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Approximate semiclassical solutions are developed for a system of a Morse oscillator coupled to a
harmonic oscillator via a nonlinear perturbation. This system serves as a model for the interaction
of an excited stretching mode with a bending mode in a polyatemic molecule. Three semiclassical
methods are used to treat this model. In particular, a matrix diagonalization, a two-state model,
and a uniform semiclassical approximation (USC) based on Mathieu functions are each used to
determine the splittings and state mixing involved in these stretch-bend Fermi resonances. For
small perturbations, approximate analytic semiclassical expressions are obtained for the system
treated. These analytic expressions are given for the splittings using a two-state or USC method
and for the overlaps of the zeroth order states with the eigenstates of the molecule using a USC

method.

I. INTRODUCTION

The present paper treats the 1:2 resonant interaction of
a stretching mode with a bending mode in a polyatomic mol-
ecule. This system is modeled classically using a resonance
Hamiltonian'® to describe the nonlinear interaction of a
Morse oscillator stretching vibration with a harmonie bend-
ing vibration. Several semiclassical methods are used to ob-
tain information about the quantum Fermi resonance result-
ing from this nonlinear interaction. The results of these
methods are compared with each other, with those obtained
from a recent uniform semiclassical treatment,’ and with the
exact quantum results.

The experimental incidence of 1:2 stretch-bend Fermi
resonance is widespread, the best known being that in CO,.*
Previous discussions of these resonances are many, e.g., Ref.
9, and they have appeared more recently in the local mode
literature.'® The model of a local mode C-H stretch interact-
ing resonantly with bending normal modes has also been
proposed as a theoretical explanation for the observed Fermi
resonances in CHD,;'»'? and for the C-H overtone
linewidths in benzene.'* These Fermi resonances are related
to the existence of one (or more) classical resonance condi-
tions.'~® The quantum mechanical implications of an isolat-
ed classical resonance have been discussed by a number of
authors,>”'*?" including their relation to avoided cross-
ings'“**?* and to Fermi resonances.>”'*??

A straightforward semiclassical matrix technique is
presented in Sec. II to treat Fermi resonant systems. Two
other semiclassical methods, namely, a semiclassical two-
state solution and a uniform semiclassical approximation
(USC), are also formulated later in Sec. IV that ate based on
an effective classical resonance Hamiltonian for the nonlin-
ear interaction of a Morse with a harmonic oscillator (Sec.
III). These latter two methods may be used to calculate ana-
lytically the splittings between the eigenstates of the system

and the overlaps of the zeroth order wave functions with the .
actual eigenfunctions. The three semiclassical methods are

applied in Sec. V to a model of a C—H stretching local mode
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interacting resonantly with a bending mode in a dihalometh-
ane molecule. The results of these calculations, and those
obtained using the method of Ref. 7, are discussed in Sec. VI,
and concluding remarks are given in Sec. VII.

Il. SEMICLASSICAL MATRIX DIAGONALIZATION

The classical Hamiltonian for a coupled Morse and har-
monic oscillator may be written in action-angle variables as’

H(Iv 12’ 01’ 62)
=1} —Ilaly + Lol + VI, I, 0,, 6)), (2.1)

where I, and I, are the action variables®® for the Morse and
harmonic oscillators, respectively. 8, and 8, are the angles
conjugate to I, and I,, @} and ) are the zeroth order har-
monic angular frequencies of the Morse and harmonic oscil-
lators, respectively, @y is the anharmonicity of the Morse
oscillator, and V' (I, I, 8,, 6,) is the perturbation.? (i is set
equal to 1 throughout the present paper.)

One can use a semiclassical matrix treatment® of the
Fermi resonance problem for the Hamiltonian (2.1) in ac-
tion-angle variables using, as a basis, the semiclassical wave
functions®>*'!

ny, ny

po . = %exp[i(n,ol + 1,6,)] 2.2)

for the angle representation of the zeroth order states
|ny, n,), where |n,) and |n,) are the zeroth order eigenfunc-
tions for the Morse and harmonic oscillators, respo;ctively.
The semiclassical action and angle operators®>*' I, and 6,
in the angle representation acting on these wave functions
yield

A
L|vQ, =LvYY

ny

and 8, ¥ =6,

monyy (2:3)
where I, and 6, are the classical variables. The I, are related
to the quantum numbers n,, by I, = n, + }in the case of an
oscillator, be it Morse or harmonic.

