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A semiclassical model for orientation effects in electron transfer reactions
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An approximate solution to the single-particle Schrodinger equation with an oblate spheroidal

potential well of finite depth is presented. The electronic matrix element H , for thermal electron
transfer is calculated using these wave functions, and is compared with values of Hy, obtained

using the exact solution of the same Schrodinger equation. The present method yields accurate
results for H,,, within the oblate spheroidal potential well model, and is useful for examining the
orientational effects of the two centers on the rate of electron transfer.

I. INTRODUCTION

Increased understanding of biological redox systems
has led to the need for detailed information regarding the
effects of mutual orientation and separation distance on the
rate of electron transfer. The nonspherical structure of many
biological redox components, such as hemes, chlorophyll a
and b, and quinones leads one to expect that the mutual
orientation of redox partners can significantly affect the rate
of electron transfer.

Examples of systems for which orientational effects are
expected include electron transfers involving cytochrome ¢
as well as various components in photosynthetic reaction

“centers. It will be recalled that cytochrome ¢ is a complex in
which a heme lies in a crevice created by a surrounding pro-
tein and is bonded to the protein by thioether bridges." It is
believed that electron transfers to and from the heme occur
predominantly near the opening of the crevice to the solu-
tion.

Several previous studies have attempted to qualitatively
assess orientational effects using simplified models.” Recent-
ly, Siders et al.? developed a model for examining orientation
effects in transfers between large, aromatic molecules, where
the high lying electrons are delocalized, and have applied* it
to several systems of current experimental interest. The basis
of the model is the calculation of single-site, one-electron
wave functions of oblate-spheroidal wells having constant
potentials. These wave functions are then used to calculate
the electron-transfer matrix element, the predominant dis-
tance dependent quantity in theories of nonadiabatic elec-
tron transfer.

In the present paper two simple approximations to this
model are introduced. The resulting approximate model is
computationally much faster, conceptually simpler, and will
be seen to yield accurate results for Hj,, within the original
model. The paper is organized as follows. The exact model
and the form of the electron-transfer matrix element are out-
lined in Sec. II. The exact wave functions for the original
model® are described in Sec. IIT and the two additional ap-
proximations are introduced in Sec. IV. The calculation of
H,, and the energy quantization for the approximate wave
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functions are briefly discussed there. The exact and approxi-
mate results for the wave function and the electron-transfer
matrix element are compared and discussed in Sec. V, with
concluding remarks made in Sec. VL.

H. THE THEORETICAL MODEL

The present model® is intended to describe electron
transfer between two fixed sites, 4 and B. In the zeroth-order
problem 4 and B do not interact and only the transferable
electron is considered explicitly, i.e., each electronic wave
function is a one-electron wave function. The states localized
at sites 4 and B are labeled ¥ and W2, respectively. The
model has been designed to assess orientational effects, at
various distances, in electron transfer between large aroma-
tic systems and it is thus assumed that the transferable elec-
tron is delocalized over the aromatic ring system.

Each isolated site is modeled as an oblate spheroid of
constant negative potential inside the well and zero potential
outside the well. Thus, in oblate spheroidal coordinates’
(&,7m,@) the potential ¥ is a constant, — V,, inside the well
(£<&,), and another constant (¥ =0) outside,? and is de-
picted in Fig. 1. The molecule is taken to lie in the xy plane of
the spheroid; a (in Fig. 1) is chosen as an approximate in-
plane radius of the molecule, and b is chosen to yield a rea-
sonable thickness for the electronic orbitel of interest. The
usual Cartesian coordinates are readily defined in terms of
these coordinates [Eq. (2) of Ref. 3].

FIG. 1. Potential well for a single site. There is cylindrical symmetry about
the z axis. On the well boundary the coordinate & equals £,.
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The single-site one-electron Schrédinger equation may
be written as

(V2+k*¥ =0, (1

where k2 equals 2u(E + V,)/#*=k? inside the well and
2uE /#*=k } outside. A choice of ¥, yields a specific value of
an orbital’s energy E upon quantization.

' The rate of nonadiabatic electron transfer between two
such localized fixed states A—B may be written as®®

ko =27” | Ty |2(FO), ®)

where (FC) is a Franck-Condon sum, discussed in detail
elsewhere, e.g., Refs. 8-10. T, is the electronic matrix ele-
ment which, in the present model, was expressed in terms of
Hy,,H,,,and S ; as

TBA = (HBA _SABHAA )/ (1 — |SAB|2)’ | (3a)
Hy, = J‘ yBxy By dr, H, = f yA4*y 294 dr, (3b)

S = f WANYE (3c)

where 72 is the potential of the transferable electron for the
isolated site B. T, is the primary distance and orientation
dependent quantity in the expression for k, 5. T, was
found? to agree with H,, when Hy, was nonzero to within
39 for states similar to those examined here, when the wells
were in contact and the agreement improved with increasing
separation distance. Furthermore, the zeros of Ty, and H,
were within 2° of one another (for a specific state exam-
ined).* Since the evaluation of Ty, requires considerably
more computational time, only H, is calculated here.

