the Fe(CN)~>*and Fe(Cp)Y -
exchange reactions at an electrode.” In this system little dif-
ference in bond lengths of the two redox forms is anticipated,
~ and hence the main contribution to A is expected to be due to
Ao Also, in'this system there is a nonnegligible value of AG *
(equal to ~Ay,/4 when the “activation overpotential” is
- zero). Accordingly, we then have the large 7, case in Eq.
(8.6), and the rate would then become proportional to 7; !,
as well as to exp( — AG */k; T') and to other factors. The
. measured rate was approximately inversely proportional to

the viscosity 7. (It would be useful to determine the depen-
denceon 7;.) .

Another set of data involves electrochemical rate con-
stants for mettalocene and arene redox couples. Here, the
solvent was varied, and the authors® found that the best
agreement between theory and experiment was obtained us-
ing the theoretical expression for 4, given in Ref. 23 and the
expression given for the large 7, case in Eq. (8.8).*°

In the interpretation of the experimental data*® of 7.,,,
in terms of 7, the €, used in Eq. (1.1) was the square of the
refractive index. There are three dielectric relaxation times
in the alcohols,?’ and the longest one, associated with break-
ing of hydrogen bonds in clusters of alcohol molecules, was
used for 7, in Refs. 4 and 5. Under such conditions it can be
argued that a microwave value of the dielectric constant
should be used for €, but then the reported close agreement
between 7., and 7, givenin Refs. 4 and 5 would be less so. If
real, one possible resolution of this paradox is to suppose
that the solute in the vicinity of the solvent consists of clus-
ters, rather than of the mixture of clusters and monomers
postulated®® for the interpretation of the dielectric disper-
sion data of the bulk solvent. This point is discussed in more
detail elsewhere.?*

The expected multiexponential nature of the decay in
certain regimes has been stressed in an earlier section. Con-
sidering the parallelism of the reaction-diffusion equation in
Eq. (4.2) (apart from the difference in the Laplacian) with
the equation obtained when the diffusion is translational in-
stead of internal, there arises the question of why multiex-
ponential kinetics are usually of relative minor importance
in most (translational) diffusion-controlled reactions. Such
reactions are usually treated by a steady-state approxima-
tion. In the bimolecular translational-diffusion problem, the
average survival time for molecules of one species, and hence
the observation time, can be lengthened merely by making
the concentration of its reacting partner sufficiently small. It
can be made, thereby, much larger than the transient time.
The latter is of the order of (a*>/7wD),*! where a is the reac-
tion distance (~5 A say) and the diffusion constant D is of
the order of 10~ cm? s/, and so this time is of the order of
0.1 ns. In the intramolecular case being treated via Eq. (4.2),
however, this particular possibility of reducing the impor-
tance of the transient time does not exist. When a multiex-
ponential decay occurs, observation at times much longer
than 7, is thereby limited to an observation of the fate of
only a small fraction of the original species. The decay be-
havior of the latter can be further obscured by the competing

fluorescence, radiationless transitions and, in some cases, .

back reaction. This situation is thus very different from the
translational diffusion-reaction problem.
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APPENDIX A: MOTIVATION AND JUSTIFICATION OF
EQ. (5.18) .

1. Motivation

In the coordinate representation, the ( W,Y) matrix ele-
ment of the left-hand side of Eq. (5.18) is
Sk(X)A(W, X)B(X,Y)dX, where A(W, X) and B(X,Y) de-
note the (W, X) and (X,Y) matrix elements of the operator
(s+H) 'and s+ H+ k)", respectively. We define an
average of an arbitrary function C(X), say (C(X)},,, by

(CX))y = Jg(X)zk(X)C(X)dX fg(X)zk(X)dX.

(A1)
Then, the left-hand side of Eq. (5.18) is the same as
k ([A(W,X)/g(X)] - [B(X,Y)/g(X)]),,. The approxi-
mation (5.18) thus corresponds to the decoupling approxi-
mation

(4w, X)/g(X0)] - [B(X,Y)/g(X)]),,

— (AW, X)/8(X))y, - (B(X,Y)/8(X)),,, (A2)

i.e., that the average of a product is approximated by the
product of the averages.

2. Justification of Eq. (5.18)

It is easy to show that this decoupling is exact when
k(X) is equal to a delta function, e.g., k,6(X — X, ) in the
limit (3) of a narrow reaction window, irrespective of what
function is used for g(X).

