The Relation Between the Barriers for Thermal and
Optical Electron Transfer Reactions in Solution

The relation between the energy of the intervalence (or metal-to-metal charge-
transfer) transition in mixed-valence systems and the magnitude of the barrier to
thermally activated electron transfer is descnibed. We note that, contrary 1o what
has frequently been assumed, the relation is in terms of free energies rather than
internal energies or enthalpies. 1t is also shown, from plots of the enthalpies of the
reactants and products versus the reaction coordinate, that negative activation
enthalpies are a natural consequence when the standard enthalpy change for the
reaction is sufficiently negative.
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The parameters determining electron transfer rates can be ob-
tained from studies of the electronic absorption spectra of (Class
1) mixed-valence systems.' * The reorganization barrier to the
electron transfer can be evaluated from the energy of the maximum
of the intervalence absorption band, while the integrated intensity
of the transition provides a measure of the electronic coupling of
the reactants. Here we consider the former aspect. specifically the
relation between the energy of the intervalence transition and the
magnitude of the barrier to thermally activated electron transfer.
We point out that, in terms of a widely used classical model,* ©
the relation between the energy of the intervalence transition and
the barrier to thermal electron transfer is in terms of free energies
rather than of energies. This distinction, which has frequently been
overlooked, is important when the electron transfer is between
oppositely charged reactants or between reactants that interact
very differently with the solvent.
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In the weak-interaction limit thermally and optically activated
clectron transter are conveniently described in terms of a transition
from a reactants’ to a products’ potential-energy surface. These
potential-energy surfaces are functions of the intramolecular bond
lengths and angles as well as of the configurations of the surround-
ing solvent molecules. The intramolecular changes are generally
sufficiently small that the bond distortions may be assumed to be
harmonic. While motions of individual solvent molecules are gen-
erally not harmonic, it can be shown that, provided the diclectric
polarization outside the inner-coordination shells of the reactants
and products responds lincarly to any change in charge, the free-
energy profile will be harmonic along the reaction coordinate at a
given temperature and pressure.” This is illustrated at the top of
Fig. 1 for the case where the reactants’ and products’ free-energy
profiles have identical ““force constants.” (The “symmetrized” po-
tential-energy surfaces of Ref. 5(b) are used in calculating the free-
energy plots.) The nature of these free-energy profiles is described
more fully in the Appendices.

For a light-induced electronic transition, absorption of a photon
(E = hv) leads to an increase in the energy of the system. Prior
to the optical transition, the system is characterized by an equilib-
rium distribution of nuclear coordinates and momenta. In the usual
Franck-Condon treatment of light absorption there is no change
in the nuclear coordinates or the momenta, i.e., the electronic
transition is “vertical.” Consequently, the distribution of coordi-
nates and momenta immediately after the optical transition is the
same as the distribution just before the transition (i.e., in the
ground state). The entropy depends on this distribution and so the
entropy of the system just after the optical transition is the same
as just before (apart from entropy changes associated with changes
in electronic multiplicity). In view of the fact that there is no change
in entropy during the transition, the vertical change in free encrgy
(for any value of the reaction coordinate ( —m), Fig. 1) equals that
in enthalpy. There is also no instantancous volume change during
the transition® and consequently the instantancous cnthalpy in-
crease equals thatin the energy,ice., AE = AH = AG for a vertical
transition.

When AGY = 0 (as for the top pair of curves in Fig. 1), AH"
= TAS” and AH" is not equal 1o zero unless ASY" also equals

