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Unimolecular reaction rate theory for transition states of partial llooseness. I
Implementation and analysis with applications to NO, and C,H; dissociations

David M. Wardlaw® and R. A. Marcus

Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology,” Pasadena,

California 91125 -
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Implementation of RRKM theory for unimolecular dissociations having transition states of any
degree of looseness is described for reactions involving dissociation into two fragments. The .
fragments may be atomic, diatomic, or polyatomic species. Action-angle and internal coordinates
for the transitional modes of the reaction, transformations to Cartesian coordinates, and other
calculational aspects are described. Results for the NO,—>NO + O reaction are presented,
including the dependence of the microcanonical rate constant on the bond fission and bending
potentials for model potential energy surfaces. Illustrative calculations for the C,Hs—2CH,

reaction are also given.

1. INTRODUCTION

Frequently the transition state of a reaction is defined in
terms of the position of some maximum (saddle point) in the
potential energy surface along the reaction coordinate.
However, in reactions such as certain unimolecular dissocia-
tions to free radicals (and, hence, recombination of free radi-
cals} and some ion—-molecule reactions, a local potential en-
ergy barrier maximum may be absent. A method was
presented in part I' for implementing RRKM theory for
such reactions, and it was illustrated for the dissociation
H,0,—20H. In the present paper the coordinates, the
transformations between coordinate systems, and the eva-
luation of the phase space integral arising in this formulation
are described in some detail. Illustrative results are given for
the reactions NO,—»NO + O and C,H,—2CH,,.

The rate constant k; of a unimolecular reaction is given
in RRKM theory? as a function of the energy E of the mole-
cule (in the center-of-mass frame} and of the total angular
momentum J,
N EJ

! (1)
hpes
where NV, is the number of quantum states of the transition
state having at the given Jan energy less than or equal to E'in
all degrees of freedom but the reaction coordinate, and p; is
the density of states of the dissociating or isomerizing mole-
cule. Tunneling corrections along the reaction coordinate

kEJ=

and any reaction path degeneracy can be introduced into -

Ny, if needed.® A unimolecular rate constant at any pressure
is obtained from Eq. (1) in the standard way by suitably
weighting the contributions from different £’s and J’s [Eq.
(4) of Ref. 4]. The main idea for calculating N, described in
part I, is that the degrees of freedom are subdivided into
“transitional” ones and the remaining coordinates, in a cen-
ter-of-mass system of coordinates. The transitional degrees
of freedom involve (a) the bending motions of the two parts of
the dissociating molecule, which become free rotations in the
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products, (b) the relative orbital motion of the separating -
fragments, and (c) the other coordinates, if any, which
change considerably their form of motion during the pro-
gress of the molecule along the reaction coordinate. These
various motions are typically strongly coupled to each other
and are constrained by energy and total angular momentum

- conservation. Such coupling and constraints make a purely

quantum mechanical calculation of the energy levels of the
system at each value of the reaction coordinate formidable.
The contribution 0, (€) of such coordinates to N,; as a func-
tion of their energy E can be calculated from an evaluation of
the corresponding classical phase space integral, introduc-
ing quantum corrections if necessary.

With this subdivision of the coordinates into two groups
Ng; can be written as’

Ny = J NAE' — &, (e)de, o)

where ), {€)de is the number of quantum states of the transi-
tional modes for the given J when their total energy lies in the
interval (€, € + de), N, (E’ — €) is the number of quantum
states in the remaining coordinates when their energy is less
than or equal to E' — €, E ' being the available energy, i.e., E
minus the value of the potential energy minimum at the giv-
en value of the reaction coordinate and minus the zero point
energy of the modes included in N,,. The two types of coordi-
nates are taken to be uncoupled from each other in Eq. {2),
apart from an indirect coupling via the dependence of the
molecular constants on the reaction coordinate. The value of
N, in Eq. (2) is obtained by the usual quantum count, while
Q,(€) and N, are evaluated by Monte Carlo methods. The
minimum value of N, along the reaction coordinate is then
used to define the transition state® and, thereby, the value of
Ng; to beintroduced for the numerator in Eq. (1). The quan-
tity (1, (¢) itself can be evaluated either by using action-angle
variables, as in part 1, or by using constrained internal co-
ordinates. In the present paper the former are used.

The application of RRKM theory described in part 1
and in this paper foregoes the considerable simplicity afford-
ed by largely analytical expressions*® for N, in favor of a
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more accurate physical treatment of the transition state for
this more general case. The principal ingredients for calcu-
lating N, apart from the quantum count of N, involve
some tedious though relatively straightforward and readily
programmed transformations and a Monte Carlo calcula-
tion. The results serve to identify the more important parts of
the potential energy surface for the reactions concerned.
They can be used as a basis for selecting suitable points for
the calculation of improved potential energy surfaces for
studying the rates of these reactions.

The present article is subdivided as follows: In Sec. II
and the Appendices, the action-angle coordinates are given
for the transitional modes, together with the transforma-
tions to the internal or relative coordinates. The subsequent
evaluation of N, is discussed in Sec. III and details of the
Monte Carlo sampling, integration limits in the calculation
of 12, (€), and the counts used for N, are given in an Appen-
dix. The theory is applied to the NO,—NO + O reaction in
Sec. IV for amodel potential surface (Appendix A), and com-
pared with the theoretical results from the statistical adiaba-
tic-channel model (SACM). The effect on N, (and hence on
k) of varying the bending and bond-fission potential ener-
gy functions is also investigated for this reaction. The poten-
tial energy surface used and the transformation from action-
angle to internal coordinates for the H,0,—2 OH reaction
studied in part I are given in Appendices. Some illustrative.
results for the k-, of the C,H—2CH, reaction are given in
Sec. V. A full account of the present treatment applied to this
reaction, and comparisons with experimental data, are given
later.” The C,Hy coordinate transformations and the meth-
ods given here are applicable to more general systems with
larger polyatomic fragments. The N, calculations of Secs.
IV and V are discussed in Sec. VI and conclusions follow in
Sec. VIL.

Il. ACTION-ANGLE VARIABLES, INTERNAL
COORDINATES, AND DENSITY OF STATES

To calculate 2, (€) in Eq. (2) two sets of body-fixed coor-
dinate axes are first defined, each fixed in a separating frag-
ment."®° The origin of each system is located at the center of
mass of that fragment, and when either fragment has some
symmetry its coordinate axes are chosen to coincide with its
symmetry axes. A third set of body-fixed coordinates is also
defined, fixed in the molecule as a whole. For the coordinates
of the transitional modes the action-angle coordinates de-
scribed previously'*-'° are then introduced. In the following
and in Appendices, the action-angle variables are defined for
three different classes of reacting systems of increasing com-
plexity, represented by the reactions NO,—»NO + O,
H,0,—20H, and C,Hs—2CH,. The transformation of the

action-angle variables to internal displacement plus separa-

tion distance coordinates, in which the potential energy
function is usually expressed, is also described. These three
reactions have two, four, and six transitional modes, respec-
tively, and are prototypes for dissociation into an atom and a
linear fragment, into two linear fragments, and into two non-
linear fragments.

Angular momentum actlon angle varlables for anonlin-
ear system such as ABC—AB + C (e.g., NO,—NO + 0)

can be chosen to bej, j,, /, [, (written here and throughout in
units of # = 1)'! and their conjugate angles ;, 5; a;, B
(Two distances and their conjugate momenta complete the
set of variables in the center-of-mass system of coordinates.)
The angles range over a 27 interval. The variables j and j,
describe the rotational angular momentum and the space-
fixed z component of the diatomic AB, respectively; /and /,
denote the orbital angular momentum of the fragments and
its z component. The conjugate angles are angle variables in
the planes perpendicular to the corresponding angular mo-
mentum vectors. It is convenient to use instead the variables
(J,,J,,3) obtained in a canonical transformation®'

(izrﬂj’lzﬁl)_’(']’a”]z’ﬁ)" \ (3)
whereJ ( = |j + 1|)istheaction for the total angular momen-
tum, J, is its space-fixed component, and a, B are their re-
spective conjugate angles. For a system so described and for

a given value of J the semiclassical value €, of quantum
states of the transitional modes is

a,0=m [ - |

xdJ, dj dl da dB da; da, A (Jj,1)6(€ — Hy)
4

. {in units of #i = 1). Here, H._, is the classical Hamiltonian for

the transitional modes and is given below. 4 (/,,/) is unity
when the triangle inequality |j — /| <J<j + /s fulfilled and
zero otherwise. The integration limits for the angle variables
are (0, 277). o is a symmetry number which corrects for the
overcounting of any indistinguishable configurations in
these (0, 277) angle intervals. The angular momentum actions
jand ! are restricted by energy conservation and the limits on
the J, integral are ( — J,J ).

The Hamiltonian H, for the transitional modes is writ-
ten as

-2 l 2

H,

P T WE

where p1,, is the reduced mass of AB, u is the reduced mass
for the relative motion of AB and C, and R is the distance
between C and the center of mass of AB. The potential V, for
the transitional modes is modeled in the present study so.as
to be a function of the internal coordinates 7,p  and 6 de-
picted in Fig. 1(a). The other coordinate 7 in Fig. 1(a) corre-
sponds to the AB bond length and that vibration contributes
instead to the quantum state count in N y(E' — €). The reac-
tion coordinate R, the angular momenta j and /, and the
angle y between R and r are depicted in Fig. 1(b). The func-
tional form and numerical parameters used for ¥, are given
in Appendix A and for more complex systems in Appendices
Band C.

To evaluate V, in Eq. (5), the internal coordinates, 7,5 ¢
and @ are first expressed in terms of the Jacobi coordinates
(R, 7, 7) asin Appendix A. For any R, ris then replaced by its
R-dependent equilibrium value 7, (Appendix A), and y is
expressed in terms of J and the action-angle variables ap-
pearing in Eq. (4):

cos ¥ = cos a; cos @; + sin ; sin a; cos 6y, (6)

+ Vilrasc,9); (5)
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FIG. 1. (a) The N-O length 7, the bond dissociation coordinate Fon-o» and
the bending angle 8 for the NO,—»NO + O system. (b) Angular momenta
for the NO fragment rotation and for the orbital motion of ON and O; R is
the distance between the centers of mass, and y is the angle betweenr and R.

where 6, is the angle between 1 and j and is given as a func-
tion of /, j, and J in Table II. The angles 7, a;, and a, are
depicted in Fig. 2 and, together with other angles, are speci-
fied in Tables I and III. The form of Eq. (6) applies to the
various other systems of angles used in this paper and such
results systematically follow from the identity'?