The present model was developed to obtain approxi-
mate expressions for ¥4 and W? and thereby to significantly
simplify the calculation of H, . To facilitate the description
of the two approximations introduced below, the calculation
of the exact wave function is outlined briefly first.

HI. THE EXACT SINGLE-WELL EIGENFUNCTIONS

In the oblate spheroidal coordinate system, Eq. (1) is
separable.”> Therefore, assuming that ¥=V¥,, (£,7,¢)
=R, (§)S,.,(17)D, (p) one obtains the separated equa-
tions®

2,
@
4 %0 tma, =0, (42)
dp
d [ ) dSi,.,.} [d ap2 @ mE
2 1 k-
dn (= dn T 1—7
+,1;,} st —o, (4b)
d [ 2 dR‘mn} [d2 212 m2
dé (1+67 dé 4 g 1+ €72
— Al 1R, =0, (4c)

where d = 2\/a> — b?, and m? and A !, are separation con-
stants. The superscript / indicates a function appropriate to
the potential region inside the well (§<£,), while a super-

script o will indicate these properties outside (£3&,).
®,, (@) is equal to A4 sin mp + B cos mep, and since P,
must be single valued, m is an integer. The index n orders the
eigenvalues A, in order of increasing value and is chosen to
have the possible values n=mm + 1,m + 2,.... This
choice is convenient since in the spherical limit, where a
tends to b, the eigenfunction given below reduces to a single
term V,,, with n =/, / being the angular momentum quan-
tum number of the particle for the spherical case.’

Since the method is primarily designed to assess orienta-
tion effects in electron transfers between delocalized 7 sys-
tems, only states with no £-type nodes, and one 7-type node
are considered.* These states are odd with respect to reflec-
tion in the xy plane and are labeled (m,r); they are 7-like
states with azimuthal quantum number m. (A more com-
plete description of the states is given elsewhere.>*)

To satisfy the quantization conditions, namely the con-
tinuity of the wave function and of its normal derivative at
the well boundary, the exact solution ¥, ,, is written as a
linear combination of the separated solutions,? that is, as
32 oCiWw foré<éy, andas3=2 ,COVY,, for £5>£,. Here,
n = 2r + m + 1. Quantization is accomplished by iterating
the energy £ until ¥, . and its derivative are continuous at
the well boundary & = &,

IV. APPROXIMATE SINGLE-WELL EIGENFUNCTIONS
AND Hg, CALCULATION

The two new approximations made in the present paper
to obtain single-well functions for use in calculating H, are
the following: (1) The sums for the inner and outer quan-
tized wave functions are each truncated to a single term, one
inside and one outside the well, and (2) each R,,, and S,,,,
inside and outside the well, is evaluated semiclassically rath-
er than as a sum of known special functions.

The first approximation was prompted by two observa-
tions: (a) In the spherical limit the inner and outer wave
functions are each represented by a single mn term. (For the
case of -like states this single term has n = m + 1.%) Since
an oblate spheroid can be viewed as a ““flattened sphere” it is
reasonable that the use of only one term in the sum will be
adequate when the eccentricity is not too high. (b) Empiri-
cally, we noted in our numerical calculations®* that both
inside and outside the potential well it was common for a
single C%, and a single C' to dominate the other coefficients
for the states considered.

In view of approximation (1) above, the total wave
function, for the (m,7) states of interest here may now be
written as

\I’ -~ [Cl;n+l‘l/in,m+l(§’7’r¢); §<§0
™ :’n+1w‘:n,m+l(§’771¢); §>§o

Within this approximation the quantization conditions can
now be satisfied only approximately at the well boundary:

(3)

C:n+l\P£n.m+lgC:’n+l :’n.m+l (5=§0)’ (6a)
. i a\l/o
C'm+1 m,m + 1 EC',’,,+1 mm+ 1 . (6b)
¥ le=g ¥ li=g

To satisfy Eq. (6a) both sides were squared and then
integrated over 77 and @ at £ = &, thereby averaging over the
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boundary. Taking the square root, and following the same
procedure for Eq. (6b) one obtains an equality of
m+ 1R o 1 (o) and Ofcm+l onm +1(£0) and also of
their derivatives, when S’ . . ,,S?, . and ®,, are each
normalized to unity. Thereby, the ratio yields
__1 4
Rimi1(§) d6 _
- 1 4 po
Koo B dE et Ble=se @
This equation serves to determine the approximate single-
site wave function to within a normalization constant (Ap-
pendix A).

A semiclassical approximation is now mtroduced to
simplify evaluation of R,,,, and S,,, both inside and outside
the well. In previous applications®* the individual inner and
outer R, ,’s and inner and outer S,,,’s were evaluated in-
stead through series expansions in spherical Bessel functions
and associated Legendre functions,>!! a process which can
be time consuming. In the present study, semiclassical ap-
proximations were used for S ., S .., R 1, and R 7, (uni-
form semiclassical approximations for the first two and
primitive for the latter two, for reasons given in Appendix
A). The resulting functions are seen (in Tables II, III, Vv,
and VI given later) to be accurate. Previous uniform semi-
classical approximations to prolate spheroidal wave func-
tions, described by Sink and Eu,'? have a number of differ-
ences from ours.'> Our expressions for the wave functions
~ and the procedure for calculating Hp, are givenin Appendix

A. The semiclassical treatment of S, () itself involves
four turning points for the states of interest in the present
article.