The semiclassical wave functions are useful because the

" matrix elements of the perturbation have the form of Fourier

components
27 2T
V,(I) = (21)2f f V(L 0)e= 0 +m0) 4o, d,.  (2.4)
7’ Jo Jo
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If, e.g., the resonant interaction of the three states |n, 0),
In —1,2), and |n —2,4) is considered, the Hamiltonian
represented in this restricted basis has the following diagonal
element H,; for the zeroth order state i:

H, =(n} + i)w(l) —(n + %)20)(1)1’
+ (1 + Yo3 + Vool 1, 13),

where (n}, n}) = (n,0), (n — 1, 2), or (n — 2, 4). The diagonal
perturbation term ¥ is the (/ = 0, m = 0) Fourier compo-
nent [Eq. (2.4)] evaluated at the actipns I} = (n} +}),
I} =(n} +14). The off-diagonal perturbation terms H,;
between the states i/ and j have the form

l 2T 2w i(nio . ‘9)
— n
Hij__—-zf f e G
(217) 0 0

X V(I, 8™+ g, 4o, (2.6)

which is the Fourier component ¥,,, (I}, I},) of the perturba-
tion with / = n} — n} and m = n} — r,. These semiclassical
matrix elements are approximate and usually not exactly
Hermitian since H;; =V, (I}, I4)#V,, I, 15)=H}%.
These matrix elements may be made Hermitian in an ad hoc
way by evaluating them at any fixed value of the actions [e.g.,
at the resonance center (I, ;)] or at an intermediate value
of the actions between any pair of states / and j, using, for
instance, the arithmetic mean (I} + I%)/2, where
(k = 1, 2).3 The latter approximation has been used success-
fully in the calculation of transition dipole matrix elements
for Morse*® and other® oscillators and has been employed in
a description of isolated avoided crossings.?* Semiclassical
expressions for the matrix elements are frequently simpler to
compute than the corresponding quantum mechanical ones.
The resulting semiclassical matrix may then be diagonalized
numerically to find the eigenvalues and eigenvectors as is
done for standard quantum mechanical matrices.

Comparison of the method presented in this section
with exact quantum results are given later in Sec. V. In Sec.
IV, we formulate a different semiclassical method based on a
classical analysis and an effective Hamiltonian given in the
next section.

iil. THEORY: CLASSICAL RESONANCE TREATMENT
A. Treatment of the perturbation

The perturbation of these coupled oscillator systems is,
as usual,'~ expanded in a complex-valued Fourier series

(2.5)

V(Il, Iz, 01,92) = 2 z Vlm (Il’ Iz)ei(lel + mez)’
I= —-wom=— o
(3.1)

where V,,,(I,, I,) is given by Eq. (2.4). The VI, I,) Fourier
component is the analog of a quantum mechanical “diag-
onal” first order perturbation correction. These corrections
have been discussed previously'"'*>3¢ within the context of
stretch~bend interactions in molecules and are found to
modify the zeroth order oscillator frequencies, sometimes
appreciably. To include the effect of this perturbation, a new
zeroth order Hamiltonian may be defined as

HOI, L) = 1,0} ~ I3a%y + Lo} + VoI, I). (3.2)
(This Hamiltonian is the same as that in Ref. 7, except that
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the ¥, term is taken as a constant there, namely, its value at
certain zeroth order “resonant actions” described later in
the Results section.)

Hamilton’s equations for the angle variables, based on
H,, yield

6, =o\(l,, ) = &} — 21}y + VoI, LY/AI,, (3.3)

8, = wl,I,) = @3 + Vool 1)/3L,, (3.4)
and that I, and I, are constants of the motion for H,, since
this zeroth order Hamiltonian contains no angle variables.
Since 1, and I, are functions of E¢ and E'J (the zeroth order

energies of the Morse and harmonic oscillators, respective-
ly), Egs. (3.3) and (3.4) may be rewritten as

oy(I,1) = (@} — 2L,a%x ) (3-3)

w (I,I) = w3 8, (3.6)
where v

f=[1+VulESE/CES],

g=[1+VolES,ES)/E]]. (3.7)

When the angle-dependent perturbation terms from
Eq. (3.1) are included in the equations of motion, the actions
1, and I, are no longer constants of the motion. Ini the pres-
ence of a nonlinear resonance, these actions slowly oscillate
near or about their value at the resonance center'™ (I'7,15).
If the factors f'and g in Egs. (3.5) and (3.6) are approximated
as the “average” constants f” and g" [given by Eq. (3.7) eval-
uated at the resonance center], one obtains an effective ze-
roth order Hamiltonian

Hyl, L) = Lo, — oy + Lo, (3.8)

where w,, ®,, and , denote o} f', 0}y f’, and w3 g, re-
spectively. These effective oscillator parameters are the clas-
sical analog to those obtained empirically from the analysis
of experimental absorption spectra (cf. discussion in Refs.
11, 13, 35, and 36).