(aXb)-(e X d) = (a-c)(b-d) — (a-d)(bc), (7)

with a, b, ¢, and d identified in Table III.

In the above way V,, and hence H,,, are specified by the
variables (R,r,J,j,l,a;,@,). The latter determine only the rela-
tive positions of the atoms. Hence, ¥, and H,, are indepen-
dent of the variables (J,,a,8), which determine the overall
orientation of the body-fixed frame, '® permitting the integral
in Eq. (4) to be simplified to

2,(€) = (J + 12"~ f f

xdjdl da; da,A (J,j,])5(e — H,), (8)
which, combined with Eq. (2), yields

TABLE II Definitions of angles contained between various angular momenta.®

TABLE L. Definition of Euler angles conjugate to various angular momen-
ta.* :

Angular - Conjugate Reference Rotated
System momentum angle . axisx axis y
NO, 1 a 1Xj R
J a; IXj r
H,0, ) a, Ixk R
k a; Ixk WX =J ¥k
Ji a; Ji Xz r
C,H¢ ) a; 1xk® R
k a, Ixk® JiXh =i Xk
Ji a; 1Xj;° K; X
K X! €.

xi

K; Vi

* All angles range from O to 27 and are obtained by counter-clockwise rota-
tion about x X y from x toy (Ref. 12). The subscript i refers to fragment 1 or
2.

b Corresponds to axis x in Fig. 4(a).

©Corresponds to the line of nodes N | in Fig. 4(a) for i = 1.

4 Corresponds to the line of nodes N | in Fig. 4{a) for i = 1.

Nu¥(u+ 1)2m) 20! J J ’

Xdjdl da; da, Ny(E' — Hy)A Ujil), )

the desired relation. In Eq. (9) N,(E' — H) is zero when
E' < H,.Theevaluation of the integral in Eq. (9) is described
in Sec. III.

The foregoing equations and concepts are extended to
more complex reacting systems in Appendices D and E. Var-
ious relevant angles are depicted in Figs. 3 and 4. The case of
J = 0is typically unimportant, since it is only one point on a
distribution of many J’s. Nevertheless, it is given for com-
pleteness in Appendix G for the various systems.

ill. EVALUATION OF N,

In evaluating the integral for Ny, appearing in Eq. (9)
[and in Egs. (D9) and (E8)] by analytical or quadrature meth-
ods one encounters relatively high dimensionality (4 to 12),
interdependent integration limits, and an integrand in which

Angular
momentum Angle
System pair b 4 cos Yy
NO, 5] oy (J2 =12 — )20
H,0,, C,H, LK) . O (J2 =12 —k¥/20k
(ju ) 61, k*—ji =iV
(k1) Oy (F+k2—j3)2k
{k,2) O (o + k% —j3V 2k
(L) 6, cos 6, cos 0, + sin  sin ;, cos a;”
(Lj2) 6,, €08 0y, ¢08 By, — sin Gy, sin 6, cos a,°

®In all cases 0< @< and sin @ is obtained from cos @ as the positive root.

®These expressions are obtained from Eq. (7) with a =1, b=d =k, and ¢ = j;; the sign difference arises be-
cause a; is the angle beteen XXk and j, Xk = j; Xj; (see Table I), whereas 7 + a, is the angle between I Xk

and j,Xk = — j, Xj»-
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FIG. 2. An Euler diagram depicting the various angles involved in describ-
ing the transitional degrees of freedom for an atom plus diatom system. The
planesin which R and r lie are perpendicular toland j, respectively. The two
planes intersectwalong the line of nodes 1Xj. a; and a; are angles conjugate
to / and j, respectively, and ¥ is the angle between R and r. For pictorial
clarity the angle 8, between 1 and j is not shown. All Euler angles are de-
fined by a right-hand rule, i.e., they describe a counterclockwise rotation in
the plane perpendicular to the axis of rotation.

all variables of integration are coupled via V,, which itself is
a complicated function of the new variables. Such integrals
are well suited to evaluation by Monte Carlo methods.!> One
may write

Ng; =NEF + 06, (10)
where N i and (0™€)? are Monte Carlo estimates of Nz, and
of the variance o? of N ¥, respectively.

In this paper, which is aimed mainly at examining the
salient features of the present method, we have found it expe-
dient to use the crude Monte Carlo method for evaluating
N ¥ and 0™€, namely to use a uniform sampling of all varia-
bles, combined with a weighting method'® for coping with
the awkward interdependent integration limits. The details
of the calculation, including the counts for N, are given in
Appendix F. Also described are some elementary proce-
dures which reduced the variance (0™€)? for the transitional

-modes. Other more sophisticated Monte Carlo techniques
for evaluating N, can, of course, also be used.

Monte Carlo calculations of phase space volumes have
“been used in completely classical calculations of numbers of
states, densities of states, and unimolecular rate theory. Both
rotating' and nonrotating'>~'® systems have been so stud-
ied, although for the rotating systems'* the ensembles were

TABLE III. Identification of vectors used to define cosines of various an-
gles via Eq. (7).

System Angle a b c d
NO, 4 Ixj r. IXj R
H,0, A r, R r, R

['4 Xl r Ji1 X3z r;
Vi 1 X3z r; IXk R
O Ixk R Ixk JiXJ2
0, JiXi2 r; Ixk JiXi,
GH, A I Kk I i

{a)

H .
r1\91
O )THO-OH  _

H H
\T/’
N Y 2
0

r 6
H
{b)
H
L H
ﬁk\y‘ A p
‘j/ 0 R 0 i2
4 ~ - 0
r2Y’y, O'/

FIG. 3. {a) The OH bond lengths r, and »,, bond dissociation coordinate

ron-om » bending angles 8, and 6,, and torsional angle 7 for the H,0,—20H
system. {b) Angular momenta for fragment rotations and for the relative
motion of HO- - -OH, the distance R between the centers of mass, the angles
¥, between Rand r; (i = 1, 2), and the angle 4 between the plane defined by
r, and R and that defined by r, and R.

notJ fixed. In a study'” of the vibrational predissociation of
the Ar-BCl, van der Waals’ molecule a generalization'>® of
Slater theory was used to obtain k’s via Metropolis sam-
pling. A similar approach was used '8 in a study of the unimo-
lecular dissociation of methane. The results for
CH,—~CH, + H were converged, though an uncertainty of
~100% was reported for the Monte Carlo estimates of &,
for CH,—CH, + H,, due to the excessive computational
times needed: for convergence.

IV. RESULTS FOR THE REACTION NO,—NO + O

A. Calculations for N, vs £ and J and comparison with
SACM

Results for N, the quantity useful for assessing the
accuracy and computational facility of the present method,
are described in this section. Using a model potential energy
surface described in Appendix A, results for N, [witho = 1
in Eq. (9)] were obtained for several J ’s and are plotted in Fig.
5vs E’_, the energy of the separated products in excess of
their zero point and potential energy.

To obtain N, at the “bottleneck” value of R, R ¥, i.e., at
the location of the minimum in the reactive flux, the integral
in Eq. (9) was evaluated as a function of R at fixed intervals
(0.1 A for this reaction) using the Monte Carlo method de-
scribed in Sec. III and Appendix F. The accuracy of the
present Monte Carlo estimates of N, as measured by
oMC/NYE, was at worst ~1.5% for all values of R. The
relative accuracy was found to depend only on the number of
integration points and was essentially independent of E’_
and of J. The fraction of rejected Monte Carlo integration
points increases as R decreases as a result of more severe
configurational restrictions imposed by the transitional
mode potential at smaller R. In order to maintain the relative
accuracy at 5 1.5% for all R values it was therefore neces-

J. Chem. Phys., Vol. 83, No. 7, 1 October 1985
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FIG. 4. (a) Euler diagram depicting the relationship between the (x, y, z),
{x{, »1, 2}), and (x{, p{, z) Cartesian coordinate systems for the nonlinear
polyatomic fragment 1. 1 lies along the z axis, j, along the z; axis, and k, is
the projection of j, on the z” axis. Pairs of the three xy planes intersect along
the lines of nodes N {, N {', and N {*, whose orientations are determined by
the vectors 13¢j,, 1<k, and &, X j,, respectively; N {" also serves as the x]
axis. The angles (a,, 8, , 5,) are the Euler angles specifiying the orientation
of the primed system relative to the unprimed system and the angles (y;,
1, 0) are those specifying the orientation of the primed system relative to
the doubly primed system. For pictorial clarity, the angle 8,, between the z
axis and the zj axis and the angle 0,, between the z{ axis and the z{" axis are
not shown. (b) The CH bond length rcyy, the angle between adjacent CH
bonds ey, the bond dissociation coordinate roe = ryy, several interfrag-
ment atomic separation coordinates r;, and the angles 0, between re- and
the symmetry axis z/' of fragment { (/ = 1, 2) for the C;H,—2 CH, system.
The carbon atom of fragment 2 is taken as the origin of rec. (¢) Angular
momenta for fragment rotations and for the orbital motion of HC. - -CH,,
thedistance R between the centers of mass, and the projection &, of j, on the
z)' axis.

NEJ
2J+1

10°

1041

103t

1027

! ' - + :
" 0 10 20 30 40

Es(kcal-mol ™)

FIG. 5. Semilog plot of N, /(2J + 1) vs E ., in units of keal mol~" for var-
ious values of the total angular momentum J forNO,—NO + Q. E’_isthe
energy available tothe systemat R = oo. The solid curves depict the present
results and the dashed curves are obtained from a statistical adiabatic-chan-
nel model (SACM) calculation. The statistical uncertainty in the N, at Rt
values resulting from the Monte Carlo calculation is too small to be resolved
on the scale of the figure and has been omitted.

sary to increase the absolute number of points smoothly
from 3000 in the region of zero potential (R = o) to 35 000
at R = 1.9 A, the smallest separation considered.

The present method can be used with any potential ener-
gy surface, ab initio or semiempirical. However, for purposes
of this paper the potential energy function (Appendix A)
used was designed so as to facilitate a comparison with statis-
tical adiabatic channel model (SACM)' calculations. In the
latter, outlined in Appendix H, vibrationally adiabatic chan-
nel curves are constructed by assuming that a universal in-
terpolating function'® smoothly connects reactant and pro-
duct eigenvalues. The surface specified in Appendix A leads
to molecular parameters which would approximately yield
this interpolation formula. The SACM calculated results are
also given in Fig. 5 as a function of energy for various J'’s,

To determine the extent of looseness of the transition
state, the value of N, (R ') was compared with the value at
R = 0, Ng; (o), for various E ’sand J ’s. For J’s of 0, 20, and
40, the ratio N, (R )/Ny,( ) varied over the intervals (0.53
to 0.89), (0.48 to 0.86), and (0.36 to 0.81), respectively, when
E . was varied from 2.29 to 47.29 kcal mol~".