The general procedure used for calculations of Hp,
(both approximate and exact) was to choose a value for £
which yielded the desired decay of Hy, with distance, after
adjusting V,. Thus, an accurate quantization of the energy

for a given value of the potential was not needed: What is
required is, given this decay, that the orientation dependence
of H,,, be accurate for the states of interest. Nevertheless, for
completeness, results for quantlzatlon of E are given in Ap-
pendix B.

Rin,m+1(§)|§=§o

V. RESULTS AND DISCUSSION

In this section the exact and approximate results for
H,, are compared and discussed for a number of states of
interest. The physical significance of these (m,7) states was
discussed earlier.>* In particular, (4,7) states are used to
model the HOMO’s of porphyrin derivatives and (5,7)
states to model the LUMO?s in such molecules. The value of
E (and hence of ¥,) is chosen so as to give a fall off with
distance of the rate which is fairly consistent with presently
available data. The exact®* and approximate electronic ma-
trix eléments H, so calculated are compared below in Table
I and in Figs. 3, 4, and 6.

To describe the orientation of the two wells for the cal-
culation of Hy, the (R,®) coordinate system shown in Fig.
2 is used. Unless otherwise specified, the xy planes of both
wells are chosen to be parallel and the centers of the wells are

TABLE I Exact and approximate H s for a pair of (4,7) states asa func-
tion of distance at ® = 0° and ® = 90". 5

® (deg) R(A) H® HZ,® Hpberee
g ‘10 3.8(—4) ¢ 3.0(—4)  70(—4)
15 2.0( —6) 1.8(~6) 22(—6)
20 2.2(—8) S 21(—8)  20(—8)
25 3.8(—10) 37(—10) 3.0( —10)
90° 10 —41(=2) —58(—2) —99(—-3
15 —13(—4) —15(~4) —45(—9
20 —1.5(—6) —17(—6) —58(—=T)
25 ~3.0(~8) —34(—8) —12(—8)

*For each (4,7) state E= — 1.1525eV, V,=17.35297 eV, a= 4.85 A,
b=255A.

bFor each (4,7) state E= — 1.1525 eV, V,=17.54121 eV, a=4854,
b=255A. |

°For each (4,7) spherical state E= ~ 1.1525 eV, V,=18.0313 eV,
r=3915A

4The numbers in parentheses are the powers of ten by which each entry
should be multiplied. ;

held at a given separation distance R. The angle ® = 0° (Fig.
2) corresponds to a “face-to-face” configuration and
® = 90° to an “edge-to-edge” one. |

The exact and approximate Hj,’s are presented as func-
tions of distance for transfer between two (4,7) states, for
the ® = 0° and ® = 90° orientations in Table I. The agree-:
ment is seen to be good. The deviation in Table I is largest at |
small R, and, especially in the ® = 0° orientation, is due to
the contribution of other states in the exact state sum over
R,.S... [cf. Eq. (6) of Ref. 3] at these small R ’s. It is clear !
that this contribution from other »’s is only serious at very |
small R. For comparison, results using spherical wells of |
similar volume and energy are also given in Table I. They are
seen to be significantly less accurate than the present approx-
imation to the spheroidal problem, particularly at ® =0".

In Fig. 3 exact and approximate results for transfer
between two (5,7) states are compared at constant edge-to-
edge distance for various ®’s. As the edge-to-edge distance
increases from 0 to 4 A, the accuracy of the present approxi-,

o

FIG. 2. Coordinate system used to specify the mutual orientation of wells 4
and B. The x axes of the wells are parallel and lie in the plane of the figure, as
do the z axes.
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FIG. 3. The matrix element H, as a function of ® at several fixed edge-to-

edge separations for (5,m)—(5,7) transfer. For the donor and acceptor
‘statesa =S5 A, b= 24, E= — 2.8¢€V.- - - corresponds to the exact calcu-
lations where ¥V, = 26.3022 eV. — corresponds to the semiclassical calcula-
tions where V, = 25.532 V. (a) Edge-to-edge separation is 0 A. (b) Edge-
to-edge separation is 2 A. (c) Edge-to-edge separation is 4 A.

mate calculation also increases. The agreement is good for
an edge-to-edge distance of 4 A, and for larger separations
the agreement remains good.

In Fig. 4 H,,’s for the same set of orientations are given
for transfer between (5,7) and (4,7) states. Calculations
similar to those in Figs. 3 and 4 have been used previously>*
to model the orientation dependence of the electron transfer
rate between two porphyrins. Again, at all distances the ap-
proximate results for the Hy,’s show similar behavior to the
exact ones and for an edge-to-edge separation of 4 Aorlarger
the agreement is good.

Results for a different class of orientations (cf. Fig. 5)
are given in Fig. 6. For these results, the wells are held at a
given R, in the edge-to-edge (® = 90°) orientation, but the

xy planes are twisted about the line of centers through an
angle y relative to each other. The agreement is again good at
all distances.