The particular classical resonance to be examined here
is the 1:2 resonance defined by the condition

o, {)=~2w,, (3.9)
where
o,(l])= (aH(,/aI,),' =01~ 2] oy (3.10)

is the (modified) nonlinear angular frequency of the Morse
oscillator at the center of the resonance. The use of these
modified oscillator frequencies yields values for the resonant
actions different from those predicted by the zeroth order
Hamiltonian alone [Eq. (2.1) with ¥ = 0]. An accurate ap-
proximate method for finding the values of the resonant ac-
tions /| and I}, a nonlinear problem, is given in Appendix
A.

The resonance condition (3.9) prompts a canonical
transformation of the zeroth order action-angle variables in
which there is now a “slow” variabie a (low frequency coor-
dinate)":

2a=0,—20,+8, B=6, (3.11)
I, =21, I,=2I,+1, (3.12)

The §in Eq. (3.11) is chosen to simplify later the final expres-
sion (3.16) and to make the canonical transformation used in
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Ref. 7 suitable for any general perturbation.”

The transformation (3.12) applied to Eq. (3.8) yields the
effective zeroth order Hamiltonian in the new action varia-
bles I, and I as /

Hyl,, Iz)=1,02— o' 1% + Igw,, (3.13)
where
0 = (o, —20,)/2, ¥ =x/4% (3.14)

As is standard in the theory of classical resonances,' ™
all highly oscillating terms in the Fourier expansion (3.1) are
omitted, leaving the terms appropriate to the 1:2 resonance
of the form exp[ + ik (6, — 26,)], where k equals(l,2,..),in
addition to the ¥, term discussed earlier. As usual,'® only
the lowest nonzero k term is then retained, allowing Eq. (3. 1)
to be written approximately as

Vi, I, 6,, 0,)=~2Re{V | _, ], I)et® — 26} (3.15)
when the lowest term is & = 1. (In other cases, thek = 1 term
may be zero and a term for k> 11is required.) Since the per-
turbation in Eq. (2.1)is real, the relation V', = V_,_,was
used in obtaining Eq. (3.15). If 2V, _, is written as Vee?,
with ¥;==2|V, _, |, then Eq. (3.15) may be written as

Ve~ — V,cos 2a (3.16)

when one chooses 8inEq. (3.11)toequal y + 7w to obtain the
negative sign in Eq. (3.16).

B. Classical resonance Hamiltonian

Equations (3.13) and (3.16), evaluated at the resonant
actions (I ;,I%), yield a resonance Hamiltonian'® for the 1:2
resonance®’

Hy =0y 1% —I,02+ Vycos2a = Eg. (3.17)
The total Hamiltonian H in Eq. (2.1) is then approximately
given by

H. =1Igz0,— Hg, (3.18)
which will henceforth be termed the “effective” Hamilton-
ian. Since I, is a constant of the motion in this approxima-
tion, Izw, is a constant. The phase plane behavior of Eq.
(3.17) is discussed in Appendix B..

From Egs. (3.9), (3.10), and (3.14), the resonant action

" is given by £2/w.y. Since, semiclassically, I, equals
(n; + 1), a resonant Morse ”quantum number” n] may be
defined by

n] =(2/0y) -3 (3.19)
In general, n} is not an integer.

The two-state and uniform approximation solutions in-
troduced in the next section are based on the effective Hamil-
tonian (3.18).

IV. THEORY: SEMICLASSICAL METHODS BASED ON
Hoﬂ

A. Two-state solution

Introduction of the action operator>>>! T, =0/0d/
da + 1 into the classical resonance Hamiltonian [Eq. (3. 17)]
yields the semiclassical Schrddinger equation’

d*y _
, da?
with & being in the interval (0, 7) and

E=20/0y=2n7 +1,

A=[4Q2 + Eg)/ox] — 1, ‘

q=2V/0.x. ' (4.2)

For the model oscillator system considered in the pres-
ent paper, the near 1:2 resonance condition can lead to a near
degeneracy between the zeroth order states |n,0) and
|n — 1,2) for some value of n. In many cases of experimental
interest, these two states may be the most important states
involved in a Fermi resonance. For this reason, and because

it is desirable to obtain a simple analytic solution, a two-state
solution for Eq. (4.1) of the form

Yt + YO, ’ (4.3)

is considered first, where @ and b are constants to be deter-
mined and where ¥ equals 7"/ exp[2ina) and ¥},
equals 7~ '/? exp[2i(n — 1)a] (e.g., Refs. 25 and 31). When
Eq. (4.1) is diagonalized in this basis, the eigenvalues are

given by

2(E — 1)% +[4—2gcos2a]p=0, (4.1)

A* =4, +i4g* +d7)', (4.4)
where

Ay = — [4(n}) — V(n) + 2v(n) — 2], {4.5)

d=4[1—¥n)], v(n)=2n—n )s 4.6)

and ¢ is given in Eq. (4.2). In terms of Eq. (3.19), this v(n) is
twice the “distance” of the eigenstate with quantum number

' n, = n from the center of the resonance ni.