B. Dependence of V-, on the potential energy function

In the absence of accurate theoretical calculations for
the interfragment potentials in the region of separation dis-
tances of interest—frequently two to five times the equilibri-
um bond length for simple bond-fission reactions—it is com-
mon to use a Morse function to model the bond-fission part

J. Chem. Phys., Vol. 83, No. 7, 1 October 1885
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FIG. 6. The various bond dissociation potential energy curves used in the
" model potential energy surface for the NO,—NO + O system are depicted.
Only the range 1.8-3.5 A isshownand ¥ =0 corresponds toseparated frag-
ments. Curve 1is a Varshni potential, curve 4 a Morse function, and curves
2, 3, and 5 are Morse functions modified by altering 3 as described in the
text.

of the potential energy function V, in Eq. (5).'%*° However,
for many diatomic molecules the Morse function is often
inaccurate at larger separation distances, usually being low-
er than the experimentally based RKR potential curve and
rising less steeply as the bond length is increased.'®*' Ac-
cordingly, the sensitivity of Nz, to modifications of the
bond-fission potential V,; was examined next. ‘
One approach to obtaining improved potential curves is

TABLE 1V. Dependence of Ng;(R*) on ¥, for NO,—NO + 0.*

to let the Morse parameter 8 depend on the bond length or
reaction coordinate.?? For simplicity, B (R ) now has the form

BR)=B. + By —B. R), (11)

where g(R ) is an interpolation function, 8, is the Morse val-
ue for the ON-O bond (given later in Table A1), and B is
chosen to have several different values. The function g(R)
was chosen to be that given in Eq. (A2). The potential energy
curves labeled 2, 3, 4, and 5 in Fig. 6 correspond to choices of
B.. such that the value of B(R )at R = (R, + 3 A) equals By
muitiplied by a factor of 1.2, 1.1, 1.0, and 0.9, respectively.
Also plotted in Fig. 6 (curve 1) is a Varshni potential for the
ON-O stretch.? The latter is similar to the above modified

‘Morse curve with the multiplication factor equal to 1.3. In

Table IV Monte Carlo estimates, (N} + o™)/(27 + 1),
based on the above choices for 8 (R ), are given for N, for a
low, medium, and high energy for each of three J values.
N ¥ was calculated, now in R increments of 0.2 A, to locate
the transition state at R *. The R ¥ values corresponding to
the entries in Table IV are given in Table V.
While an interpolation function glg)
= exp[ — alg —q.)], where q is the reaction coordinate,
has been assumed in the SACM treatment,® and also else-
where to approximate transitional bending frequencies in a
RRKM-type model,?° recent ab initio calculations®! on the
CH,—~CH, + H potential energy surface and subsequent

-analytical fitting®* suggested an inadequacy of this interpo-

lation for describing the quadratic force constant for a bend-
ing motion involving the angle between a C-H bond in CH,
and C-H interfragment displacement vector. The sensitivity
of the value of N, (R ") to the form of the bending potential
Voena for NO,—NO 4 O was tested next. In particular, the
g% in Eq. (Ad) for V., was replaced by §(2g + g°), an inter-
polation reported to reproduce satisfactorily R-dependent
eigenvalues for a particular 1D hindered rotor potential.?’ In
Fig. 7 the values of g, g%, and }(2g + g%) are plotted vs
(R — R,)for @ = 1.3 A~". The values of [N ¥S(R 1) + o™C]
/(2J + 1) and R * for the two interpolations used for ¥;,,,
g% and §(2g + g°) are compared in Table VI.

[NEFRN £ ™)+ 1)

J E’, —229 :
#=1) (kcal mol—) 1 3 4 5
0 0 8.5+ 0.1 9.740.1 10.7 4+ 0.1 11.8+0.1 138402
20 160 + 1 167 + 1 178 + 1 191+ 1 20341
40 457 + 1 469 + 2 484 42 504 + 2 526+ 1
: 10 0 124 +2 141 +2 154 4+ 2 17542 206 + 3
20 2730 + 20 2860 + 20 © 3060 + 20 3310 + 20 3540 + 20
40 8220 + 30 8420 + 30 8700 + 40 8960 + 40 9490 + 40
20 0 13942 163 +3 18743 229+3 28343
20 4580 + 30 48100 + 40 5150 + 40 5600 + 40 6050 + 30
40 14600 + 100 15000 + 100 15500 + 100 16100 + 100 16900 + 100 -

*The columns labeled 1-5 refer to the use of the similarly numbered potential encrgy curves in Fig. 6 for the bond-fission potential V.
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TABLE V. Dependence of R* on ¥, for NO,—»NO + 0.*

RY(A)

J E’ ~229
#i=1) {kcal mol ) 1 2 3 4 5
0 0 2.8 2.9 .30 3.0 3.0
20 24 2.4 2.4 2.5 26
40 2.4 2.4 24 2.5 2.5
10 0 2.9 3.0 3.0 30 30
20 24 2.4 2.4 2.5 2.6
‘ 40 2.4 2.4 2.4 2.4 2.4
20 0 3.0 3.0 3.0 3.0 3.1
N 20 2.4 24 2.4 2.5 2.6
0 2.3 2.3 23 2.4 24

“The columns labeled 1--5 are defined in Table IV, Footnote a.

V. SPECIFIC RATE CONSTANTS FOR ETHANE
DECOMPOSITION '

To assess further the practicality of the present method,
microcanonical decomposition rate constants &, [Eq. (1]
for C,H,—2CH; were calculated as a function of energy for
several J values. The numerator N, (R ¥)in Eq. (1) was taken
to be minimum in N, (R) on an equally spaced set of R
values with AR = 0.1 A. The N 5s(R ) values were obtained
from Eq. (E8) and the methods described in Sec. ITI and
Appendix F. Further details, including R ' values and an
energy, and R-dependent restriction on the realtive orienta-
tion of the two methyl radicals, are given in Ref. 7. To obtain
a simple yet realistic estimate of the density of states PEs I
Eq. (1) a straightforward approach was adopted, yielding?®

Per =2+ No (B} ~T*/21,,)F,(E )0,  '(12)
where o, is the symmetry number for the reactant. In Eq..
(12) the total energy available to the reactant E ;isE’ plus
the dissociation energy into the two methyl groups D,(C-C),
I, is the moment of inertia perpendicular to the symmetry
axis of C,H¢ with its equilibrium geometry, and F,(E;J)isa

1.04
i\
I\
W\
© 0.5+ \ \\
= \.\ \
o\
NN
\ ~
.\, =~ ~
\'\ —< -
00 i . S, ' -— ——j
0 1 R 3 4
R-Re (A)

FIG. 7. Initerpolation functions f{g) used to construct model potential ener-
gy surfaces for the NO,—»NO + O system. Plotted vs (R—R,) are
g=expl — a(R — R, )} (—),4[2¢ + £) (--), and g* (—). Here,a = 1.3 3!
and R, is the equilibrium value of R for NO,.

rotational correction factor given in Appendix I. For har-
monic oscillators the density of vibrational states P, is given,
in the Whitten-Rabinovitch approximation,?’ by

pule) =[x+ atxlEz, /| L9 [T | (13)

i=1

wherex =E] —J?/21, v, is the frequency of the ith nor-

mal mode of C,H, (Tables IX and X), E,, is the zero point

. energy of the reactant, and s is the number of its oscillators.

For ethane s = 18 when the torsional motion of the CH,-

groups is treated as a vibration, as we shall do, for conve-

nience in the present illustrative calculations. The parameter

a(x) is a function defined by Whitten and Rabinovitch.2’®
The rate constant expression is

ke = N, (R Wk (2 + Up, (x)F, (6] Jo . (14)

For the present model of the reactant molecule, g, = 6. As
discussed in Appendix E a value of o = 72 is used in the
expression for N, [Eq. (E8)] for the case of nearly loose
transition states. Results for k-, vs E /. for a wide range of J
values are shown in Fig. 8. ForeachJ the energy ranges from
near threshold to E /| =63 kcal mol .

VL. DISCUSSION
A.NO,->NO + 0

The values of N, (R ') calculated by the present method
were seen in Sec. IV to be close to those at R = oo, Ny,{0 )
Thus, the transition state for the model potential is relatively
loose. The values were also close to those calculated in Ref,
19, as is seen from Fig. 5, except at low energies, where small
differences in the molecular properties of the surface would
have the largest effect. Our experience was that the present
method was computationally faster than SACM at J = 20
and 40, even for a molecular system as small as
NO,—NO + O, presumably because of the large number of
reactant and product states which occur at these J’s and
E' ’s. (The most probable thermal value of J for NO, at
J00 K is about 40.)

The dependence of N,/(27 + 1) on ¥, is seen from
Table IV to be relatively minor for the range of energies, J’s
and functions considered, particularly at £’ = 42.29 kcal
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TABLE V1. Dependence of Ng,(R')and R' on V,,,, for NO,—~»NO + O.

[Nes(RT) £ aMCV(2T + 1) R*(A)
J E’, —229
#=1) (kcal mol ) I's il2g + 821 & {28 +¢°1

0 0 11.8;}:0.1 5.7+01 3.0 3.2
20 191 +1 11541 2.5 2.6
40 504 + 2 354 42 24 24
10 0 175+ 2 8942 3.0 33
20 3310 + 20 1960 + 20 2.5 2.6
40 8960 + 40 6370 + 40 2.4 2.4
20 0 22943 98 +3 3.0 3.4
20 5600 + 40 3410 4+ 30 2.5 2.7
40 16100 + 100 11100 4 100 2.4 2.4

mol~'. Such results are not unexpected. Because of the
looseness of the transition state, the value of Ny, is relatively
insensitive to V. A significantly stronger dependence of the
rate on ¥V, has been reported for a different bond-fission
system.?®

For all J values in Table VI the N, values calculated
from g° exceed those calculated from }(2g + g) by a factor of
roughly 2, a result understood by comparing the two forms
Of Viena in Fig. 7: The larger bending force frequency arising
in the }(2¢ + g% interpolation yields a smaller £2,(¢) and
hence a smaller value for N;.

B.C,Hg—~2CH;,

Since detailed results for this reaction will be given else-
where and compared with experimental values as well as

|0I2

0 0 20 30 40 50 60
E ‘o {kcal-mole™)

FIG. 8. Semilog plot of specific rate constants kz; vs E ', for various values
of J for the C;Hs—2 CH, reaction. The statistical uncertainty in the kg,
values resulting from the Monte Carlo evaluation of N, is, in general, too
small to be resolved on the scale of the figure and has been omitted.

with other calculations,” only several remarks are made
here: It can be seen from Fig. 8 that the effective threshold
energy increases with J, as expected from the centrifugal
effect and in agreement with other work.?%®4! (Actual de-
termination of a threshold energy would require a quantum
treatment for the zero point energy of the transition modes, a
not too difficult task.) The energy dependence of the k.,
curves in Fig. 8 is at least in qualitative agreement with that
obtained elsewhere’®® for a different model of the
C,H—2CH, system.