The present approximation has several advantages over
the exact method developed in Ref. 3: (1) The present meth-
od is easier to implement. In the exact method the individual
inner and outer R,,,’s and inner and outer S,,,’s wete con-
structed as sums of known special functions. Each sum was
then checked for convergence at all values of the argument
for which the function was evaluated. Moreover, the total
wave function was itself (in principle) an infinite sum which
had to be checked for convergence at each evaluation. In the
present method each inner and outer R,,,, and each inner and

450 . T
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Hga (meV)

25

Hga (meV)

2000

Hga (ueVv)

1000
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FIG. 4. The matrix element H,, as a function of @ at several fixed edge-to-
edge separations for (5,7)—(4,7) transfer. For the donor and acceptor
statesa=5A,b=2 .&, E = — 2.8¢V.For the exact calculations (- - -) the
donor ¥V, is 26.3022 eV and the acceptor ¥V, is 22.199 eV. For the semiclassi-
cal calculations (—) the donor ¥, is 25.532 eV and the acceptor ¥, is 21.499
eV. (a) Edge-to-edge separation is 0 A (b) Edge-to-edge separation is 2 A.
(c) Edge-to-edge separation is 4 A.
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FIG. 6. The matrix element H, as a function of y at several fixed edge-to-
edge separations for (5,7)—(5,7) transfer. For the donor and acceptor
statesa=5A,b=2 A, E= — 1.867 V. For the exact calculations (- - -)
the donor and acceptor ¥, is 25.191 eV. For the semiclassical calculations
(—) the donor and acceptor ¥, is 24.438 ¢V. (a) Edge-to-edge separation is
% A. (b) Edge-to-edge separation is 5 A. (c) Edge-to-edge separation is 10

FIG. 5. Coordinate system used to specify
the mutual orientation of the wells for the
calculations presented in Fig. 6. The x
axes of the wells lie in the plane of the fig-
ure. For ¥y =0 the x axes lie along the
same line but are antiparallel.

outer S,,, is evaluated as a single term, with convergence
needed only for the respective integrals involved in the semi-
classical expressions. The problem of convergence of a sum
thus disappears. (2) The current method is considerably fas-
ter computationally. For each geometry in Figs. 3, 4, and 6,
and Table I, the current method, treating Hy, as a three-
dimensional volume integral, required about 10 min CPU
time (VAX 11-780) while the exact method required about
50 times longer.'* (A method of reducing computation time
for the exact method by reducing the dimensionality of the
Hp, integral is given in Ref. 4. It could be adapted using the
present approximations to the wave functions, but we have
not done so. It is expected to give essentially the same results
as the present three-dimensional integration. ) (3) The accu-
racy of the present method supports the simple conceptual
previously introduced®* to understand the orientation de-
pendence of Hy,. Previously, this simple conceptual model
was understood® by analogy with results from the use of
spherical wells, where the inner and outer wave functions are
each single terms. The spheroidal functions were envisioned
as distorted spherical functions. Here, a related assumption
is made explicitly by treating the inner and outer W’s as sin-

TABLE II. Relative values of S, (1)’s for various 7’s.

m=>5n=6" m=4n=>5

7 Semiclassical® Exact Semiclassical® Exact
0.9 9.83(1)¢ 9.83(1) 1.93(1) 1.92(1)
0.8 4.71(2) 4.70(2) 6.81(1) 6.79(1)
0.7 1.06(3) 1.06(3) 1.30(2) 1.30(2)
0.6 1.71(3) 1.71(3) 1.89(2) 1.89(2)
0.5 2.24(3) 2.24(3) 2.31(2) 2.31(2)
04 2.48(3) 2.48(3) 2.44(2) 2.44(2)
0.3 2.36(3) 2.36(3) 2.23(2) 2.23(2)
0.2 1.84(3) 1.84(3) 1.70(2) 1.70(2)
0.1 1.01(3) 1.01(3) 9.21(1) 9.21(1)

*For both exact and semiclassical cases, E= — 2.8 eV, ¥, =26.3022 ¢V,
a=5A,b=2R4, A% =4495 1% =45.17.

®For both exact and semiclassical cases, E = — 2.8 ¢V, V, =22.1985 eV,
a=5A,b=24, 49" =33.36,1 05 = 33.67. }

°The semiclassical function was set equal to the exact function at 7 = 0.4.
This was done for comparison purposes only and is not required for the
Hy, calculations presented here.

9The numbers in parentheses are the powers of ten by which each entry
should be multiplied. '
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TABLE III Relative values of S, (17)’s for various »’s.
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TABLEV. Relative values of R %, (£)’s for various £’s.

m=5n=6" m=4n="5"

m=5n=6° m=4n=>5"

*E, V,, a, and b are the same as for the m = 5, n = 6 state of Table IL. 4 bex
= —0.1111, A § = 0.4718.

®E, V,, a, and b are the same as for the m = 4, n = 5 state of Table IL. A {$*
= —-937, 45 = —8.790. i

¢See Ref. ¢ of Table II with % = 0.4 replaced by 7 = 0.6.

4See Ref. d of Table I1.

gle-term functions. The accuracy of these results therefore
supports this model.