The approximate splitting AE of these two elgenstﬁtes
by the Fermi resonance is therby found from Egs. (4.2) and
(4.4)~(4.6) to be

AE = oy'(4¢* +d '3, . (4.7)
and the two approximate eigenfunctions are™®

P =af) + o4, (4.8)

™= — b +ay;l (4.9)
where

a=[+ d)/21‘]”2,

b=[I—d)/2Ir'1"?,

= (4¢* +d '~ “{4.10)
Calculations employing Eqgs. {4.7)-(4.10) involve determin-
ing n} from Eq. (3.19) and g from Eq. (4.2), both of which are
readily obtained.

The two-state solution presented in this section is not,
in general, thesameasa semiclassical 2 X 2 matrix diagonali-
zation using the method of Sec. II. The difference between
these two methods results from the use in the present section
of a resonance Hamiltonian (3.17) based on the effective Ha-

- miltonian (3.18), while the method of Sec. ITis based directly

on the original Hamiltonian (2.1).

B. Uniform semiclassical approximation (USC)

A uniform approximation for the present coupled oscil-
lator system is obtained by converting Eq. (4.1) to the stan-
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dard Mathieu equation.”?> A function F(a), defined by
Fla)=exp[{l — £ )alyla), (4.11)

is used for this purpose: It satisfies Mathieu’s equation®>®
d?F(a)

= + [a, —2g cos 2a]F(a) =0,

(4.12)

where
a,=E—-1P+A=4[2/0)) + Ex/oy], (4.13)

and v is the order of the Mathieu equation.**®*® Equation
(4.13) is rearranged to give the energy of the rotor Hamilton-
ian Hy as

(4.14)

Semiclassical expressions for the Fermi resonance split-
tings between the eigenstates of the Hamiltonian may be ob-
tained from Eq. (4.14). In general, one is concerned with a
resonant progression of nearly degenerate zeroth order
states [n,n,) for the zeroth order Hamiltonian (2.1): |n, 0),
[n—1,2), |n—2,4), etc. The action I, from Eq. (3.12)
semiclassically equals 2n, + n, + 3/2 and remains constant
along this progression. For any two states of orders v, and v,
involved in this resonant progression, the splittings are given
from Eq. (4.14) as

Ep =a,0y — (n] + 2.

IAE 1—2 I = !av, - avz |‘01X" (415)
where*®
v=v(n®) = 2n — ) (i=1,2). (4.16)

For example, one uses n\") = nand n®) = n — 1in calculating
the splitting between the nearly degenerate states |n, 0) and
|n — 1, 2). The characteristic values a,, of the Mathieu equa-
tion may be obtained from expansions**® (if ¢ is small), from
tables,*!"*? or from semiclassical phase integral arguments.*?

When the relevant dipoleanoment operator is assumed
to be a function of the C-H stretching coordinate only, the
overlap (squared) of the zeroth order pure local mode state
|n, 0) with the actual eigenstates describes the Fermi reso-
nance intensity sharing,'"'>3%* and so is of interest. When ¢
is small enough, an expansion®*©*? for the solution F(a) of
the Mathieu equation (4.12) may be used. From the defini-
tion of the wave function ¥{(e) in Eq. (4.11), and using Eq.
(4.2) for £ and the expression for v in Ref. 40, the unnorma-
lized wave function may be written as

2inag __ 4
nfa)eine— |

e2in + la
vin,) + 1] [v(n,) —1]
e2i(n. + 2

o, _qz_[
32 1 [vny) + 1] [vin,) + 2]

e2i[n, — la

eli(n, —2)a

e, (817
+[v(n1>—1][v<n1>—z]]+ @.17)

Equation (4.17) properly normalized (cf. Appendix C) yields
the following formulas for the overlaps of the zeroth order
|n, 0) local mode state with the eigenstates of |n, 0),
|n —1,2), and |n — 2, 4) parentage:.

f YO (@), (a)a = TN, (4.18)

O _ _— 9
J:aﬂ,, @4, ilada= —\7N,_, 4[V(n_1)+1]]’
(4.19)

and

f YOy, _, (a)a

- 'l (4.20)
\/;N"_z[ R[vin—2)+ 1][vn—2)+ 211

Here, %) denotes 7~ '/? exp[2ina] and is the properly
normalized zeroth order local mode state |n, 0), and ¢,
(m =n, n — 1, n — 2) is the approximate normalized eigen-
state based on Eq. (4.17). It is also of interest to determine the
overlap of the zeroth order state |n — 2, 4) with the eigen-
state ¥, _ , (@). This overlap is given by