120


Ruth


REACTION COORDINATE (-m}

FIGURE 1 Upper curves: plot of the free energy of the reactants (left-hand curve)
and products (right-hand curve) as a function of the reaction coordinate ( —m) for
the case that AGY = 0 and identical shapes (“torce constants™) of the two free-
energy curves. The minima in the reactants’ and products’ free-energy curves are
atm = Oand —m = |, respectively. The intersection of the two frec-energy curves
oceurs at —m = 1/2. X is the vertical difference between products’ and reactants’
free-energy curves at the reactants” minimum (or at the products’ mimmum). Mid-
dle curves: plot of the enthalpy of the reactants and products as a function of the
reaction coordinate for the same system as for the upper curves (AG” = 0) and
for the case that AHY = TAS" is negative. Note that at each value of m, the
vertical difference between the two enthalpy curves is equal to the vertical difference
between the two [ree-energy curves. In particular. the vertical differences between
the two enthalpy curves at m = 0 and —m = 1 are both equal 1o A, as i the
upper set of free-energy curves. Lower curves: plot of enthalpy of the reactants
and products as a function of the reaction coordinate for the case that AHY = 0
and AGY =~ TAS" s positive; £, and ES, are the vertical differences at m =
Oand —m = 1 Note that E4, = (A + AG™) = (A = TAS) and £, = (A -
AGY) = (A + TAS™).
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zero. (The primes indicate work-corrected thermodynamic quan-
tities). In Appendix 11 it is shown that, while the ““force constants™
for the reactants’ and products’ enthalpy curves are the same as
those for the free-energy curves, when ASY # 0 the enthalpy
curves are displaced (both horizontally and vertically) relative to
the free-energy curves. This is illustrated in the middie of Fig. 1.
Horizontally (i.e.. along the reaction coordinate) the reactants’
and products’ enthalpy curves are displaced by the same amount,
but vertically they are displaced by different amounts (so that AH"
# 0). In order to further emphasize this point the enthalpy curves
are drawn at the bottom of Fig. 1 for the case that AH" = 0 (i.c.,
AG"™ = —TAS"Y is positive). The equilibrium initial state of the
reactants (i.e., the distribution of nuclear coordinates appropriate
to the equilibrium set of configurations of the reactants and the
surrounding medium) defines the position of the free-energy min-
imum of the reactants’ curve, at a given temperature and pressure,
and similarly for the products. The light absorption is by reactants
in their equilibrium nuclear configurations and the optical transi-
tion thus occurs from the minimum in the reactants’ free-energy
curve.

Provided that the reactants’ and products’ free-energy surfaces
have identical “*force constants™ (as in Fig. 1) and the electronic
coupling (H ,y) is not too large, the barrier to thermaily activated
electron transfer is given by Eq. (1)**

_ (A + AG")?

AG a

(1

where A, the reorganization parameter, includes inner-shell and
solvent contributions, and AG"" is the standard free-energy change
for the electron transfer when the two redox sites are at the sep-
aration distance appropriate to the actual electron transfer; when
AG" = 00, AG* = M4 and the vertical separation of the reactants’
and products’ free-energy curves at the reactant and product min-
ima is equal to 4AG* or A.

The activation enthalpy and entropy for the electron transfer
can be obtained from Eq. (1) by using the Gibbs-Helmholtiz equa-
tion. If A is assumed to be temperature independent,”! the fol-
lowing expressions are obtained:
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(A + AHY)?  (TAS"Y

AH* =
4 an

. AS"(\ + AG")
AS* = S 3)

It is evident from Eq. (2) that AH* will be negative when the
second term on the right-hand side of the equation is larger than
the first term. These two terms have an interesting interpretation.
The first term has the same form as the activation free energy (Eq.
(1)) and is the vertical difference between the intersection of the
enthalpy curves and the minimum of the reactants’ enthalpy curve'!
and is, of course, never negative. The second term, which is also
always positive, is the enthalpy difference between the reactants
at their equilibrium configuration (i.e., their initial enthalpy) and
at their enthalpy minimum.'? Thereby AH* is, as is also evident
from the middle pair of curves in Fig. 1, the enthalpy of the reac-
tants at the intersection minus their enthalpy at their equilibrium
configuration (the free-energy minimum). Evidently AH? will be
negative when the intersection of the enthalpy curves lies below
the enthalpy of the reactants in their set of equilibrium configu-
rations. As noted above, this occurs when the second term on the
right-hand side of Eq. (2) is larger than the first term. The second
term can be quite large for electron-transfer reactions in polar
solvents, mainly because of differences in the freedom of the or-
entational and librational motion of the solvent molecules sur-
rounding the reactants and products.

For an optical transition AE = AH = AG since, as noted above,
there is no change in entropy or volume® during a vertical tran-
sition. In other words, although E, . the energy corresponding to
the absorbance maximum of the intervalence band, is really the
vertical difference between the enthalpies (energies) of the ground
and excited states, it is also equal to the vertical free-energy dif-
ference between the states. At AGY = 0, E, is equal to A (top
pair of curves in Fig. 1). However, at AG" = 0, AHY = TAS"
so that E,,, can be written equivalently as A — TAS" + AH" I,
now, the products’ potential-energy surface in N-dimensional co-
ordinate space is vertically displaced upward, the distribution of
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coordinates (and momenta) remains unchanged and so the mean
energy (the sum of the average kinetic energy and potential energy)
relative to the value of the potential energy at the new position of
the minimum in the surface remains unchanged. There is thereby
also no entropy or volume change caused by this vertical displace-
ment. Consequently, AS™ is unchanged and the change in AH"
(and AG") is equal to the amount of the vertical displacement of
the products’ potential-energy surface. Thus E,,. which was cqual
toA — TAS" + AH" when AG" = 0, is now equal to X plus this
(positive) change in AH"'. Thus when AG™ # 0 we can still write
E,ash — TASY + AH",i.e..as A + AG" (Egs. (4) and (5))."