C. Quantum correction for transitional modes

The present method provides a practical method for cal-
culating k.,’s for arbitrary potential energy surfaces. How-
ever, it can be anticipated that sufficiently near the threshold
energy a quantum correction for the transitional modes will
be necessary, particularly when the contribution of the cu-
mulative density of states of those modes [5£2,(x)dx/
(27 + 1) for a typical € in Eq. (9) is comparable with unity.
(There must be at least one quantum state in these transition-
al modes.) For the calculations in the present paper, this
quantity always exceeded unity by an appreciable amount.
We are currently extending the theory in this direction. A
simple form of correction is the following: the value of Nz, in
Eq. (2) when € equals the zero point energy €, of the transi-
tional modes is usually (2J + )N, (E’ — €,). This value can
be connected by interpolation to values of N, given by Eq.
(2) at somewhat higher energies. This correction would, by
placing a lower limit on N, prevent the expression in Eq. (2)
from becoming too small, i.e., less than (2J + 1), when E’
becomes small enough that the system as a whole is in its
ground state for the given value of the reaction coordinate.

VIL CONCLUSIONS

The above results show that the present method can be
used to treat in a practical way unimolecular dissociations
having transition states of arbitrary looseness. The depen-
dence of results for the NO,—NO + O reaction on the po-
tential energy function for bond fission and for bending was
examined for a given set of model surfaces, with results given
in Tables IV-VI. The present method can be used, however,
with any potential energy surface. When a particular surface
was chosen which led to molecular parameters having an
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interpolation between those of reactants (NO,) and products
(NO + O) analogous to the universal eigenvalue interpola-
tion assumed in the SACM model, fairly similar results were
obtained. The main attributes of the present method are its
use of general potential energy functions and a computa-
tional feasibility which is unaffected by the size of the polya-
tomic fragments.
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APPENDIX A: POTENTIAL ENERGY PARAMETERS AND
COORDINATE TRANSFORMATION FOR NO,—~NO + O

For the reaction NO,—»NO + O a model potential
V=V, + V, was used, where V, denotes the NO bond po-
tential (coordinate r) and ¥, denotes the contribution to ¥
arising from the angular coordinates and the ON-O separa-
tion distance [Eq. (A3)]. V. is taken to be a Morse potential
function of r:

V.=V, rR)

=D(R)(1—exp{ —BR)[r—r.(R)]})*—D(R),

(A1)

whose parameters D, 3, and r, themselves depend on R, the

separation distance between the centers of mass of the two

fragments. D (R )is abond dissociation energy, 5 (R ) a Morse

parameter, and 7, (R ) an equilibrium bond length at any giv-

en R.

Denoting D, 3, and r,” 2 by X (R ), an interpolation was
used for these quantities, :

XR)=Xon — Xon —Xono Jg(R ),

TABLE Al. Potential parameters for NO, system.

D. M. Wardlaw and R. A. Marcus: Unimolecular reaction rate theory. |l

gR)=exp[ —alR —R.)], (A2)

where R, is the value of R at the equilibrium geometry of
‘NO,. The subscripts ON-O and O-N indicate reactant and
product quantities, respectively, for the NO bond. The form
of the interpolation function g(R ) is that proposed in Ref. 19.
It was chosen here mainly to facilitate a comparison of the
calculated N, with the value for the statistical adiabatic-
channel model of Ref. 19. However, in Ref. 19 a potential
surface was not used but rather frequencies, moments of in-
ertia, and angular momenta interpolated by g(R ).
The transitional-mode potential ¥, was taken to be

V, = VclFono) + Voena (@) (A3)

where the bond-fission potential V,; is a Morse function, as
in Eq. (A1) but with r replaced by ro_o and with D, B, and r,
being constants, namely the values for ON-Q. The bending
potential was modeled with a hindered rotor function,

Voena = %fegz(R )sin2(9 —6.),

where f;, is a quadratic bending force constant and &, is the
equilibrium value of 8 in NO,. The g*(R ) factor makes the
bending vibration frequency vary as g(R ). The various co-
ordinates used in Eqs. (A1)—(A4) are depicted in Fig. 1 and
the relevant potential parameters are listed in Table A 1.

In the text the internal coordinates were first converted
to Jacobi coordinates and then the latter were expressed in
terms of action-angle variables. The first transformation is
made as follows: The three atoms lie in a plane, regarded as
the body-fixed xp plane, and with an origin at the center of
mass of the AB molecule. The coordinates are given in terms
of r and y: x, =u/muy)rcosy, ya =(u/my)rsiny,
xp = — (u/mglrcosy, yg = —(u/mg)rcosy, xc =R,
Ye = 0. The BC bond distance, 7,5 , and the ABC bond
angle 6 are readily expressed in terms of these coordinates.

(A4)

Parameter Value Reference = Parameter Value Reference
NO,
FONO.e 1.1934 A 30 R, 1.699 A a
6, 134.07° 30 Dono  74.5kcal mol~! b
v 1356.9 cm™! 30 Bono 3.266 A~! c
v, 754.1 cm™! 30 Jo 157910 M erg d
v, 1665.6 cm—* 30 1, 2.10 amu A? a
I 11.04 X 10° erg cm 2 30 I, 38.62 amu A? a
Lfoa 1.109X 10° ergem 2 30 Ic, 40.73 amu A? a
D,ON-0)  3.114eV 31
NO
PNoLe 1.1508 A 32 Don  152.6 keal mol ™' b
v 1903.6 cm ™! 32 Bon® 2.742 A" c
D,(NO) 6.5eV 32 '
a 1.3A! 19f

2 Determined by ron.o, . and atomic masses.

®Dono = Do(ON-O) + E,, — E,, andD gy = Do{ON) + E,; E,, = (27/2)(v, + v, + vs)and E, = (2a/2}v

{in units of 7 = 1).

“Bono = [fin/2D on0]"'?, where f,, is the diagonal quadratic stretching force constant for NO,.
4f =f. [rono,.]’ Where f,, is the diagonal quadratic bending force constant for NO,.

‘Bon = 27TV[/‘/2D0N]U2-

fThis value was found to provide a good fit of the statistical adiabatic-channel model to high-pressure thermal

rate constant data (Ref. 19).
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APPENDIX B: POTENTIAL ENERGY PARAMETERS FOR
H20,—20H

For the reaction H,0,—20H a model potential
V=V, + V., + V, analogous to that described in Appen-
dix A was used. Each ¥, denotes an OH bond potential with
coordinate 7;(i = 1, 2), similar to Eq. (A1) with r now re-
placed by 7,. Denoting D, B, and r,” 2by X (R ), the interpola-
tion used was again given by Eq. (A2), with ON-O and O-N
subscripts replaced by HOO-H and O-H to indicate the val-
ues for the OH bond in the reactant and separated products,
respectively. The transitional mode potential ¥, was mo-
deled by

V. = Velrnoon) + Vo1(01) + V2 (02) + VT(T:evez()ial)
The bond-fission potential V., was again taken to be a Morse
function, as in Eq. (A1), with r, D, 8, and r, being the values
for HO—OH, the latter three now being constants. The bend-
ing potentials V(i = 1, 2) were chosen to be hindered rotor
functions similar to that in Eq. (A4), but now with 7/ sub-
scripts added to the 8’s and with 6, being the equilibrium
H-0-0 bond angle in H,0, (i = 1, 2). The torsional poten-
tial ¥, in Eq. (B1) is a hindered rotor function, modified by

TABLE BI. Potential parameters for H,O, system.

coupling to the bending modes. It is typically small in the
coordinate domain of interest:
V, = [Vo+ V,cos At + V, cos 2A7 + V; cos 3A7]
Xsin 6, sin 8, g(R ), (B2)
where A7 =7 — 7, and 7, is the equilibrium value of the
torsional angle 7 in H,0,. The sin 6, sin 6, factor varies

~ between 0 and 1, since 0<8,<w, and ensures that the tor-

sional potential is physically reasonable when 6; tends to 0 or
. The change in the equilibrium properties of H,0O, intro-
duced by this factor proved to be minor since 8, , and 6, are
closeto 77/2 for H,O,. Theg(R ) interpolation used in Eq. (B2)
for the torsional potential, namely that given by Eq. (A2), is
somewhat similar to that used in Ref. 33 for a 1D hindered
rotation about a threefold symmetry axis. The various co-
ordinates used in the above equations are depicted in Fig. 3.
The relevant potential parameters are listed in Table B1.

APPENDIX C: POTENTIAL ENERGY PARAMETERS FOR
C.He—2CH;

For this larger system a model potential V=V, + V,
was used, where ¥,, the potential energy function for vari-
ation of the separation distance and orientation of the CH,

Reference Parameter

Parameter Value Value Reference
: H.0,
Pri00te 0.965 A 34 R, 1.485 A b
PHO-OH.« 1.462 A ' 34 Dyoon 54.6 kcal mol " c
0,.,0,. 100° 34 Duooxn 95.8 keal mol ! c
T, 120° 34 Broon 2388 A! d
v, 3599 cm™! 35 Broonu 2453 A1 d
v, 1402 cm ! 35 Jor Js, 1.26X10 " erg e
v, 877 cm™! 35 V, 876.3 cm™! 38f
v, 243 cm™! 35 Vv, 1093.4 cm™! 38f
vs 3608 cm™! 35 v, 546.7 cm™! 38f
Ve 1266 cm ™! 35 v, —56.4cm™! 38f
Jrr 4.322%10° erg cm ™2 36*
- 8.009 % 10° erg cm 2 36*
Jfua 0.894 X 10° erg cm 2 36*
D,(HO-OH)  49.5 kcal mol ! 37
D,(HOO-H) 88.5 kcal mol ™! 37
HO,
v 3410cm™! 39
vy 1095 cm ™! 39
v, 1390 cm ! 39
OH
Tou, e 0.9710A 40 Doy 105.6 kcal mol ! c
v 3735cm™! 40 Bon 2285 A1
D,(OH) 435eV 40
a 1.0A! h

* The harmonic stretching force constants frx and f;, for O-O and O-H, respectively, as well as the harmonic
H-0-O bending force constant f,, are ab initio/empirical values taken from Table 1 of Ref. 36.