Although the goal of this paper is the calculation of
Hj,’s, it is interesting to also compare the shape of the wave
functions used with the exact ones. We do this next. More
precisely we select the principal R,,,S,,, term in the exact
sum (largest coefficient) and compare (in Tables II to VI
given later) its R,,, and S,,,, inside and outside the well,
with those of the corresponding approximate functions used
in the present single-term calculation of H,. They are com-
pared on a relative basis to emphasize their similar shape.
(Normalized wave functions were, as already noted, used to
calculate H,,.) Also included in these comparisons are the
exact and semiclassical A,,,’s inside and outside the well.

The exact and approximate results for the S'3,,’s and
A2,,’s for two of the states used in the present Hj, calcula-
tions are compared in Table II. The agreement for the S'7,,’s
and for the A °,, s is generally better than 1%. In Table III,
exact and approximate S*,,’s and A /,,’s are compared for
the same two states. The agreement for the S, ’s is again
excellent, the largest error being less than 1%. (The agree-
ment for both the R ¢,,’s and R ! ,’s, discussed later, is also
good.) The A%,’s themselves are somewhat inaccurate,
though the splittings are in good agreement with those of the
exact A% ’s (Table IV). (A similar problem was encoun-

TABLE IV. Corrected 4 4,,s.

7 Semiclassical® Exact . Semiclassical® Exact & Semiclassical® Exact Semiclassical® Exact
0.9 8.03(3)¢ 8.03(3) 1.28(3) 1.28(3) 1.0 3.47(-2) ¢ 347(-2) 1.44( —2) 1.44(-2)
0.8 1.78(4) 1.78(4) 2.15(3) 2.16(3) 20 2.03( — 4) 205(—4) 112(—4) L13(-4)
0.7 1.94(4) 1.94(4) +2.07(3) 2.07(3) 3.0 1.86( — 6) 1.88( — 6) 1.20( —6) 1.21(—6)
0.6 1.60(4) "1.60(4) 1.58(3) 1.59(3) 4.0 2.19(—8) 221(—8) 1.55(—8) 1.57(—8)
0.5 1.13(4) 1.14(4) 1.08(3) 1.08(3) 5.0 297( —10) 3.00( —10) 2.23(—10) 2.27(—10)
04 7.35(3) 7.36(3) 6.81(2) 6.84(2) 6.0 4.38(—12) 4.43(—12) 3.44(—12) 3.50(—12)
0.3 4.44(3) 4.45(3) 4.06(2) 4.08(2) 7.0 6.83( — 14) 6.90( — 14) 5.53( —14) 5.63( — 14)
0.2 2.45(3) 2.46(3) 2.23(2) 2.25(2) 8.0 1.11(—15) 1.12( — 15) 9.18( —16) 9.35(—16)
0.1 1.08(3) 1.09(3) 9.79(1) 9.88(1)

*E, V,, a, and b are the same as for the m = 5, n = 6 state of Table II. A%
=44.95, A% = 45.17.

®E, ¥,, a, and b are the same as for the m = 4, n = 5 state of Table IL. A 5*
= 33.36, A% = 33.67.

°See Ref. ¢ of Table II with 5 = 0.4 replaced by £ = 1.0.

9See Ref. d of Table II.

tered by Sink and Eu in the prolate spheroidal problem.'?)
The inaccuracy is seen, however, not to seriously affect the
semiclassical S%,,’sand R}, ’s.

The exact and semiclassical R ¢,,’s are compared in Ta-
ble V for the same two states as in Tables II and III. For
comparison purposes, the functions are equated at the small-
est £. The agreement is good over the entire region of inter-
est. Similar accuracy is obtained for other states. The 44,
values used in the calculations of R 2,,’s for Table V were
from exact and semiclassical methods, respectively. The ex-
act and semiclassical R}, ,’s are compared in Table VI. The
agreement is again good and similar accuracy can be expect-
ed for other states.

The accuracy of the semiclassical functions and the
agreement of the semiclassical and exact H,’s indicate that
the relevant shapes of the semiclassical and exact wave func-
tions are quite similar. The shapes of the exact (4,7) and
(5,7) states are compared elsewhere* to the shapes of por-
phyrin HOMO’s and LUMO’s obtained in molecular orbital
calculations and are found to be in qualitative agreement. It
would be useful to compare also the present Hp, results with
calculations which might be based on the corresponding mo-
lecular orbital wave functions. For face-to-face orientations
Ty, has been evaluated using molecular orbital tech-
niques.>!® Molecular orbital calculations of H, have not

m=>5 m=4>"
A} Exact Semiclassical Ay Exact Semiclassical
Al —0.293 0.381 Al ~9.49 —8.85
Al —0.111 0.562 FER —9.37 —8.73
Alg — Ak, 0.182 0.181 Al —Al, 0.12 0.12

*E, V,, a, and b are the same as for the m = 5, n = 6 state of Table II1.
®E, V,, a, and b are the same as for the m =4, n = 5 state of Table I1.
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'

TABLE VI. Relative values of R/, (£)’s for various £’s.