" O)s _ q
[ veeaiaw, - ioa =, [ st

(4.21)

where #/°_, denotes 7~ '/? exp[2i(n — 2)a]. Ator very close
to the actual avoided crossing point between two states,
some of overlaps in Egs. {(4.18)—{4.21) are not suitable for
computation and a different expression is used.*’

V. APPLICATION
A. The model Hamiltonian

As an application, we consider a model Hamiltonian for
asingle C-H stretch interacting with a bending mode involv-
ing the C-H bond in a dihalomethane molecule. In curvilin-
ear coordinates,*® such a Hamiltonian may be phenomeno-
logically written as*%®

H= -1 P2 { D[1—exp(—aR)]?
2u

+ P+ a0 — S RPY, (5.1
where R and Q are, respectively, the curvilinear displace-
ment coordinates for the C-H stretch and for the bend, P,
and P are their conjugate momenta, u is the reduced mass of
the C-H bond, D and a are the C-H Morse parameters, 4 is a
coupling constant, and @ is the zeroth order angular fre-
quency of the bending mode. The constant A generally has a
complicated dependence'***® on the atomic masses, equi-
librium bond angles and lengths, and the bending normal ~
coordinate*” coefficients L ;; . This coupling constant will
be treated as a variable parameter in the present paper.

For energies in the vicinity of the |3, 0) state, it is as-
sumed in this model that only one of the C-H local mode
vibrations need be considered.>® For these energies, the
quantum mechanical eigenvalues for the symmetric and
asymmetric combinations®® of local modes in the dihalo-
methanes become virtually degenerate, and hence the two
CH’s in the molecule have negligible direct coupling to each
other.

The Fourier expansion for the displacement coordinate
R of a Morse oscillator is given in Ref. 48. Since the bending
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mode is a harmonic oscillator [cf. Eq. (5.1)], a suitable trans-
formation to action-angle variables is to set Q and Pequal to
(21/@3)"? sin 6, and (20,02)"2 cos 6, respectively. This
transformation yields the (1, — 2) and (0,0) Fourier compo-
nents

Lt d (1 — (1 —pV2
Vi_alul) = » ( 7 ) (5.2)
and
Losd (141 ——y)”z)
= — 1 : .
Vool 1,15) Y ﬂ( 21 —y) (5.3)

wherey = E{/D, and E 9 and D are the energy and dissocia-
tion energy of the zeroth order Morse oscillator, respective-
ly. These expressions may be used in Egs. (2.5), (2.6), (3.7),
and (3.16).

B. Calculations

Calculations were performed for the resonant interac-
tion of the |3, 0), |2, 2), and |1, 4) states for the model Ha-
miltonian (5.1). The values used in Eqgs. (5.1)+5.3) for
@}, @y, D and a, obtained from the data of of Ref. 35, were
3143, 63.2, 39076 cm ™", and 0.988 a.u., respectively. The
zeroth order bend frequency w9 was not determined there,
but is estimated to be ~ 1400 cm . The coupling parameter
A was allowed to vary in the present calculations to yield
quantum off-diagonal matrix elements between the zeroth
order states |3, 0) and |2, 2) in the range of 5-30 cm . The
resonant actions /| and I} used in evaluating the USC and
two-state solutions were determined by the method de-
scribed in Appendix A.

The Fermi resonant splittings and overlaps were calcu-
lated as a function of A using the three semiclassical methods
presented in the previous sections. For the two-state and
3X 3 semiclassical matrix treatment, calculations were per-

formed using both the resonant and mean actions (cf. Sec. II)

to evaluate the 3 X 3 semiclassical off-diagonal matrix ele-
ments and to obtain ¢ for the two-state calculation (Sec.
"IV A). In all cases, diagonalizations of quantum mechanical
2X2, 3X3, and 78 X 78 matrices were performed for com-
parison.

C. Results

The calculated splittings between the eigenstates of
|3,0) and |2, 2) parentage and between the eigenstates of
|3,0) and |1, 4) parentage are shown in Tables I and I,

TABLE II. Splittings (in cm™~') between states of |3,0) and |1, 4) parent-
age.

Afau) 78x782 3x3¢ 3IX3IC 3xFS usce
0.037 61.9 62.3 62.2 61.2 64.1
0.077 69.8 715 7.2 66.9 733
0.121 78.0 82.2 81.7 719 82.3
0.170 87.8 95.7 95.1 774 92.2
0.227 100.4 113.8 1132 84.1 103.1

# Calculated with Fourier components [Eq. (2.6)] evaluated at mean actions
for each pair of states.

®Calculated with Fourier components [Eq. (2.6]] evaluated at the resonant
actions,

©See footnote ¢ of Table I.