Determined by given equilibrium geometry and atomic masses of H202.
°Dyoon = Do(HO-OH) + E,, — 2E_; Dyoon = DJ{HOO-H) + E,,
(with#i=1)E,, =(2n/2)Z{_, v, E =(2u/2)2}_, v}, and E,, = 27/2}v.
BHO-OH = [fRR/ZDHO-OH] ’BHOO—H = [fn/ZDHOO—H]1/2

cfa, = foa [ P00t ¢ ] [THOOM, e =1, 2).

fOur values of ¥, V;, V,, V; are determined by the experimental barrier heights reported in Ref. 38 and by
requiring ¥, (0) = aV,(0)/dr = 0.

EBon = 27T'V(/‘0H/2DOH)”2

b In Ref. 19, a was obtained by fitting to thermal rate constant data. In the absence of such fits for H,0,, we
adopt the “standard” value (Refs. 19 and 41)of @ = 1.0 A=l

E; Doy = Do(OH) + E,,; where

Z2p 3

J. Chem. Phys., Vol. 83, No. 7, 1 October 1985



3472

D. M. Wardlaw and R. A. Marcus: Unimolecular reaction rate theory. Il

TABLE C1. Correlation of conserved vibrations.®

C,H, CH,
Label Symmetry Symmetry
i Mode type v Yy Mode type 7
1 vl Ay, 2954 2925.0 v A 3044
vs Ay, 2896
2 v, Ay, 1388 1383.5 v, Ay 580
Ve A,, 1379
3 v, E, 2985 2977.0 vy E’ 3162
‘ 10 E, 2969 :
4 vy E, 1472 1470.5 V4 E’ 1396
i E, 1469

= All frequencies are in units of cm ™' and are taken from Ref. 19.

groups, is given later in Eq. (C3). The potential ¥, for the
“conserved” vibrational degrees of freedom (listed in Table
C1) was assumed for simplicity to be separable and quadrat-
ic. Their vibrational energy in excess of the zero point energy
was then expressed in terms of principal quantum numbers
n, and n, of normal modes in methyl fragments 1 and 2:
4
v = '21 2av,(R)[ny + 12 ] (C1)

The sum is over the (identical) vibrations of each methyl
group, two of which are doubly degenerate. The frequencies
v,(R ) were obtained by interpolation:

vi(R)=v, + ¥, — v, gR)[i=1,.,4], (C2)
where R is the separation distance between the centers of
mass of the methyl fragments and g is given by Eq. (A2). The
product frequencies v,, are the normal mode frequencies of
anisolated methyl radical and are listed with their symmetry
type in Table C1. The reactant’s frequencies v,,, which cor-
relate to the v,, via Eq. (C2), were determined as follows: For
a given symmetry type (either 4 or.E) and for each type of
vibration (either CH; stretching or CH, deformation) two
nearly degenerate frequencies were averaged. The resultant
¥,’s were then correlated on a 1:1 basis with thev,,’s accord-
ing to symmetry type and characteristic vibrational mo-
tion!® and are listed in Table C1, together with their symme-
try type. The remaining normal vibrational modes of C,Hg
become transitional modes as R increases and are listed in
Table C2.

The potential ¥, for the “transitional” degrees of free-
dom and for the bond-fission coordinate 7. is assumed to
arise from nonbonded and bonded interactions,

V,=Vao + Vor (C3)
described below.
TABLE C2. Disappearing vibrational modes of C,Hg.*
Symmetry :
Mode type v Description
[ A4, 995 C—C stretch
v, Ay, 289 torsion
Ve . E, 821 CH, rock
Via . E, 1206 CH, rock

* All frequencies are in cm ' and are taken from Ref. 19.

f

1. Nonbonded interaction Vg

Between all nonbonded H--H and C.--H pairs a Len-
nard-Jones potential ¥, ;, given by €[(ro/r)'> — 2(ro/7)°], was
used and Coulomb interactions arising from residual point
charges on different atoms were neglected.*” The resultant
nonbonded potential is

4
Ve = 2 Visry) (C4)
=1
where i and,j label atoms on different CH, fragments and the
prime indicates that the C---C contribution is excluded. The
parameters for the various V7,’s are listed in Table C3.

2. Bonded interaction V

For the C---C bond-fission potential a Morse function:
was used, modified by an orientational factor to include in an
approximate way the influence of the now-bent C---C bond**: -

Vg = V& (rec)cos® 6, cos? 65, (C5)

where an effective potential ¥ 5T was introduced:

V=D& {1l —exp[ —B&(rec —7&N}Y - D&
(C6)

Here, rco( = |rcc|) is the carbon—carbon separation dis-
tance and 0, is the angle between rcc and the symmetry axis
of (CH,),(i =1, 2). '

The effective Morse parameters in Eq. (C6) were deter-
mined by a least-squares fit of a known C-C Morse function
¥, to the sum of the potentials Vyyp + V3 given by Egs. (C3)
to (C6) and evaluated along the minimum energy path from
reactant to products. The latter was obtained by constrain-
ing the CH, groups to be in the same relative orientation as in
equilibrium C,Hy[6, =0, 8, = 7 in Eq. (C5)] and by using
the interpolated R-dependent CH, structure described be-
low. A least-squares fit over the 7o¢ interval of 1.75t06.78 A
yielded a V'$f with a root-mean-square deviation of 0.35
kcal mol~! from ¥,,. The largest deviations occurred in the
1.75 to 2.1 A interval, a region for which the potential was
not needed. In the region of particular interest, namely, 7o
22.2 A, VT was slightly less negative than Vy,.

In order that the structure of each CH; group evolved
smoothly when R was varied, from that in C,H, to that of an
isolated methyl radical, the local equilibrium carbon-hydro-
gen bond length r,; and the H-C-H bond angle ay;cyy Were
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TABLE C3. Potential parameters for C,H, system.

Parameter Value Reference  Parameter Value ' Reference
C,H,
Pome 1111 A 34 R, 1.696 A b
Fec.e 1.533 A . 34 D 96.6 kcal mol ! c
@ycn. 101.3° 34 Bee 1.80 A1 d
Bucc,. 1114 34 D&, 202.5 keal mol ! e
I 60° V 34 o 1.90 A1 e
fec 4.342X 10% erg cm ™2 44 ~E. . T OL175A e
D,C-C}) 87.60 kcal mol "’ 34
, CH,
Fou, e 1.079 A 31 Crc, « 120° 31
CH,---CH,
€. 1 0.010 kcal mol ! 43 Fa.no 3.37A 43
€c..c. 0.095 kcal mol ! 43 re..co 3.88A , 43
€c..u 0.031 kcal mol™! e re.wmo 3.62A f
a 1LOA-! g

* Experimental value.
®Determined by given equilibrium geometry and atomic masses of C,H,,
¢Dec = Do(C-C) + E,, — E,, where E,, and E,, are determined by the normal mode frequencies of C,H, and

CH,, respectively, as listed in Tables C1 and C2.

dﬁcc =(fec/2Dcc )1/2.
°Obtained by least squares fitting as outlined in Appendix C.

f — 1/2, —

€c.n =(€y..u€c..c)'rc..no =Hr..no +:'cnc,o)- i
8The standard value (Refs. 19 and 41) of @ = 1.0 A~ ' is adopted. A value of @ = 0.82 A ~! has been used in an
earlier work (Ref. 20). .

obtained at each R by an interpolation: conjugate angles (B8,, 5,, B;) it is convenient to use® (k, J, J,)

ren(R) =, + [Fore — rare 18R ), ’ imd their angles (a ko @ B), Yvhere k isan intermediat.e angu-
. lar momentum action associated with a vector sum |j, + j,|,

aucn(R) = dhicne + [@hcn, — @hcn. J8R).  (CT) a, is its conjugate angle, and {J, J,, a, B) are as defined

Here, the superscripts p and r denote product (isolated CHj) before. For systems described by the above variables and for

and reactant (C,Hg) quantities, respectively. The CH, struc-  any given value of / we now have

ture, and the relative separation and orientation of the two

CH, groups together determined the interfragment atomic 02;(€) = (27) %! f .. f

separations and hence the ¥, in Eq. (C3). In addition, the oo

CH, structure determined the three moments of inertia, XdJ, dj, dj, dk dl da df da, da, da; de,

I, (R), Iy(R), and I_(R ), used to assign a (rigid-rotor) rota- XA, k, 1)A (k, j;, /,)0(€e — H). (D1)

tional energy to each fragment. The A functions and the integration limits are similar to

The parameters appearing in Egs. (C4)—(C7) as well as those described for Eq. (4). H,, is written as
other relevant parameters are listed in Table C3. In Fig. 4(b)

the various bond angles and bond distances that determined _ ;i b5 2
. . . cl + 2 + Vt (rAB—CD’ 61!92’7')’
V, are depicted. When the actual potential energy surface is 2u\ri 2u,;  2uR
available no interpolation function g(R ) is needed. (D2)
where u; is the reduced mass of fragment i, and x is the
APPENDIX D: ACTION-ANGLE AND INTERNAL reduced mass for the relative motion of the AB and CD frag-
COORDINATES AND DENSITY OF STATES FOR ments. The potential ¥V, is modeled to be a function of the
NONLINEAR SYSTEMS ABCD—AB + CD, SUCH AS internal coordinates 7, o, (the BC distance), 8,, 6,, and 7
H20,—2 OH ‘ depicted in Fig. 3(a) using H,O, as an example. The remain-
For these systems the canonically conjugate set of ac- ing two coordinates in Fig. 3(a) describe AB and CD vibra-
tion-angle variables which specifies the space-fixed orienta- tions and so areincluded in N (E ' — €). The reaction coordi-
tions and angular momenta of all four atoms is {f,, ji , j2» j2z » nate R, the angular momenta j,, j,, and /, the angles ¥,
L1, a, B @By a;, B;)."%° The variables j, and j, are the ~ between R and r; (i = 1, 2), and the angle A between r; XR
individual rotational angular momentum actions of frag- andr, X R are depicted in Fig. 3(b). V, is described in Appen-
ments 1 and 2 (i.e., the linear species AB and CD, respective- dix B.
ly),j1, and j,, are their space-fixed zcomponents, and /and /, To evaluate the ¥, in Eq. (D2), the internal coordinates

are as described in Sec. II. Instead of (j,,, j,,, /,) and their rapcp» 01, 05, and 7 are first expressed in terms of the Jacobi
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coordinates (R, 71, 75, ¥1, V2> 4 ), as in the final paragraph of
this Appendix. For any R the values of 7, and r, are then

replaced by R-dependent equilibrium values 7, (Appendix .