op

E, = (A — TAS") + AH" (4)

op

A + AG" (&3]

Evidently for a series of related reactants or compounds (constant
TAS") a linear dependence of E,, on both AH" and AG™ is
predicted. However, the intercept of the plot in the former case
will equal A — TAS" while it will equal X in the latter case.

The curves in Fig. 1 illustrate several points: (1) The transition
corresponding to the charge-transfer absorption maximum always
occurs from the minimum of the free-energy curve; it does not
occur from the minimum of the enthalpy curve unless AS” = 0.
(2) The vertical difference between the products’ and reactants’
enthalpy curves (and also between their free-energy curves) at the
minimum in the reactants’ enthalpy curye is equal to A + AH"".
E,, clearly does not equal A + AH"" (except in the special case
that ASY = 0). (3) When, as in the bottom set of curves, AH"" is
equal to zero the vertical energy difference E,,, at the equilibrium
set of configurations of the reactants is not simply equal to A;
instead it is equal to A + AG". (4) The width of the absorption
band arises from fluctuations along the reaction coordinate (cf.
Appendix 1I). (5) The enthalpy at the intersection of the two
middle curves can, when AH" is sufficiently negative, occur below
the initial enthalpy, i.e., below the enthalpy at m = 0. Thereby,
the activation enthalpy, which is the enthalpy of the transition
state minus that of the initial state, is negative. We make this last
point in a somewhat different, but related, way in Ref. 10.

In conclusion, the following additional relations follow from the
assumption of identical, harmonic free-energy curves for the reac-
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tants and products (with the simplification that \ is temperature
independent®)

(E..)°
AG* = ————————~ 6
3G = S A7) (6)
E., (E,, + 2TAS")

* 7
AH HE., —AG") (7
AS* — Enh AS"' (8

- 2AE,, — AG") )

Application of the above equations may resolve certain incon-
sistencies found in the literature. For example, it has recently been
shown' that use of the above relationship between E,, and AG"
removes some apparent anomalies regarding intervalence transi-
tions in Ru(NH,);L* ' |[M(CN); * ion pairs (M = Fe, Ru, Os) that
had resulted from the use of AH" rather than AG" in Eq. (5)."
Further applications should provide a critical test of the assumption
of harmonic free-energy surfaces with identical (i.e..™'symme-
trized™") “‘force constants” that underlies the derived expressions.

APPENDIX 1

We give in this Appendix a justification for the use of free-energy
plots (Fig. 1) and relate the free energies to the photon energy hv
absorbed.

By use of the Condon approximation (in which any dependence
of the dipole moment operator on the displacements of the nuclear
coordinates is neglected) and Fermi’s golden rule, it can be shown
that the probability of a radiative transition between the set of
vibrational levels of state A to the set of f vibrational levels of
state B at the photon energy hv is given by'®

dmr®

() = o

(WAl }; e E R NSE, — E — hv)

where p is the electric dipole moment operator, E, and E, are the
energics of the final and initial states, respectively, and Q is the
vibrational-rotational-librational partition tunction. The electronic
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factor [(WalpWy))* is independent of the nuclear coordinates while
the overlap integral [(,|b)f is over the wavefunctions for the nu-
clear motion (vibrational, rotational, librational) in the upper and
lower states for every initial and final state in the sum. When the
vibrational-rotational-librational overlap factor is treated semi-
classically (use of WKB wavefunctions), as in the analogous clec-
tron transfer problem.!” the sums over the initial and final states
are each written as integrals. There are now three integrals, one
over the nuclear coordinates ¢ (it occurs twice), one over the initial
guantum states i and one over the final quantum states f. Each
integral over the coordinates contains the product of the semi-
classical wavefunctions for the initial and final states and is eval-
uated in the stationary phase approximation.'” This approximation
yields at once the Franck—-Condon condition that, for each value
of the nuclear coordinates, each individual momentum immedi-
ately after the transition equals its value just before. As in Ref.
17, the delta function 8(E, — E; — hv) in the above expression
now becomes (U, — U, — hv) because of the above equality for
the individual momenta and hence for the kinetic energy (U, and
U, are the potential energy functions for the final and initial elec-
tronic states, respectively, and E; (or E)) is the sum of U, (or U))
and the sum of the kinetic energies). The integral over the final
states-is transformed into an integral over the coordinates and the
integral over the initial quantum states is next transformed to an
integral over the momenta, and the integration over the latter is
then performed. In this way the transition probability at frequency
v is found to be proportional to