m=5n=6 m=4n=>5°

& Semiclassical® Exact Semiclassical® Exact.
0.05 3.24( —-2)¢ 3.18(—2) 3.38(—2) 3.35(-2)
0.10 625(—2) 6.14(—2) 6.51(—2) 6.48(—2)
0.15 8.80( — 2) 8.68(—2) 9.19(—2) 9.16( —2)
0.20 1.07(—1) 1.06¢(—1) 112(—=1) L12(—1)
0.25 1.18(=1) 1L18(—=1) 1.24(—1) 124(-1)
0.30 1.20(=1) 120(—-1) 127(-1) 127(—-1)
0.35 1.13(=1) L13(=1) 120(—1) 120(=1)
040  9.59(—2) 973(—2) 1.04(—1) 104(—1)
0.45 7.13(=2) 731(—=2) 802(—2) 7.99(—2)
0.50  4.08(—2) 429(—2) 500(—2) 4.93(-2)

*E, V,, a, and b are the same as for the m = 5, n = 6 state of Table IL. A 4
= —0.111, A =0.562.

*E, ¥y, a, and b are the same as for the m = 4, n = 5 state of Table IL. A i§*
= —937,A = —8.73.

°See Ref. c of Table II with 7 = 0.4 replaced by & = 0.30.

4See Ref. d of Table II.

been made for the variety of orientations examined here.
Such a study should include the role of the solvent mole-
cules, e.g., via a superexchange mechanism, and such molec-
ular orbital-based calculations do not appear to be available
as yet.

VI. CONCLUSION

A semiclassical plus single-term approximation for cal-
culating the electron transfer matrix element Hy, has been
formulated. It was shown to yield good agreement with re-
sults* in which the exact solution of the Schrodinger equa-
tion for the same model potential was used. This method also
has much greater computational efficiency. In future appli-
cations of the model of Ref. 3 to the calculation of mutual
orientation and separation distance effects, use of this meth-
od should be appropriate.
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APPENDIX A: PRESCRIPTION FOR CALCULATING THE
R,.,'8,8,,'8 Am,'S AND Hp,

To facilitate use of the present method, details are given
here on the calculation of Hy, . To this end, the R,,,’s, S,,,,,’s
and A4,,,’s are calculated first, for any given E and V.

In obtaining a uniform semiclassical solution for §'7,,,
S2.. is converted'>!” to a function (1 — 5?)"/2S'3,,, whose
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differential equation contains no first derivatives. The com-
parison function chosen for making the uniform approxima-
tion is (1 — v?)/2P*(v),'? where P*(v) is the associated
Legendre function. Thereby, we have

o ( 1— 1/2) 1/2
S ()= A-—-—(l 7
where 4 is a constant which normalizes S ¢,, (), and where
the function v(7) is defined below.
The mapping 7—v(7) leads in a standard way
the equation

PT(v), (A1)

12,18 to

+ Nrp : TP
f p,dn= f p, v, (A2)
— Nrp = ¥Yrp .
where p, is the classical 7 momentum
Ao 2d?kZ/4 2 _
P3,= +7 2o _(m 21)2’ (A3)
(1—-7% (I-799
and p, is the classical v momentum
2
2___I(l+1)_(m—1) (A4)

T 1=y (1=
with /=n. At 9= £ 97, p, =0 while p, =0 at
v = + vp. The left-hand side of Eq. (A2) was evaluated
numerically, using a standard routine. The right-hand side
equals {[/( + 1)]'2 — (m? — 1)"/?}a. The quantized val-
ue of A ¢, which appears in Eq. (A3) is that which permits
Eq. (A2) to be satisfied.

The vin Eq. (A1) is given by Eq. (A2) with the upper
(or lower) limits of integration on each side of the equation
replaced by 7 and v(7).'® (The choice of which set of turn-
ing points to use is a matter of convenience in performing the
integration. In principle either choice will suffice.) With this
v(7) the ¢, () given in Eq. (A1) was calculated for sub-
sequent use in the calculation of Hy,.

The function R 2,, (£), the “radial” function outside the
potential well, satisfies Eq. (4c), with the 7 superscripts and
subscripts there replaced by o’s. In the present study the
following primitive semiclassical approximation'>!” for
R ¢, (£) sufficed because of the absence of turning points for
the £ motion:

£
RS, (&)= [exp(—J; |p§]d§)]/(§2 + 1)"/2|p§|”2,
’ (AS)

where the classical £ momentum De is defined by
pi=c,

—{[( @& +A5)E2+ 1) — (m*— D)/E*+ D,
with ¢2 = d %k 2/4 and where 4 ¢,, was calculated above.

The calculation of A |, and S¢,, is lengthier and is dis-
cussed at the end of this Appendix.

The inner radial function R, ( &) satisfies Eq. (4c).
The tendency towards an absence of turning points, i.e., for
the effective energy for the £ motion to exceed the effective
potential energy for all £, increases with increasing d, in-
creasing k2 and decreasing #. For the (m,r) states and
choice of parameters appropriate to the modeling of large
aromatic systems discussed here there are no turning points
for the £ motion in the region £<¢&,, and so a primitive semi-

1
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classical approximation suffices for R ;,, (£). The boundary
condition for 7-like states is that the wave function be zero in
the xy plane. Thereby, it is also zero on the disk of diameter
d, centered at the origin, in the xy plane, and hence at § = 0.
(It is also zero at 7 =0.) The primitive semiclassical
R, (&) satisfying this condition is

3

Ri @ =sin( [ 15,1 )| /67 + D151
0

(

A6)

where p; is the same as that given following Eq. (AS5), but
with o subscripts and superscripts replaced by 7’s.