In particular, introducing the identity operator
J|X YdX (X | before the k in the left-hand side of Eq. (5.1 8),
noting that (X |k equals k(X)(X| and using Eq. (4.14),
51X )dX (X |kisconverted to | X, Yko(X, |. Next, introducing
into the right-hand side of Eq. (5.18) the identity operators
S1X)dX (X |and §|Y )dY (Y |before g)andafter (g[,respec-
tively, one obtains | X, Yk,(X, | for k | g)k *( g|k, and thus
establishes Eq. (5.18) for this limit (3), irrespective of | g).

The decoupling (A2) is also exact when 4 (W, X)/g(X)
does not depend on X. This case is realized in the slow reac-
tion limit when Eq. (5.1) is used for g(%): In this limit, s can
be estimated at a magnitude of the order of the average rate,
which is much smaller than the nonvanishing eigenvalues of
H, which are of the order of 77 '. On each side of Eq. (5.18)
one can multiply (s+ H)~' by the identity operator
2, |u, ) {u,|, where the |u, )’s are eigenvectors of H. In the
limit of small s, (s + H) ~'Z, |u, ){(u,| tendstos~"| g)( g|.
Thereby, both sides of Eq. (5.18) are seen to be exactly
equal. [In terms of the 4(W, X) in Eq. (A2), A(W, X) is
given by s~ 'g(W)g(X) when (s + H)™' is replaced by
s~'| g)( g|, and so A (W, X)/g(X) is independent of X and
Eq. (A2) is verified. ]

In the limits (2) and (4), the decoupling (A2), or
equivalently, Eq. (5.18), is in general not exact. The quanti-
ty which we wish to calculate is, however, the Laplace trans-
form of the survival probability, written as
0(s) = (g|(s+H+k)"!|f)inEq. (5.13). 1tis apparent
that the decoupling (5.18) is exact under the condition that
( 8| operates from the left on both sides of the equation.
After decoupling, however, one encounters a term
{glk(s + H + k), which can be obtained by the oper-

ation of { g|k from the left on both sides of Eq. (5.17). Inthe
limit (2) where k is regarded as a constant k, as in Eq.
(4.13), the operation of ( g|k is the same as that of k, ( g|.
Thus, we can apply the same decoupling exactly again. In
this way, we see that the decoupling (5.18) gives the exact
result in the limit (2) as long as we concern ourselves with
the calculation of the survival probability Q(¢).

In the limit (4), the decoupling (5.18) is not exact even
when we confine ourselves to an operation on Eq. (5.18) by
( g| from the left. However, in this nondiffusing limit, & is
much larger than either H and 4 whose magnitude is of the
order of 7 !, and 5, which can be estimated at a magnitude of
the order of the average reaction rate, is a quantity of the
order of k. Then, the first term on the right-hand side of Eq.
(5.17) tends to (s + k) ~!in this limit and the second term is
much smaller than the first term, being less by a factor of the
order of [7; (s + k)] ~!(«1). Thus, we see that also in this
limit the correct result is obtained, since the decoupling ap-
proximation (5.18) is used only in the second term of Eq.
(5.17), which is negligible compared with the first term.

APPENDIX B:' EXPRESSION FOR (9

We obtain here the explicit form of the time dependence
of the survival probability Q(7). It is given by the inverse
Laplace transform of Q(s) of Eq. (5.24). We begin with
rewriting Eq. (5.24) as

Q(s) = [u(s) + W(s)|(s+h+ k)" £)1/[s + sa(s)]

(BY)
with
u(s) =1+a(s) — (glk(s+ H)7'| f)
and
(W) = —k glk(s+H)"'[k|g) (gl —k.]k,
(B2)

by using Eq. (5.22) for a(s). Now, the eigenvalues of the .

operator H of Eq. (5.5) are given by n/r, for n =0,1,2,...
when the potential V' (X) is given by the quadratic form
(3.2). As schematically shown in Fig. 10, a(s) defined by
Eq. (5.22) diverges each time the variable s approaches
—n/7; forn =0,1,2,... . We write the zeros of 1 + a(s) as
$= — ¥4 — Y1» — Y2.-, all of which have negative values,
as is easily understood from Fig. 10. Since (s + H) ! and

as) .