B). The angles 4, ¥, and ¥, are next written as functions of J,

Jiso ks 1, @y, @5, @, and a;, with the aid of the following
expressions obtained from Eq. (7), with a, b, ¢, and d identi-
fied in Table III:

COs @ = COS ¥, COSY, + sin ¥, sin ¥, cos 4, (D3)

cos ¥; = (cos O cos 0,; + sin a; sin @, cos ;)/cos a;,

(D4)
where _
COs @ = €08 @, COS @, + sin &, sin a; cos 612 (D5)
cos B = cos a; cos @; + sin a,, sina; cos Gy, (D6)
and
cos ,; = cos @, cos a; — sin @, sin ; cos 0. (D7)

In these equations @ is the angle between the vectors r, and
r,, O isthe angle between the vectors Rand j; X j,, and 8, is
the angle between 1Xk and r; (i = 1, 2). The cosines of var-
ious other angles in the above equations are given in terms of
the desired variables in Tables I and II. H; is now seen to be
completely specified by the variables (R, 71, 75, J, j1, 2 ks 1, @y,
@, @y, a;) and to be independent of (/,, @, B). Equation (D1)
thus becomes

2,(6) = (2 + 1)(277')"40_1J. . J

X dj, dj, dk dl da, dat, da,. da, ‘
XA (J’ k’ I)A (k’jl’j2)6(6 - Hc] )’ (DS)
which, combined with Eq. (2), yields the analog of Eq. (9),

Ney =T+ 1)(217)-40—1J. : f
xdj, djy dk dl da, dat, da, der,
XNy(E'— Hy)A (J, k, 1)A (k, jr, Jo)- (D9)

The evaluation of the integral in Eq. (D9) is described in Sec.
IIL. For the particular case of H,0,, o is 2. (In the case of the
calculations of N, in part I for H,O, only the integral was
given and not the o~ contribution.) '

The coordinate transformation referred to earlier from
internal to Jacobi coordinates is readily made. The AB frag-
ment is chosen to lie in the body-fixed xy plane and the center
of mass of CD to lie on the positive x axis. The coordinates of
the various atoms then are as follows:

Xa = (ap/mp)r cOS Y,

Va = [pap/mplrysinyy,

z, =25 =0,

xg = — (Lap/Mp)ry COS ¥y,

Vs = — (ap/mp)r sinyy,

Xc = — (tcp/mc)r* cos v, + R,

Yo = — (ep/me)P siny,cos A + R,
Ze = — (pep/Mmc)rysiny,sind + R,
Xp = [ucp/mp)r, cos ¥, + R,

¥Yp = (ep/Mmp)r, sin ¥, cos A + R,
Zp = [cp/Mp )1, sin y, sin A 4 R,
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where u,p is the reduced mass of A and B. The internal
coordinates for the transitional modes, namely the BC bond
length, 7,5 cp, the bond angles 8;, 6,, and 7 are readily ex-
pressed in terms of these coordinates, e.g.,
cosf;, —e; e pcp and cosT=(e;Xespcp)* (€ X€an
cp )/ sin 0, sin 8,, where e; and e g op denote unit vectors
along r; and r,p cp, respectively. :

APPENDIX E: ACTION-ANGLE COORDINATES,
INTERNAL COORDINATES, AND DENSITY OF STATES
FOR DISSOCIATION INTO POLYATOMIC FRAGMENTS

The material in this Appendix is grouped into four
parts: In (1) a set of action-angle variables suited to polyato-
mic fragments is obtained. In (2) the density of transitional
states {2, (€) and the classical Hamiltonian H., for the transi-
tional modes are expressed in terms of these variables. Since
the potential energy contribution to H, is modeled in this
study to be a function of interfragment atomic separation
distances as well as two bond angles, a transformation from
the action-angle variables to these internal coordinates is
given in (3). Part (4) describes the minor modifications to (2)
required to treat asymmetric rather then symmetric top frag-
merts.

1. Coordinates

For this polyatomic case, written as X;X,—X, + X,,
such as C,Hs—2 CH,, the following system of coordinates,
applicable to systems with nonlinear polyatomic fragments,
was introduced. We let (x, y, z) denote a set of Cartesian
coordinate axes fixed in the X;- - -X, system, the z axis being
chosen to lie along the relative orbital angular momentum
action vector 1 of the fragments, as in Fig. 4(a). The x axis is
chosen to lie along a vector 1)Xk, where k is defined to be
j; + j» (Appendix D). The relative separation vector R along
the line of centers of mass of the two fragments lies in the
body-fixed xy plane and is oriented at an angle a; with re-
spect to the x axis (a; is conjugate to /). The vector Rand a,
are not shown in Fig. 4(a), but are as depicted in Fig. 2, but
with 1)¢j then replaced by 1XXk.

Two coordinate frames (x!, ¥, z!) and (x7, y7, z/'), fixed
in fragment X; are defined. The doubly primed system is
chosen so that the inertial tensor is diagonal in it; the z;’ axis
is the symmetry axis of X; if the latter happens to be a sym-
metric top. The primed system is chosen so that the z; axis
lies along j;, and the x; axis lies along the intersection of x] y;
and x!' y! planes, namely along N ;” in Fig. 4(a). The projec-
tions of j; on the z and z;’ axes are denoted by j, and «;,
respectively [Fig. 4(a)].

The angles conjugate to (j;, j.,, k;) are, respectively, (a;,
B;, v:) as in Fig. 4(a). The z projection of /, /,, its conjugate
angle ;, and a; specify the orientation of the body-fixed (x,
y, 2) system with respect to a space-fixed system. These co-
ordinates provide a set of variables (/, @;, I, B, j1, @ 1,415 B>
Ky, VisJ2s @asfaz s Bas K2y V) Which specify, among other things,
the orientation in space of each fragment X, (i = 1, 2). In-
stead of (I, j1,»J22 B1> By, B2) the variables (J, J,, k, @, B, @, )
are used, where the symbols have the same meaning as in
Appendix D. The resulting action variables are J, J , jy, 2, K,
1,x,, k, and their respective conjugate angles are a, 5, @, @5,
ax,a;, 71, V2 Such action variables have been used previous-
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1y for symmetric tops in statistical phase space theory calcu-

lations of rotational sums and densities of states.*’

2. Density of transitional states

The expression for £2,(€) is

2,0 =@n %o -]

XdJ, dj, dj, dk dl dk, dx, da dB da, da, da, da, dy, dy,
XA, k, 1A (k, j1, J,)0l€ — H). (E1)

The limits on the angle variables are 0 to 27, the J, integral is
over the interval ( — J, J), the x; integrals are restricted by
|&;|<j;, and the angular momenta j,, j,, and / are restricted
by the indicated triangle inequalities and by energy conser-
vation. For X,- - -X, the Hamiltonian H, is written as
2

Hy=E, +E, +ﬁ?+ VilrmnO00ah (E2)
where u is the reduced mass for relative motion of the X, and
X, fragments, r,,, (m,n = 1-4) denotes a 4X4 set of dis-
tances which, together with 6, and 6, are described in (3).
When the X,’s are symmetric tops, each rotational energy
E,, of a fragment X, has the simple form J?/2I , + «7/21,.
(The case of asymmetric tops is described at the end of this
Appendix). The principal moments of inertia(/  , /5,1 c) ofa
fragment are determined from its R-dependent equilibrium
geometry (Appendix C). In the particular case of CH, frag-
ments ], = Iy <Ic,each CH,isan oblate symmetrical top
with symmetry axis C and with I, = I, Ic/(I 5 —Ic)<O.
However, Eq. (E2) and the subsequent development apply to
asymmetric tops as well, with a different expression for the
rotational energy E,,. The relation bétween the action-angle
variables and the internal coordinates for the particular case
of the C,H,—>CHj;- - -CH, system is described in Sec. 3.

3. Internal coordinates

For a system such as C,H,—2 CHj the potential V, is
modeled to be a function of the r,,, (m,n = 1,2,3,4), which
are the separation distances between atoms (four per frag-
ment) of the two fragments, and a function of the angle 6,
between the C—C axis and the symmetry axis z;’ of fragment i
(i = 1,2). Some of these coordinates are identified in Fig. 4(b).
The coordinates 7oy and aycy Which determine the CH,
structure are implicitly included in the state counting in
N, (E' — €). The reaction coordinate R, the angular mo-
menta j,, j,, I, and the projections k;, «, are depicted in Fig.
4(c) for this system.

The CH, structure determines the atomic position vec-
torsr')" in the fragment-fixed (x/’, p’, z/’) system. The vectors
r'? are then obtained from r)" by two successive applications
of the inverse rotation matrix A~ ?*:

l'('? = A—l(ai’ 91." Bi )A_l(yi’ 0K,-’O)r(ni)"' (E3)

Here, B, is the angle from the x axis to the line of nodes N | in
Fig. 4(a) (the intersection of the xy and x; y; planes), 6;; is the
angle between thezand z; axes and ¢; is the angle from N ; to
the x; axis. Again, the zero in Eq. (E3) indicates that the
angle from the x/ axis to the line of nodes N ;” (the intersec-
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tion of x; y; and x/ y; planes)is zero, 6, is the angle between
the z; and z/’ axes, and y; is the angle from N }” to the x;" axis.
Some of these various angles are described in Fig. 4(a). The :
separation vector R is given by

R =A"}(e,,0,0)R*,

where R* is a column vector with components (R,0,0).
Toexpress V,, and hence H,, in Eq. (E2) in terms of J, R,
Ten» @uch» and the integration variables in Eq. (E2), one
needs to express 6,, 9,, and the r,,,,,’s in terms of those varia-
bles. The coordinates (R, @;, Fcu s @ucns @is 8iis Bis Vis Ox)
specify, in the body-fixed (x, y, z) system, the following quan-
tities: R, the orientation e, of the symmetry axis of X; and

(E4)

the position vectors r'? of the four atoms (n = 1,2,3,4) in
(CH,); with respect to the center of mass of (CH,); (i = 1,2).
From the above quantities, the internal coordinates
cos 6, =e, e, (i=12) and r,, =R+ ) —r?| (m,
n = 1,.. .4) are readily determined. R is fixed beforehand, ¢,
is a variable of integration, and 7.y and aycy are each set
equal to their R-dependent equilibrium values roy, and
@ycu, (Appendix C).

The angles a;, @;, and ¥; in Egs. (E3) and (E4) are de-
fined in Table I; 6, = cos ™ '(k;/j;); 6 is defined in Table II;
B, the angle between 1 k [which lies along the x axis in Fig.
4(a)] and N; = (1X],), is specified in the interval (0, 27) by
Eqgs. (E5) and (E6):

cos B; = [cos O, — cos 8, cos G, ]/ [sin 6, sin G, ].