All the components of ¥2, ., ; and ¥, . ., have now
been considered [®:’(@) =B cos mp + Csinmep, with
appropriate normalization] and thus the next step is to sa-
tisfy the quantization conditions. This is done by choosing
the desired value of E and then using a root search technique
(we used the Newton-Raphson method) to find the value of
the well depth ¥, which allows Eq. (7) of the text to be
satisfied. C%,, ,, and C!,  , are determined using Eq. (6a)
and normalizing the ¥, . defined in Eq. (5) of the text. The
entire procedure is followed for both wells A and B. H,, can
then be calculated straightforwardly from Eq. (3b) of the
text using nested numerical integration to perform the three-
dimensional integral. We note that the integration only
needs to be performed over well B, since this is the only
region where V2 is nonzero.

In the above discussion we deferred consideration of
Si andA‘,. Wenow treat them by first describing a new
procedure for defining localized wave functions.

First introducing'> the  function L)
=(1-—79%"28",,(n), as noted earlier, then us1ng2° the
Bethe modlﬁcatlon, namely, substituting m? for m*> — 1, we
obtain an equation for U/, (7):

d2

== Ul () = VUL, (1) =0, (AT)
dn ‘
J
m* — (A + (L= 7°)
Vi(n) = (1—7"*

& (0<n<;)

where V* equals m* — A}, and 7, is the 7 in the interval
(0,1) where Vi(n,) = V°. The single-well potential for a
wave function localized between 0 <7< 1 is simply the re-
flection of the potential depicted in Fig. 8 about 7 = 0. Each
of these effective single-well potentials yields a two-turning
point problem which can be solved using a uniform approxi-
mation based on a comparison equation for the two-turning
point problem. The harmonic oscillator equation was chosen
for the latter.?> A zeroth order separation constant A },, is
then obtained semiclassically from the single-well problem
in a way analagous to the determination of A ;,, . The analog
of Eq. (A2) for the determination of A}, is

e + xrp
f [(Viem ]2 dn = f [(2N+
~-ﬂnﬂ

—XTP

271/2
1) X dx
2

=(2N+1)§, (A9)

_equation analogous to Eq. (Al) for S,

Cave, Klippenstein, and Marcus: Electron transfer reactions

where

Vei(n) = [m* — A + ) (1 =99 1/(1 = 77)%,

with
=d?*k /4 = d’u(E + V,) /2.

This ¥ *T(7) serves as an effective “V — E” term for the 7
motion.

When ¢? is zero the numerator in ¥ **(7) is quadratic in
7. For ¢?7#0, this numerator is a quartic function which, for
large enough cZ, has four real zeros. Examples of plots of
V() for various positive values of ¥, and thus for various
¢¥’s are given in Fig. 7. It is seen that as V;, and thus as ¢}
increases, ¥ *¥(7) changes from having two zeros to having
four. For the states of interest in the present paper ¥ **(7) in
Eq. (A7) typically has four zeros (i.e., the problem has four
turning points), and we devised the following method for
obtaining S’ ,. [Had there been only two turning points an
(1) would have
been appropriate. ]

In principle, a four turning-point problem can be treated
with a comparison function that arises from a potential
which itself yields four turning points, but such functions are
typically as complicated as S, (77) itself. Accordingly, re-
sults for two single-well problems were used, noting that the
eigenvalues of a symmetric double well potential for a high
barrier occur in pairs and the eigenfunctions can be repre-
sented to a high degree of accuracy by symmetric and anti-
symmetric combinations of the single-well wave functions.?!
Single-well potentials were devised for the portions of the

“wave function localized to the left- and the right-hand side of

n = 0. Linear combinations of two semiclassical single-well
eigenfunctions then yielded an approximate S, (7).

For this purpose we introduce an effective single-well
V3i(7n) to replace Ve¥(n), so as to yield a wave function
largely localized in the ( — 1<%<0) region, (cf. Fig. 8)*%

( — 1<1<0), (17, <n<1)

(A8)

w'?ere V(%) is defined in Eq. (A8), x4, is the x for which
the x integrand vanishes, and the 7%2’s are the values of 7 for
which the 7 integrand vanishes. The first integral in Eq.
(A9) was evaluated numerically, choosing 4},, so as to
satisfy Eq. (A9).