FIG. 10. Plot of a(s), given by Egs. (5.22) and (B3), vs 5. The — ¢,’s

indicate the poles of @(s) [cf. denominator in Eq. (B1)]. The polesofa(s) - 3

occurat — n/7y. :
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a(s) approach, respectively, s~'| g){ g| and ks~ in the
neighborhood of the origin of s, the functions u(s), (v(s)|,
and s + sa(s) are each analytic at the origin. Since singular
points of w(s)/[s + sa(s)] with w(s) = u(s) or (v(s)| are

only single polesats = — y, fori = 0,1,2,..., we can rewrite
it as
w(s) _ _ i ¥:) 1 (B3)
S+Sa(s) i= 07’, 7’,) (s+7/l)

Then, using
+r) " 's+h+ k)7

=[G+h+k) ' —(G+y) /(i —h—k)
which appears when w(s) = (v(s)|, we can finally obtain
Q(t) as

e k
(1) = <
0 ,-;o vi{glk(y;, —H) %k | g)
X[<g —H f)"—m
+i<gk L[k g)(g| —k.]k
3 —glk18 (el —k
e—(k+h)t_e~1’:' )]
X . B4
i —(k+h) f (B4

In order to calculate ¥, and then Q(#), we must first
calculate a function of the form ( g|k(s + H) ~'| j) includ-
"ing a(s) defined by Eq. (5.22), where | j) appearing here is
not necessarily orthogonal to | g). This function is the La-
place transform of ( glke ~ | j), written as Eq. (7.13) in
the coordinate representation, and can be calculated with
the use of Eq. (7.12) and, for k(X), Eqs. (3.6) and (4.1).In
particular, a(s) is given by

a(s) = k,_,f dte %(1 — A%~ 2/my-1/2
0

—t/
2de” T

AG*)
- (BS)
14+ Ade™ "™ ksT

X exp(

with
A=A/ (A; + Ap). (B6)
The integral in Eq. (B5) can be defined only when Re 5> 0.
|

(glk|g){glk*Hk | g)/({glk?| g)(g|kHk|g))

Expanding the integrand of a(s) in a power seriesine ™~ e

when Re s >0 and then integrating, we get a function which :
can be extended by analytic continuation to the region where
Re s <0. This function has a behavior shown in Fig. 10 in
that region. An example of an explicit calculation of a(s) for

A =1and AG* = 0is given in Appendix E. |

APPENDIX C: EVALUATION OF TERMS IN EQ. (6.4) FOR
h

Since the exponents of both g(X) and k(X)) are quadrat-
icin the coordinate X in Egs. (3.2) and (5.1) for g(X) and in
Egs. (3.6) and (4.1) for k(X), we can easily perform inte-
grations contained in { g|k 2| g) and { g|k *| g), as well asin
{ glk | g)=k, . Then, one obtains |

(glk | gY(glk? &)/ ({glk? g))?

1
‘[(1+5)"2(3+5)”2[2+5+(1+6)”2(3+6)”2] 5
26 AG* |
+1]ex ] (C1)

P er5G+6 kT
with ,
S=2A;/Ag (C2)

The expression in Eq. (C1) appears in the denominator on
the right-hand side of Eq. (6.4) for A. It is easy to see from
Eq. (C1) that the right-hand side of Eq. (C1) is greater than |
unity although this result for the left-hand side is ensured by |
Schwarz’s inequality without relying upon a direct calcula-
tion [e.g., regarding g (X )2k (X) as the weighting function in
an integral over X]. '
Using Hk | g) = [H,k]| g) =
explained in the text, we obtain

— D[3%/3X* k]| g), as.

X -X.)

1
Hi|gy =—[1—
&) ms[ 5k3

X[(1+5)X—XC]]klg), (C3)

where we have rewritten the diffusion constant D in terms of
the relaxation time 7, using the relation (4.3). Then, one :
can calculate { g|kHk | g) and ( g|k >Hk | g), and obtain the |
following for an expression which appears in the numerator
on the right-hand side of Eq. (6.4) for A:

=[1 42+8)°-3+8°U+8)

(B +8)°2(1+ 8222 +6)° + 3+ 6)°*(1 + )] ]

( ‘ el
xX{1+ exp :
246+26(14+8)AG*/kyT 24+8)(3+6) kgT

Since 4(2 + 8)¢ — (3 + 6)3(1 4+ 6) is positive definite as
long as 8 > 0, as seen from the positive coefficients in its ex-
pansion in powers of §, we see that the right-hand side of Eq.
(C4) is greater than unity.

The remaining quantity which we need for computing 4

in Eq. (6.4) is

AG* ] . (C4)

-
(glkHk | g)/{ glk?| &)

1 1 1496 1 AG*]
= 1 26
7 2+8)? & [ tTys T kyT

(C5)

which is also positive definite.
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: The 2 defined by Eq. (6.4) can thereby be seen from
Eqgs. (C3)-(C5) to be a positive definite quantity.