respectively. In Table I1I, the exact and the present uniform
semiclassical (USC) results are compared with those ob-
tained by the method of Ref. 7 (USC®). As in Ref. 7, the
resonant actions for the USC® calculation were found using
the zeroth order frequencies, i.e., using Eq. (A1) instead of
Eq. (3.9). The “diagonal” perturbation term Voo Was then
taken, in the USC® method, as a constant value evaluated at
these zeroth order resonant actions. Also shown in Table ITI,
for comparison with and for analyzing the method of Ref. 7,
are results from a quantum mechanical 3 X 3 matrix diagon-

alization method (3x32°) having the diagonal first order
perturbation corrections taken as a constant {e.g., zero). In
addition, the relative overlaps of the zeroth order states Yo
with the actual eigenstates ¢;, defined as [(H2;)/
[<¥¢,)|, are given in Table IV for two values of A. For the
various two-state calculations, the calculated splittings
between the eigenstates of |3, 0) and |2, 2) parentage are
given in Table V as a function of A.

V1. DISCUSSION

The quantum 3 X 3 and converged (78 X 78) results are
seen from Tables I, II, and IV to be in good agreement (ex-
cept at high A where the discrepancy in Table II is ~ 10
cm™"). Thus, the present Fermi resonance is well character-
ized by considering only the interaction of the three zeroth
order states |3, 0), |2, 2), and [1, 4). For the splittings, the
3X 3 and USC semiclassical methods in Tables I and II yield
results comparable to each other and in reasonable agree-

TABLE III. Calculated splittings (in cm™') of |3,0) and |2, 2) states by
exact quantum, zero order uniform semiclassical (USC%,* zero order
3% 32 quantum,” and effective uniform semiclassical {USC)° methods.

usc* Usc
TABLE L Splittings (in cm ) between states of 13, 0) and |2, 2) parentage. A (au) 78 782 3%32° [Ref. 25(a)]  (Present)
Afaw)  78X782 3x32  3Ix3T 3x3  ysce - 0.037 31.0 38.3 38.7 334

0.077 30.8 444 45.7 355

0.037 31.0 311 313 31.8 334 0.121 354 53.7 55.9 41.5
0.077 30.8 311 31.9 335 355 0.170 43.1 65.7 68.1 49.7
0.121 35.4 35.8 374 40.1 41.5 0.227 53.0 80.6 > 804 59.1
0.170 - 43.1 43.8 46.1 49.2 49.7
0.227 53.0 544 57.4 59.8 59.1 *Using zeroth order frequencies [cf. Eq. (2.1)] to calculate 1,15, v,and q.

*Calculated with Fourier components [Eq. (2.6)] evaluated at mean actions
for each pair of states.

®Calculated with Fourier components [Eq. (2.6)] evaluated at the resonant
actions.

¢ Uniform semiclassical calculation (cf. Sec. IV B) based on H g [Eq.(3.18)].

®Calculated by setting all diagonal perturbations equal to zero in the 3x3
quantum matrix.

“See footnote ¢ of Table 1.

4 This value is estimated from the tables given in Ref. 41. The values of q
there go to 2.5 whereas ¢ equals 2.54 for the present USC® method (with
4 =0.227).
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TABLE IV. Relative overlaps.®

Rel.
A (au) overlap® 78x782 3x32  3x3%  USC
0.037
2:3 0.154 0.154 0.163 0.205
1:3 0.008 0.008 0.008 0.007
2:1 0.100 0.099 0.100 0.065
0.077
2:3 0.347 0.344 0.359 0.507
1:3 0.029 0.028 0.030 0.023
2:1 0.189 0.186 0.186 0.111

*Relative overlap j:i is defined as | (¥P”]¢ ) |/|(¢¥!*|¢,) |, where |¢; ; ) is the
eigenstate of zeroth order |47}, ) parentage. States 3, 2, and 1 are defined as
[3,0), |2,2), and |1, 4), respectively.

b Calculated with Fourier components {Eq. (2.6)] evaluated using mean ac-
tions for each pair of states.

¢ Present USC method (see footnote ¢ of Table I).

ment with the quantum mechanical values. The results

shown in Tables I-V indicate that, of the semiclassical two-

state, 3X 3, and USC methods, the 3X3 one using mean
actions in the evaluation of the Fourier components appears
to be the most accurate for calculating both the splittings and

the relative intensities. In addition, the results in Table III

for the USC® method of Ref. 7 show that the nonconstancy

of the diagonal perturbation term ¥, has an appreciable

effect for the system studied.
Of the two-state calculations, the quantum 2 X 2 values

[based on the original Hamiltonian (5.1)] and the semiclassi-
cal two-state ones based on H,; [Eq. (3.18)] and employing
mean actions in the calculation of the Fourier components
are in better agreement than those based on H 4 and reso-
nant actions. Diagonalizations of semiclassical 2 X 2 matri-
ces were also performed using the method of Sec. II. These
results were essentially the same as those in Table V based on
H,; and mean actions. Thus, for the present model Hamil-
tonian (5.1), the two-state (Sec. IV A) and 2X2 (Sec. II)
methods are essentially equivalent, although this is not nec-
essarily the case in general.