(E5)

Equation (ES5) follows from Eq. (7) with a, b, ¢, d identified as
in Table III. To determine the quadrant for B; one can use a
vector identity*® and ultimately obtain
(E6)
where the minus sign is for / = 1 and the plus sign for i = 2.
The sign difference arises from the fact that
j1 Xk = — j, xk. The conjugate angle a, -in Eq. {E6) is de-
fined in Table I; the angles 6,; and 8,, in Egs. (E5) and (E6)
are defined in Table II.

H_, is specified by the variables (R, 7cy, @ucn, J, I ks ju
Jor K1y Ky Qs @15 @y, @, 71, Vo) and isindependent of (7, , @, B).
Equation (E1) now becomes

2,(€)= (2T + 1)(217)—%—'[. : f
xdj, dj, dk dl d, i, der, de, dor, da, dy, dy,

sin B; = Fsin 6,, sin a, /sin 6;;,

XA (k1A (K, ]y, )6l — Hy) (E7)
and
Ny, = (2 + 1)2m) %0~ lf- : f
Xdj, dj, dl dk dk, dk, da, da, da, da, dy, dy,
XNy(E' — Hy)A (k1A (k, jy, jo)- (E8)

The evaluation of Eq. (E8) is described in Sec. I1I.

4. Asymmetric top case

We conclude this Appendix with a discussion of the
asymmetric top case, to replace the expression given for E,;

— e
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following Eq. (E2). .

In the fragment-fixed (x}, y7, z;'} frame in which the
projection of j; on the z;’ axis is k; =j,» and in which the
inertia tensor is diagonal, the rotational energy of a rigid
asymmetric top with principal moments I , #Ip #1 is

E = (fir /20 &) + (i /2D ) + (i /2L ). (E9)
Unlikek;, - andj,,. are not variables of integration in Eqgs.

(E7) and (E8) but are readily specified in terms of these varia-
bles by rotating the coordinate axes from the primed to the

" doubly primed system, i.e.,

it = Aly1,6,,0)/, (E10)

where j and j; are column vectors with components {j;.-

Jiy »Jizr ) and 0,0, j;), respectively. Equation (E10) yields

Ji =J; sin ox, sin ¥, ji, =Jj; sin 6, cos y;, Jji, =Jj; cos 6,.
(E11)
We turn next to the value of the o in Eq. (E8). When the

. CH,’s are planar, as they are in a loose transition state, the

value of 0°is 6 X 6 X 2 = 72. When the transition state is more
restricted, as at smaller R’s, each CH, lies in a double-well
potential for the out-of-plane H, vs C motion, and the sta-
blest CH, configuration is now bent. For the case that the
transition state is still nearly loose, we shall freeze each CH,
in a bent configuration, count the phase space as before, and
use o = 72, thus ensuring that the phase space divided by o'is
a continuous function of R at large R ’s. If the transition state
were instead quite tight, one of the two wells of this double-
well potential would disappear, and o would equal 18, in the
case of free internal rotation about the CC axis. An interpo-
lation formula between these two limiting situations can be
designed, or a more elaborate treatment for the out-of-plane

- CH, motion can be given. (For example, these two coordi-

nates can be included in the transitional modes, and either
treated classically or current path integral techniques can be
used in the Monte Carlo calculations to treat them quantum
mechanically, in the presence of the remaining classical-like
transitional modes.) However, these refinements are omitted
in the present paper.

APPENDIX F: MONTE CARLO CALCULATION OF A/,

1. NEJ

The Monte Carlo evaluation of Ng; is described in this
Appendix using the reaction C,Hs—2CH, as an illustration.
The calculations for NO,—NO + O and H,0,—»20H were
analogous. To evaluate the 12-dimensional integral appear-
ing in Eq. (E8), a 12-dimensional vector £ is first defined
whose components £, are random numbers uniformly dis-
tributed on the interval (0, 1). In obtaining a particular £ an
additional random number was used to shuffle’® the order in
which the 12 numbers were obtained from a pseudorandom
number generator, to avoid the possible repetitive assign-
ment of correlated n-tuples to the same £;’s. The assignment
of the action-angle variables in Eq. (E8) to the £;’s were as
follows: '

Ji =& (i=12),

ko=Fk ™0 g (kmes  gming
I=]mn (1o — ] mng, (F1)

K =2iEiva —1/2)a; =218, 6, Vs =275, 5 (= 1,2),
a, =2myy, a; =2uéy,,

where j™** equals‘ [2I-(R)E 1'% for an oblate top
Uc>I, =1g), with E™=E' and En™
=E'—E, (i, k\); K™ is |j; —jo|, K™ i8 jy +Jp, I™" i8
|J — k|, I™= is min[J + k, (2uR %E ["*)"/?], and ET* is
(E'—E, — Ep,). '

Introducing the transformation equation (F1) into Eq.
(E8) yields '

Ny =(2J + 1)[- . -fdg GE), (F2)

with d§ denoting d&,- - -d,, and
G (§) =) 7y P=(km — kemin)

X (I — 172, 2j,Ny (B’ — Hy)

Xe(kmax - kmin)a(lmax — lmin)

X O(|k;| — k7™ (|5 — w3 (F3)
The step functions @ for «, and «, are an additional restric-
tion arising from the requirement that E,; be nonnegative.
For an oblate symmetric top and for a given ji, this condition
leads to «™" being equal to { —2I,(R)[EZ™—j%/
21, (R)]}Y/?ifj, is greater than /™" = [2] , (R )E 5**]"/? and
equal to 0 otherwise. {As noted in Appendix E, 7, is nega-

tive.) For other types of tops different restrictions apply. A
Monte Carlo estimate for Nz, in terms of G (£) is

N¥S =7+ 1) S GEVN

n=1

with

e = [ — @+ 17 3 16en N |,
(F4)

where N is the number of Monte Carlo points. Accumulated
intermediate results for N ¥ and o™ were examined at
equally spaced increments of 4n = N /10 and provided a
useful assessment of the convergence for a given N.

2. Variance_ reduction

When the number of rejected points in Eq. (F4), i.e., the -
number of terms with G (£, ) = Ois reduced for a given N, the
convergence of N ¥F is improved. As a first step it was found
that choosingj, and j, as the outer variables of integration in
Eq. (E8), instead of / for example, significantly reduced o™€.
The technique of uniform stratification'* was next applied to
the outer integration variable j,. For subintervals of length
4j, ;. =7/5(k = 1,2,...5) it was found that only a variance
reduction of ~ 10% occurred when equal numbers of points
N, = N /5 were used in each subinterval, as compared to no
stratification using the same number of integration points.
More importantly, however, this procedure revealed orders-
of-magnitude differences between contributions N} to
NMF from some of the five subintervals. Those subintervals
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with larger contributions were also found to have larger var-
iances, making it clear that increasing the sampling of these
bins relative to those with smaller contributions would de-
crease the overall variance for a given N.

In importance sampling, we recall, some weighting
function is used for the sampling. In the case of the present
integral with its complicated limits a weighting function for
the integration variables was not immediately obvious. In-
stead, an empirical weighting function in histogram form
was obtained for j, by preliminary uniform sampling, as
above, and then that histogram was used in the importance
sampling."?

To obtain an appropriate nonuniform random number
distribution for j, the uniform stratification described above
was used to provide approximate values of N}, . This pro-
cedure typically utilized 34n or 44n points of the total of
N(=104n) points. A cumulative distribution vector"
{C), C,,...} for the bin values was obtained in histogram

form:
/ NYS, (k= 1-5) (FS)

C. = z N¥
m=1

The remaining N — 44n or N — 34n Monte Carlo integra-
tion points were chosen as follows: Together with each 12-
component random number, an additional random number
£, uniformly distributed on (0, 1) was generated. The bin &
of width 4j, , to which, was assigned was determined as the
k for which C; > £,3> Ci_ . Thej, value was then chosen
uniformly within this & th bin according to the random vari-
able £,; all other variables were selected in the manner de-
scribed previously [cf. Eq. (F1)]. The next choice of £;,...,513
was then made and the entire procedure repeated until the
remaining N — 44n or N — 34n points were used.

3.N,

For NO,—»NO + O, N, was determined explicitly for
each Monte Carlo point £, . For the Morse oscillator model
of the NO vibration, the classical vibrational energy E }, in
excess of the zero point energy in units of #i = 1 is (4D /k 3
[ + )k — (x + 4> — (})k + (1)°], where k is a dimensionless
quantity (in units of # = 1) 2y2uD /B, p is the NO reduced
mass, the Morse parameters D and /3 are those in Appendix
A, and 27r(x + }) is the classical vibrational action," x being
a continuous variable, the classical equivalent of a “quantum
number.” This equation for E },{x)is readily inverted to yield
x(E}). With E} equal E’' — Hy(,), the corresponding
maximum vibrational quantum number n™** is the greatest
integer less than or equal to x and the number of vibrational
states with energy E |, <E' — H4(£,)is Ny =n™" 4+ 1.

For H,0,—2 OH, N}, was also determined explicitly for
each Monte Carlo point £, via the Morse oscillator model of
the two OH vibrations (Appendix B). The vibrational quan-
tum numbers of the OH bonds are the integers #, and n,. The
value of #, goes from zero to a maximum n5™*", obtained as
the greatest integer for which E },,, the vibrational energy of
this second bond in excess of its zero point energy,

— H,(£,) — E 1 (n,). That is, n5** is a function of n,.
The maximum value of n,, n", is the greatest integer for
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which E |, <E’ — H,(£,)- The total number of vibrational
states NV}, is the sum

e

Zo[n‘z"“"(nl) +1].