APPENDIX D: DISTRIBUTION FUNCTION FOR SINGLE
EXPONENTIAL DECAY

When the single exponential decay occurs, (s + h)/
(s + h + k) appearing in Eq. (5.23) can be replaced by uni-
ty, since k can be neglected in comparison with /4 of the order
of 77!, as explained in the text. Then, Eq. (5.23) tends to

L _ U o
s+H+4+k s+H €
1 1 1
_— k k———.
“Tra sra ek
(D1)

- When the initial distribution function P(X;0) for the solvent
configuration X is given by the thermal-equilibrium one
g(X)? as in the text, the Laplace transform [P(s)) of the
function p(X;t) in Eq. (5.3) in the bra-ket notation is given
by (s + H + k) ~'| g), which can be rewritten by using Eqgs.
i (D1) and (5.14b) as in Eq. (D2):

[P(s)) ={|g) + [a(s) — s+ H) k]1|g)}/

[s+sa(s)]. (D2)

Since a(s) is defined by Eq. (5.22), the numerator of

Eq. (D2) is analytic at s = 0, tending there to a constant
given by

|8+ k' 8) glk —k)H ~'k| g). (D3)

The denominator of Eq. (D2) is also analytic at s = 0, tend-
ing to k, there. The singularities of | 5(s)) given by Eq.
. (D2) come only from poles of [s + sa(s)] ! which are lo-
 cated on the line of real and negative s in the complex s plane
| as noted in Appendix B, especially in Fig. 10. Each pole
located, for example, at — ¥ gives rise to a component de-
caying as exp( — y¢) in the distribution function. In the
- present case of single exponential decay the slowest compo-
, nent must predominate. Therefore, the pole with the small-
est y value must have a residue much larger than other poles,
and moreover the location of the lowest pole must be at
. s = —k, where k, is given by Eq. (8.3). Since k, <7, the
, denominator of Eq. (D2) can be approximated in the neigh-
borhood of s = — k, by

s+sa(s)~—ka'(—k,)(s+k )~k k '(s+k),
(D4)

where (s + H) "?=~| g)s~%( g| for |s|<r; ! was applied to
a'(s)= —k; ' glk(s+ H) k| g).Fors~ — k,,thenu-
. merator of Eq. (D2) can be approximated by its value at
-5 =0 given by Eq. (D3). Neglecting contributions from
poles other than the lowest one, one obtains the inverse La-
place transform | p(z)) of | 5(s)) of Eq. (D2) as

PO =k k7' + k7' g)
X(glk—k,)H " 'k|g)]exp( — k,2). (D5)

Since the coordinate representative (X | p(¢)) is expressed as
- p(X; ¢) in Eq. (5.10), the distribution function P(X; t) for
gthe solvent configuration X at time r is given by

H. Sumi and R. A. Marcus: Electron transfer reactions

g(X) (X | p(2)), and it has a form separable in X and ¢ as
written as P(X)exp( — k,¢) in the text. The steady-state dis-
tribution P(X) of X is given by

P(X) = k,k . 'g(X)

x{g(X) + k7' [gX) (glk — k(X |1H ~'k | g)}.

. (D6)

Wenote here that |X Yk, — k | g)g(X) appearing in the rec-

tangular bracket is perpendicular to | g). The distribution of

X described by P(X) deviates from the thermal-equilibrium

one proportional to g (X)? because of the second term in the
curly bracket. Using Eq. (8.3) for k,, one can see that

J-P(X)dX= 1 and fk(X)P(X)dX= k,. (D7)

These relations show explicitly that P(X) is the distribution
function giving the reaction rate constant k, in the case of
single exponential decay.

APPENDIX E: EVALUATION OF Q(f) FOR THE NARROW
REACTION WINDOW LIMIT

In the narrow reaction window limit for A,/4,<1, the
reaction rate constant k(X)) is given by the delta function as

k(X) =v(2mkyT)8(X — X,), (E1)
where v represents the preexponential factor of the thermal

equilibrium rate constant k, given as Eq. (4.6). The free
energy of activation of k, is given by

AG*=1X2. (E2)
In this limit, we can introduce (s + £)/(s +h + k) =1in
calculating Eq. (5.24) for Q(s), as explained in Sec. V. We
assume as in Sec. IX that the initial distribution g(X) f (X)
of the coordinate X is given by the thermal equilibrium one
g(X)”. Then, replacing | f) by | g) in Eq. (5.24), and using
Eqgs. (5.14) and (5.19), we obtain

(E3)
Taking the limit of A, /A,— 0in Eq. (B5) for a(s), we obtain

a(s) =kef e—st(l __e*2t/‘rl_)—l/2
0

—t/Tp
2e AG*)dt‘
14e " kyT

Equation (E4) for a(s) has no singularity when Re s> 0. It
diverges when Re 5 <0, but one can obtain an expression for
a(s) there by expanding the integrand in a power series in
e~ "™, integrating termwise when Re s> 0 and then using
analytic continuation to the region where Res<O0. It is
thereby seen that @(s) has in generala pole at s = — m/7,
for m = 0,1,2,... and a zero between adjacent poles, as men-
tioned in Appendix B.