[-fexp(— U/RTY8(U, — U, — hv)dq,-dqy

= [ exp(~ UJRT) dq,day.

in an N-coordinate system.'®

With this result in mind we proceed to a formulation of the free-
energy plots such as that in Fig. 1. We first consider the hv for
the absorption maximum, i.c., hv = hv,,, for which the numerator
in the above expression is a maximum. If the upper potential-
energy surface U, is lowered by an amount hv,,, the two surfaces
in N-dimensional coordinate space now intersect at the bottom of
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the U, surface, on a surface plotted vs. the (N — 1) coordinates.
On this (N — 1)-coordinate surface, there is an equilibrium pop-
ulation represented by the Boltzmann factor exp(— U/RT). As-
sociated with this equilibrium population we can now define a
configurational free energy for the system constrained to lic on
this (N — 1)-coordinate intersection surface. A system similarly
distributed on the upper surface U, has, apart from the energy
difference hv,,,, the same distribution and hence the same config-
urational free energy. The momentum distribution for each of
these two systems is also the same (since the individual momenta
were the same immediately before and after the transition) and so
the total free energies only differ by the energy quantity hv,,,.

If we next raise or lower the upper surface by some other amount
hv there will be a new intersection surface, defining a new set of
points in an (N — 1)-dimensional subspace. Associated with the
equilibrium population on the new surface is a new free energy.
The system on the surface Uy has the same new free energy, apart
from the additional amount v, since it has the same distribution
of coordinates and momenta. These (N — 1)-dimensional sub-
spaces form a family, each of which can be described by some
value of the Nth nuclear coordinate, and which in turn depends
only on a single parameter Av. In this ' way one can plot the two
free-energy curves versus some coordinate, as in Fig. 1.

We see from the above argument that the energy difference hv,,
for absorption, or indeed any hiv, is exactly equal to a free-energy
difference as stated in the text. The potential energy functions U,
and U, themselves are far from being harmonic oscillator functions
when plotted versus most of the (N ~ 1) coordinates: only along
the axes that describe the bond lengths are they approximately
quadratic functions. The free-energy functions just described
are, on the other hand, quadratic functions of the abscissa, in
the linear response region. The calculation of these free-energy
functions contains the constraint of being confined to a subspace
of (N - 1) coordinates in a total space of N coordinates. To eval-
uate such constrained functions, which also involve complicated
motions of the solvent molecules, it is convenient to introduce the
notion of an equivalent equilibrium distribution, i.e., to introduce
for cach value of the abscissa a distribution centered on the con-
strained region but not confined to it.* In this way, as in the thermal
electron-transfer case,'” one retrieves earlier expressions for the
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dependence of the free-energy curves on solvent dielectric prop-
erties.

The width of the charge-transfer absorption band arises as
follows: The free-energy profiles in Fig. 1 refer to a system of
(N — 1) coordinates tor each value of the reaction coordinate
(—m). Different values of the absorbed energy hv correspond to
different values of the Nth coordinate, i.e., to different values of
the reaction coordinate. Fluctuations in this Nth coordinate thereby
give rise to the width of the absorption band. A calculation of the
polar contribution to the spectral width of charge-transfer absorp-
tion bands is given in Egs. (24)-(28) of the article cited in Ref.
13.

The remarks in this Comment regarding the relation between
absorption spectra and free energies apply also to emission spectra.
The relation between emission spectra and free encrgies is dis-
cussed in the article cited in Ref. 13 and is made use of in a recent
study of chemiluminescent reactions.'”

APPENDIX 11

In order to describe in more concrete terms the plots of the ther-
modynamic properties along the reaction coordinate it is conven-
ient to use the Lagrangian multiplier —m as abscissa, where m is
described in Refs. 4 and 5. The free energy of the reactants and
environment G* can be written as*?®

G = G + m\ (A1)
where Gj, is the value of G" at the minimum of the reactants’ curve
(namely, at m = 0). The “‘force constant™ for the G' curve, #°GY/
am?, is 2\. Similarly for GP, the free energy of the products and
environment, we have*?