The 3 X 3 (and 78 X 78) basis set calculations show that
the |1, 4) state mixes significantly with the other zeroth or-
der states. Thus, the two-state treatments are incorrect for

determining the eigenfunctions, and hence the overlaps (rel- -

ative intensities), although they yield reasonable values for
the eigenvalues (splittings) in Table V.

The semiclassical matrix calculations in Tables I-V in-
dicate the principal weakness of the uniform approximation.
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FIG. 1. An (n,, a) phase plane portrait of the rotor Hamiltonian (B2) for the
model Hamiltonian (5.1). The angle variable a is given in fractions of 7.

In the derivation of the Mathieu equation and its corre-
sponding solutions, ¢, and hence the 1, — 2 Fourier compo-
nent, was approximated as a constant, i.e., it was evaluated
at the resonance center. This approximation assumes, in ef-
fect, that all the matrix elements such as {n, 0|V |n — 1, 2)
and (n — 1, 2|V |n — 2, 4) have the same average value. The
semiclassical matrix technique employing mean actions for
the evaluation of individual matrix elements H,; avoids this
restriction of constant Fourier components and thus obtains
better agreement with the purely quantum treatments in the
general case. Nevertheless, the USC is useful because, when
q is small and expansions****° may be used for @, and
F (a) of the Mathieu equation, it yields approximate analytic
solutions. These solutions may also provide some additional
physical insight when coupled with the classical analysis
presented in Sec. III and Appendix B.

As an example of this latter point, one may consider the
dependence of the Fermi resonances on the classical reso-
nance width [Eq. (B3)]. Examination of the classical (n,,a)
surfaces of section in Figs. 1 and 2 for the Hamiltonian (5.1)
with g = 0.8 shows that the states |3,0) and |2, 2), with
n, =3 and n, = 2, are within the width of the resonance.

TABLE V. Splittings (in cm ™) between states of |3, 0) and |2, 2) parentage using two-state solutions.

A (a.u.) 78 % 782 2x29 Two-state™ " Two-state™
0.037 31.0 30.2 33.2 323

0.077 30.8 28.4 35.4 323

0.121 354 32.8 420 37.3

0.170 43.1 43.1 51.5 47.0 ’
0.227 53.0 58.6 62.7 61.3

*Calculated using the method of Sec. IV A based on the effective Hamiltonian H,, [Eq. (3.18)] and using

resonant actions in the evaluation of g [Eq. (4.2)].

® Calculated using the method of Sec. IV A based on the effective Hamiltonian H,y [Eq. (3.18)] and using the

mean actions between the states |3, 0) and |2, 2) in evaluating ¢ [Eq. (4.2)].
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FIG. 2. An (n,, a) surface of section for the Hamiltonian (5.1) taken for
P=0,0>0,and A = 0.077 a.u. (g = 0.8). Trajectories labeled (A), (B), and
(C) are for initial condition corresponding to n, =3, n, =2, and n, =1,
respectively. All trajectories have I, = 2n, + n, + 3/2 =17.5. The angle
variable a is given in fractions of 7.

Hence, one would expect significant mixing for these states,
and this is indeed found to be the case (cf. Table IV for
A = 0.077). On the other hand, the state |1, 4), with n, = 1,
is well outside the classical resonance zone and does not mix
strongly with the |3, 0) or |2, 2) states. One obtains similar
conclusions about the degree of state mixing from purely
quantum mechanical argumerits by comparing the coupling
elements H;; to the diagonal energy differences E;, — E ;.
However, when many states are involved, the semiclassical
phase plane picture allows one to estimate the degree of cou-
pling by a single quantity, the width of the resonance [Eq.
(B3)].

VIIi. CONCLUDING REMARKS

The semiclassical methods presented in this paper all
involve the use of the Fourier components of the perturba-
tion, some of which exist in analytic form**3**® or are
straightforward to evaluate in the typical case by numerical
quadrature. For the calculation described in Sec. V, the se-
miclassical matrix elements (i.e., Fourier components) were
analytic and could be evaluated by the use of a hand calcula-
tor. The quantum mechanical Morse matrix elements of, for
instance 7 or 7%, while analytic,*® are more complicated to
compute. The semiclassical techniques can therefore be par-
ticularly useful when one wishes to use relatively simple
methods for comparison with experimental absorption spec-
tra: In actual experiments, the rovibrational structure may
only be partially resolved (e.g., Ref. 35), and so a quick and
approximate estimation of the Fermi resonance splittings
and relative intensities can be helpful in fitting the data to
various models.
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APPENDIX A: API';‘ROXIMATE EVALUATION OF THE
RESONANT ACTIONS