When AG */k T<1, Eq. (E4) simplifies considerably.
Now, we need to expand only (1 — e ~*/%)~1/2jn a power

Xexp( (E4)

series in e~ >'/7%, obtaining the following equation (ES5)
when Re s> 0:
S (2a)! 1 AG*
a(s) = ke 19
,.go [2n)!]? s+ 2n/7, kpT <
(ES)
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where (2n)!! = (2n) - (2n —2)--4.2, with (0O)!!=1. By
analytic continuation it applies to the entire s plane. Thus,
we see that when AG*/kz;T«1, a(s) has poles only at
—2m/7; for m =0,1,2,... and a zero between adjacent
" poles. Moreover, we can verify that these zeros of a(s) are
given as in Eq. (E6) and that the first order derivative a’(s)
of a(s) at the zeros is given by Eq. (E7):

a[—2m+1)/r,] =0 for m=0,12,.., (E6)
al—2m+ 1)/7'_1-]
= —%k,fi[(zm)!!]?/(zm + 1)L (E7)

Equations (E6) and (E7) are verified at the end of this Ap-
pendix.

Although Q(s) given by Eq. (E3) is analytic ats = 0, it
has poles at the zeros of 1 + a(s). When k.7, > 1, however,
the poles of O(s) tend to the zeros of a(s) obtained above by
Eq. (E6). In this case, @(s) behaves in the neighborhood of

apolesats= — (2n+1)/7., as
o(s) ( i )2
o 2n+1
. k. 1
d[—@n+1D/1) s+Qn+ 1/,
(E8)
Therefore, the inverse transform Q(¢) of O(s) is given by
2 & 1 2n)! —@n+ Dt/ry
==
o) T ,,;o 2n+ 1 [(2m)N]?
=£sin°'(e_m"), (E9)

T

which shows the explicit time dependence of the survival
probability Q(¢) obtained when AG */k; T<1 and k, 7, >1
in the narrow reaction window limit of 4;/4,<1.

We turn finally to the proof of Eqs. (E6) and (E7) for
the case AG*=0. A change of variable in Eq. (E4),
x =exp( — t /7, ) shows that a(s) for Res> 0 is given by
the value of k, 7, € “I(s;€) at € = 0, where

1

I(s:€) =%J (x/€) ™11 — x?) V2 dx. (E10)
Unlike the integral in Eq. (E4), I(s;€) is well behaved when
s7;, is a negative integer and can be expanded in a Taylor
series in powers of €. For m = 0,1,2,..., the coefficient of
€m*! in the expansion of I[ — (2m + 1)/7,;€] equals
(k)" 'a[ — (2m + 1)/7, ]. Performing the integration
in Eq. (E10) we can show that J[ — (2m + 1)/7, ;€] equals
z m! ex (1 —)ym—k+172

o (m—Kk)k!2m —2k+1

and, thereby, that it has no component proportional to

e€™+!, Thus, a[ — (2m + 1)/7, ] vanishes.
We note next that a’(s) for Re s> 0 is given by the value

of k, 72 €™ J(s;€) at € = O where

.m

1
J(s;€) =ij (x/€)™ "1 =x*)""?Inxdx. (Ell)
€ Je '

When s7;_is a negative integer, J(s;€) can be expanded in €
into a Taylor series plus a series composed of €* In € for
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k=0,1,2,.... The coefficient of J[ — (2m + 1)/7; ;€] for
m = 0,1,2,... that is proportional to €™ * ! gives the value of
(k,72)"'a’'[ — (2m + 1) /7, ]. Performing the integration
in Eq. (E11), it can be shown that

m ! 1
J[— @m+1)/r:€] = i
[—@m+D/msel = 3 o okl 2k —2m ¥ 1

'x(é.zk(l —)ym—k+12p ¢

( _ 1)162k+21
IZO 2m —2k =21+ 1
_ ( _ l)m—k+1€2m+l

m—k

(1 _6.2)m——k—l+l/2
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