G° =G5 + (m + 1)\ (A2)

where G is the value of G® at the minimum of the products’ curve
(namely, at m = —1), and the “force constant™ for the G curve,
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like that for the ' curve, is 2\, a result arising from the use of
“symmetrized’ potential energy surfaces in Ref. 5(b). The vertical
free-energy difference is thus given by

Gr(m) — G'(m) = AG” + (2m + 1)A (A3)

where AG" is G} — G}, and is the *‘standard” free energy of re-
action (specifically, the free energy of reaction for unit concentra-
tion of reactants and products) in the prevailing medium. We note
that at the intersection of the two curves, G equals G* and so
—(2m + DA = AG", an equation obtained previously** for the
value of m (= m*) in the transition state. With this value of m,
the value of G* (= G*) at the intersection is seen from Eq. (Al)
to be given by the usual expression

G" = G + (AG” + MN)Yan (A4)

We turn next to plots of the other thermodynamic properties.
The vertical differences for the entropy and enthalpy curves are,
as already noted, equal to zero and to G? — G, respletively:

SP(m) — S'(m) = 0 (AS)
H(m) — H(m) = AG” + 2m + 1)\ (A6)

As may perhaps be intuitively guessed from Egs. (AS) and (A6),
one should be able to show that, while H* and HP, like G* and GP,
are quadratic functions of m with the same ‘‘force constant™ 2\,
S" and S are linear functions of m. This result can be shown as
follows.

The entropy at the intersection of the G* and GP curves is ob-
tained by ditferentiating G*(m*) in Eq. (A4) with respect to T.
Thereby, if X is assumed to be temperature independent, as also
seen previously in Eq. (3),

S* = 8, + [(AG” + N)/2A]AS” (A7)

where S, is the value of " at m = 0 (the equilibrium configuration
of the reactants). By virtue of the fact that —(2m* + 1)\ equals
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AG"™ we then have
S(m*) = 8, — mrAs” (AB)

Different values of m* are generated by raising or lowering the
products’ curve, thus varying AG" but not AS"". Thereby Eq. (A8)
applies for any m

S'(m) = S, — mASs"” (A8)

and the linear dependence of S* on m is established. $P(m) is also
given by Eq. (A8’) by virtue of Eq. (AS).
From Egs. (A1) and (A8') we then have

H'(m) = Hy + m*\ — mTAS" (AY)

where H, is the value of H" at m = 0. The “force constant” of
H'(m), #H'(m)lém?, is seen to be 2\, which is the same as the
force constant for G'(m). The minimum of the G* plot occurs at
m = 0, while the minimum of the H* plot is seen, by setting dH"/
om = 0, to occur at m = TAS"'/2\. From Eq. (A9) we also have

H(m*) — H, = (m*)’\ — m*TAS" (A9)

which gives Eq. (2) upon substitution of m* = —(AG" + \)/2A.
Similarly, from Eqgs. (A4) and (A9) we have

HP(m) = H) + AG" + (m + 1)°A — mTAS”"  (A10)
Thereby,
HP(m) = H + (m + 1))\ — (m + )TAS""  (All)

[Equation (A11) could also have been obtained directly from Egq.
(A9) by interchanging® r and p symbols (whence AS" — —AS",
for example) and interchanging m and —(m + 1).] We see from
Eq. (Al1) that the “force constant” of H” (m), namely FHPlom?,
is 2\ and that the minimum of the H?(m) vs. m curve, which
occurs at dHP/am = 0, occurs at (m + 1) = TAS"/2\ instead of
at(m + 1) = 0.
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FIGURE 2 Overlay of the upper and middie sets of curves of Fig. 1. The solid
curves are the free-energy curves: the minimum in the reactants’ free-energy curve
is at m = ) while the minimum in the products’ free-energy curve is at —m =
1.0. The dashed curves are the enthalpy curves: the minimum in the reactants’
enthalpy curve is at m = TAS"/2X while that in the products’ enthalpy curve is at
m = —1 + TAS"/2x. The curves have been drawn so that G' = H atm = Oin
order to show that the vertical difference between the pair of free-energy curves
equals that between the pair of enthalpy curves. This difference equals N at m =
0. The vertical displacement of the minima in G* and H' s (TAS" )74\,

The relationship between the frec-energy and enthalpy curves
is further illustrated in Fig. 2, in which the upper and middle set
of curves in Fig. | have been overlayed in order to emphasize the
relation between them.
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