For C,Hs—>2 CH,, the greater number of vibrational
modes and the increased dimensionality of the N, integral
make a specific evaluation of N, for each Monte Carlo point
undesirable. N, was determined as a function of E'}, before
evaluating Eq. (E8) as follows. For the purpose of counting
the vibrational states of the two identical CH, fragments
there are, in total, two doubly degenerate modes with fre-
quencies v, and v,, and two quadruply degenerate modes
with frequencies v; and v,. These frequencies are assumed to
depend on R as in Eq. (C2). Denoting the principal quantum
numbers for these four modes by n; (i = 1-4) one can write
the total vibrational energy E }, in excess of the zero point
energy as 2m(n,v, + n,v, + Nsvs + ngv,) in units of % ="1.
The corresponding degeneracy w is w? w? w' w'), where
wi®) equals (n; + d; — 1)/n;!(d; — 1)! and d is the degener-
acy of the ith oscillator.*” All quartets (n,, 1y, 13, n,) were
determined such that E j, <E’ and the corresponding degen-
eracy w was assigned to a linear array based on an energy
grid of AE = 1 cm ™" (although in practice 10 cm™ ! would
undoubtedly have sufficed). The number of vibrational states
Ny(E ;) with energy less than or equal to E;, (=nAE) is
given by the sum 2 _ , g, , where k is an array 1ndex g. =0
if there is no vibrational state in the kth Ej interval
[(k — 1)AE,kAE ],and g, is the value of the sum of the degen-
eracies w for states in that interval (g, = 1 for the ground
state). For each Monte Carlo point £,, Ny (E ;) was simply
read from the array with index determined from the value of
E![=E'— H,(£,)) The grid size chosen is a compromise
between computer memory requirement and the inaccuracy
associated with multiple entries in the same array position (a
very minor inaccuracy for a small grid size). Multiple entries
appeared only at higher energies where vibrational levels are
closely spaced. Analysis of the computational results for
C,H,—2 CH, indicated that at low values of €[ = Hy(£,, )]
and hence at high E}, (= E’' — €) values, there was little

‘contribution of multiple entries to N 7f for the (E, J) values

used in the present study. For the largest E’ (and hence E ;)
used, ~ 122 kcal mol~*, approximately 4% of the array po-
sitions had multiple entries.

APPENDIX G: VARIABLE REDUCTION FOR J = 0 CASE

(a) NO,—»NO 4+ O: If J=0, then j =1=0,j =/, and
cos §; = — 1. That is the A in Eq (8) becomes & (j — /).
Equation (6) becomes

cos ¥y = cos(a, + a;). (G1)

The integrand is now independent of a; — ;. Writing
0, =la; +a;) =1y, 0w, =, —a;, and introducing the
function & (j — /)in Eq. (8), a two-dimensional integral is ob-
tained. After integrating over the appropriate (6;, 6,) do-
main®*® one obtains
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2, _ole) = (2m)* [ a [as, [ a6, 81) — 1)ote — H)

- 2(2#)“J¢ﬁ L "d6, Sle — H.,) (G2)

The same property, namely that the integrand is indepen-
dent of an angle 8,, will be true in (b) and (c) also.

(b) H,0,—»20H: if J=0, then 1+k=0, k=],
cos @ = — 1,andcos 8; = — cos 6y; (i = 1, 2). Therefer-
ence axis x for the angles of @; and a, (see Table I) is no
longer defined since 1Xk = 0. Equation (D6) becomes

cos O = cosla;, + ;). (G3)
Weredefine 8 = a, + @, astheanglebetween j, Xj,and R
and 8,; = a; as the angle between j, Xj, and r;.

Equation (7) with (a, b, ¢, d) = (i, X2, I:, j1XJ2 R) yields

cosy; = cos Oy cos a; + sin O sin a; cos §,. (G4)

Introducing the variables 6, =j{a; + a;x) =46 and
0, = a; — a; and, for A, the function § {/ — k) in Eq. (D8)
one obtains the six-dimensional integral

Q,_ol6)= 2(27)—31. . f

X dj, dj, dk da, da, dO; Ak, ji, j2)Ble — Ha),  (GS)

where @, and a, vary from O to 277 and 6, varies from O to 7.

(¢} C,H¢—>2CH;: As for H,0,-20H k=/
cos 0 = — 1,cos 6; = — cos Oy; (i = 1, 2), and the refer-
ence axis 1 Xk for @, and a; (see Table I) is again no longer
defined. In addition the Euler angle B, between 1Xk and
1Xj, needs to be redefined. In the special case of J =0,
I=—-k and so IXj; = ji Xk = j1 X2 and
1Xj, = ji Xk = j, Xj,. From the definition of @, in Table I,
it is seen that a, and §; now define rotations between the
same axes in the xy plane. The sense of these rotations is
opposite since 3, is a rotation about the z axis which lies
along 1 and a, is a rotation about k which lies along —1.
This is verified by simplifying Egs. (E5) and (E6) using
cos 8 = — 1,sin @, =0, and cos @, = — cos 8;;, giving
cos B, = cos @, andsin B, = — sin a;,0orB; = — . Sim-
ilarly, it can be shown that B, = 7 — @ . The integrand de-
pends on the angle between R and j;Xj,, namely, 8|
=|f—al|=|—ar —a|=a, +a,. Introducing,
therefore, the variables 6, = }(a; + @) and 6, =, — a;
and the function 8 (/ — k) in Eq. (E7) yields the ten-dimen-
sional integral

2;_ol€) =2(27r)¥s J . f

xdj, dj, dk dx, dx, da, da, d6, dy, dy,
X4 (k, j1, J2)0(€ — Hy), (G6)

where B|(=26,) and B} (=7 + B ) replace 8, and 3, in
Eq. (E3) and where the x axis is now taken to lie along R.

APPENDIX H: SOME RELEVANT NOTES ON THE
PRESENT CALCULATIONS WITH SACM METHOD

The SACM method uses, as in RRKM theory, Eq. (1),
but differs in the method for counting N, . It is assumed that
vibrationally adiabatic eigenvalues E, (g) can be found for

any value of the reaction coordinate g by interpolating
between reactant (g = ¢.) and product (g = o) eigenvalues
by a universal exponential interpolation function g(g). Spe-
cifically, it is assumed that

E.{g)=E,(n,,»)

+ [Ea (nr’ge) - Ea (np’ © )]g(q) + Ecent (q) + V(q); (Hl)
where V (q) is the potential along ¢, and », and n, denote the
totality of quantum numbers for motion transverse to g for
products and reactants respectively; E..,, is a centrifugal
term, assumed to be P(P+ 1)/2I(g), with P equal to
I + (J — I)g(g), lis the orbital angular momentum of the frag-
ments, restricted to lie between |J — j| and J + j, and T is the
mean of the two larger principal moments of inertia of ON-
O for a fixed bending angle. The interpolation function g{g)
and the Morse potential for ¥ (g) are given in Appendix A
with ¢ identified as the ON-O separation distance.

The reactant-product correlation in Eq. (H1) is subject
to conservation of J and to vibrational adiabaticity for those -
modes whose quantum numbers are assumed to be con-
served. In practice, product vibrations were correlated on a
1 : 1 basis with appropriate reactant vibrations. Only “adia-
batic channels” whose eigenvalue maxima are less than the
final asymptotic available energy are, or course, counted in
Ng;. Either symmetry-adapted counts can be made i.e., cor-
relating only states of the same symmetry) or all states can be
counted and then corrected by introduction of approximate
symmetry-correction factors.'® In comparing the present
method with SACM calculated results only total numbers of
states were utilized and no symmetry corrections were intro-
duced.

For the particular case of NO,—»NO + O, E, (n,, o)
was written (in units of 7 = 1) as

E,(n,, ©)= (4D no/k ko) [0 + Phno — 0 + 3] (H2)
‘ + [+ 1)/2PN0"§],

where n, denotes the pair (v, ), no is the reduced mass of
NO, 7, is the equilibrium NO bond length, and ko equals
2(2ttn0 D no )V /B o inunitsof # = 1. E, (n, g, ) was written
as '

E,(n,.9.) = (4Don.0/k %00 [v+ Pkono — v + 5)2]
+ 0+ Phva+ 62L), (H3)

where n, denotes (v, v,, k); v, is the ONO bending fre-
quency and the last term in Eq. (H3) denotes an “internal”
rotational energy contribution to a prolate symmetric top
model for NO, the restriction |«|<Jis used. ], equals ], oL/
(I, —I,,), where 7, is the arithmetic mean of I, and I,.
The three principal moments of inertia of NO, are listed in
Table Al, together with other properties.

APPENDIX I: £ (E7, /)

. Anapproximate correction factor F, (£ |, J ) for rotation
about the symmetry axis is readily obtained.’*® For a sym-
metric top molecule with angular momentum projection X
alongthe symmetry axis the rovibrational state density is
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... v

pulEL ) =@+ 1| py (B Eo(2K))aK,
where £ is the total energy available to the reactant in ex-
cess of the zero point energy, the sum over X was replaced by
the integral, and X, is given below. Fora prolate top such
as ethane with I, , =1, > I |E,., equals J2/2] ar + K%/
21, (in units of #% = 1), where I, =1,,I../1,, — )
and K., =min {J,(21,,x)"/?}, and x denotes E’ —J 2/
21, ,. Theintegrand is an even function of X, Introduction of
the Whitten—Rabinovitch approximation of pv and making
a change of variable from K to the variable y = (K 21,/
{x + aE,), one obtains*5® :

pvr(E;’J) - (x + aEz,)‘“ !
A N

i=1

i Y
XVZI,,,(X—FGEZ,) dyy—l/z(li—y)s—-l
o .

=p, (x)F, (x,J ), (12)

where y equals (K 2, /21, .)/(x + aE,).

When K, is determined by an energy requirement,
namely that K7,.; =(2,,x)"/2, Y is close to unity. When,
instead, J is very small, K, equals J, ¥ is less than unity;

typically only a little angular momentum was needed for the

¥ to be close enough to unity for the integral in Eq. (I2) to
become the Beta function B}, s):

F,=\2I (x + aE,,)B(,s). | (13)

More generally, the integral in Eq. (I2) is ¥ /2 time the
hypergeometric function F(1 — s, %% Y)* and F, can then
be written as*

Fp(x’ J)= V21r,r(x +aEZr)2YV2
b _x{l +f§r“[ﬁ(f_s)]/(2i+ 1):1.}. W

i=1"

j=1
3

For a given rotational energy £’ one can define a Jmax 3S
{21, .E;}'*andaJ,,, us {2].,E}'"% Thereare two cases
to considey in evaluating the sum in Eq. (I4): (a)0<JI<T y : In
this case Ky, =Jand so ¥ =J%/21, /{x + aE,,)~", which
is. less then wunity. (b) ‘J,, <J< Jmax: Here, K,
= {2,,x}'?, which is less than J, and so ¥ =x/
(x +aEy,). When x considerably exceeds aE zr» Y=1 and
‘Eq. (I3) is obtained, in agreement with a eorresponding
expression,”™ when B(}, s) is written in terms of gamma
functions. Typical ratios of the valie of F, to that given by
Eq. (I4) where 0.65, 0.95, and 1 when J = 25, 50, and 75 or
greater, depending on the energy. For example, at J = 25,
the ratio was 0.68 and 0.58 at £, = 0.44 and 63.5 kcal-

mol~', respectively. Typically, for the C,H—2CH, reac-

tion at room temperature, the most probable of J is 25 and is
- higher at high temperatures.
The rotational factor F, described above is for a micro-
canonical rate constant. Other rotational factors have been
described for the thermal rate constant,25°»5°
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