The choice of the quantum number N for the harmonic
oscillator comparison wave function @y (x) is determined
by the state to be modeled. The number of nodes for the
function S¢, (1) (excluding those at = + 1) isn —m.
Thereby, S%, . (1) has no nodes, while S, ,, , ; (17) has one.
The number of nodes of g, (x) is N. Since pairs of g ’s are
combined, one member from each well, S/, ,, states are ob-
tained by taking the symmetric combination of two ground-
state harmonic oscillator-like wave functions, @,(x), re-
gardless of the value of m. For a 7 state, we need consider
only states wheren =m + 1. S, ,, , , is obtained by taking
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FIG. 7. Effective potential for S’,, as a function of 7 for three different
values of V,,. The other parameters used in all 3 plots area = 5 A b=2A,
m=>5,n=26,and E= — 2.8 eV. — corresponds to ¥, = 26.3022 eV and
Als =0.3807. - - - corresponds to ¥, = 12.00 eV and 4 £, = 30.60. - - -
corresponds to V, = 3.00eV and 4 &, = 42.02.

the antisymmetric combination of the two @, (x) wave func-

tions. (Similar reasoning shows thatfor.S: , states for which

n>m + 1, and when there are four turning points, linear

combinations of two @ ’s with N = 1,2,..., would be used.)
Thus S}, ,. . , is then given by

Stmir () =—1_—’:,2—)1—,; [Ui(n) — U, ()], (A10)

(
where U, () is exp( — x3(7)), i.e., a ground state harmonic
oscillator wave function in the new variable x, (%) for the
left-hand side single well; x, (77) is defined by Eq. (A9) with
the upper or lower integration limits replaced by 7 and
x;(77).** Similar definitions apply to U, (%) and x, but with
I’s replaced by 7’s and with V' (77) as the single-well poten-
tial for a ' wave function “localized” in 0<%<1. 4 is a con-
stant which normalizes S, ., , , (7).

T f T
90 .
60 _
vém) =0l 4
O /
_30} -
1 | 1
-10 -05 0 05 10

Ui

FIG. 8. Effective single-well potential for a localized S%,, state, localized

between — 1<7<0 as a function of 5. The parameters a, b, m, n, and E are
the same as in Fig. 7, and ¥, = 26.3022 eV.

The above A4, . ,’s can be termed zeroth order
Atm+1’s. Wealso calculated “corrected” A 4, ,, , ,’s which
allow for the splitting of the eigenvalues by tunneling in the
double-well problem. To do this we use the above U, and U,
as basis functions, and obtain solutions of Eq. (A7) by solv-

ing

[FIIFIr] [cl]_i[ 1 Glr] [Cl]

Frl Frr C2 B Grl 1 c2 ’

where F;; denotes the matrix element (U, |F |U;) of

F= (=9 ddn*) + [m*/(1 =)} —cip®
and G; denotes (U, |U; ). Equation (A11) yields two eigen-
values A,,,, and A,,,,, , ;. This corrected A}, ,, , , was used
in the calculation of R}, , , utilizing Eq. (A6)* and so to
obtain the results given in the various tables and figures.
However, we have found that for the parameters and states
employed here, use of the zeroth order A4, ,, , |, i.e., values
without the splitting, gave results for the R ’,,’s which dif-
fered negligibly in the domain of interest and hence could
have been used instead.

(All)

APPENDIX B: SEMICLASSICAL ENERGY
EIGENVALUES

Using the semiclassical approximations to the individ-
ualR,,,’sand S,,,’s, and inside and outside the well, togeth-
er with the single-term approximation, the energy values can
be calculated using Egs. (6) and (7) for given values of the
potential and for various states. When ¥V, a,and b form =5,
n = 6 were chosen to be the values in Table II (Ref. a), the
exact value of E was — 2.8 eV, but the approximate value
was — 3.46 eV. To obtain the desired E of — 2.8 eV in the
approximate quantization, a ¥, of 25.5316 eV was needed
and was used. When V,, a, and b for m = 4,n = 5 were cho-
sen to be the values in Table II (Ref. b) the exact value of E
was — 2.8 eV, while the approximate value was — 3.39 eV.
To obtain the desired £ of — 2.8 eV in the approximate
quantization, a ¥, of 21.4993 eV was needed and used.

There is seen to be a fairly large error in this calculated
eigenvalue, a result not unexpected, because of the observed
contribution of several terms to the total wave functions near
the well boundary. As was seen previously, however, these
single-term functions are still accurate enough to yield rea-
sonable results for Hy,.
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1
X n[(mz—l)”zv—[(mz—l)—l(l-f-1)(1—1’2)]”2
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— il + 12
«In 1 [ =D = I+ DA = A2+ [+ 1))V
[([I+1)— (m?—1)]?

For — vyp <v<Vyp:

J-v o dv={[Id+ 1)]1/2_ (m? — 1)1/2}%

—(m*= 1)1/2'

v(mZ_l)l/Z ]
U+ 1)1 —42).— (m? — 1)]V/?

+ [+ D12

Xarctan [

. vId+1)]'? ]

Xmsm{[1(1+1)—(m2—1)1”’ '
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+ | ix

[ peax=Z1e- N4
+ [*7p| 2

x+ [xz__ (2N+ 1)11/2

—1i 1/2)In
i(N+1/2) [N+ D]

For — xpp <X <Xpp:

. dx=% [(2N+1) — x?]V/2

—XTP

+ (N+1/2)

X arcsin + (N+1/2) %

formd
(2N+ 1)1/2

*The zeroth order A !, ’s are used for the S, ’s, in order that the zeros of
the comparison function and the original function U*,,, are mapped onto
one another by Eq. (A9).
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