The solution of Egs. {3.9) and (3.12) to calculate the
resonant actions / | and I}, involves the determination of the
angle-independent effective oscillator frequencies from Eqgs.
(3.5)—(3.7). One recalls that these frequencies are nonlinearly
dependent on the resonant actions /| and I}, so the follow-
ing approximate root finding procedure was used to deter-
mine them: (1) A value for the zeroth order resonant action
I was determined from the zeroth order resonance condi-
tion ‘

o} — 2 wly =203, (A1)
and I'; was found from Eq. (3.12) (one recalls that I is taken
as a constant of the motion). (2) The zeroth order values of I}
and I were used to calculate the constants g” and f” from
Eq. (3.7). (3) Approximate values for I'] and I were calcu- -
lated from Egs. (3.9) and (3.12) using g” and f” in determin-
ing the frequencies [Egs. (3.5) and (3.6)] for the effective ze-
roth order Hamiltonian [Eq. (3.8)]. If desired, this procedure
may then be iterated. However, for the model Hamiltonian
given by Eq. (5.1), one iteration was sufficient to determine
I{ and I} to within 5% of the exact numerically calculated
values and was the procedure used in the present paper.

" APPENDIX B: PHASE PLANE BEHAVIOR OF THE

RESONANCE HAMILTONIAN

The analysis of the (I, ) phase plane behavior for the
resonance Hamiltonian [Eq. (3.17)] is standard. For a given
energy E, of the @ motion in Eq. (3.17), I,, is given by

I, =1, +2[2*+oy(Ex — V,cos 2a)]"*/wyy,
(B1)

where, from Egs. (3.9), (3.10), (3.12), and (3.14), I, denotes
202 /w,x.Since I, = 21, and, semiclassically, I; = (n, + }),a
phase plane portrait for the Morse “quantum number” n,
may be generated from Eq. (B1) as a function of a:

ny=n} + [2%+ o y(Eg — Vycos 2a)]"*/wy, (B2)
where n7 is given by Eq. (3.19).

Figure I shows an (n,, a) phase plane plot on the inter-
val (0, ) for the three different types of motion of Eq. (B2).
This idealized behavior for the full Hamiltonian (2.1)is iden-
tical to that for a pendulum or “rotor” Hamiltonian.!~¢ The
curves that pass through a single point at @ = 0 and 7 corre-
spond to the separatrix trajectory. The phase plane curves in
Fig. 1 above and below the separatrix correspond to “rota-
tions” in the (n,, @) space. These are motions in which the
action/, = 1, /2 (or the quantum number n, = I, — }) varies
only slightly over a cycle of motion. Thereby, there is rela-
tively little classical energy transfer between the Morse and
harmonic oscillators. The phase plane curves inside the se-
paratrix represent motions in which 7, varies greatly over a
cycle of motion and thus reflects a large transfer of energy.
Such a large variation in n, is expected for any initial »,
within the resonance width

Any = Al =22V /o) = 2g, (B3)
defined by the separatrix trajectory.'- The width of the reso-
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nance increases with increasing coupling element ¥, and
with decreasing effective anharmonicity o,y of the Morse
oscillator. The less the anharmonicity, the less the states in
the progression |n, 0), [n — 1,2), etc. pass out of resonance.

InFig. 2, an (n,, a) surface of section (e.g., Ref. 17) of the
Hamiltonian (5.1) is shown for actual classical trajectories
having initial conditions corresponding to Iz = 7.5 and
n, = 1to 3.6. For this model Hamiltonian, this plot shows
the “rotor” or “pendulum” behavior, although it is some-
what distorted from Fig. 1. For larger perturbations, the
surface of section becomes increasingly distorted from the
idealized behavior shown in Fig. 1 (cf. discussion in Ref. 25).

A few remarks on the rate of classical and quantum
energy exchange among the oscillators are perhaps in order.
For a classical resonance Hamiltonian [e.g., Eq. (3.17)], there
is extensive classical energy exchange when the system is
within the cosine well. (I, changes considerably during the
latter motion.) The frequency of the oscillatory energy ex-
change is then obtained by expanding the cos 2a term about
its minimum and is found to be porportional to the square
root of the coefficient of the cosine term in Eq. (3.17) [i.e., itis
proportional to the square root of the (1, — 2) Fourier com-
ponent of the perturbation]. Quantum mechanically, this
type of energy exchange is expected to be approached when
the initial wave packet consists of many eigenstates. When
there are only two or three states, as in the present analysis,
the frequency of energy exchange between zeroth order
states is, in the case of an exact zeroth order degeneracy,
proportional to the coupling matrix elements between the
states. In the semiclassical limit, these matrix elements cor-
respond to the Fourier components of the cosine perturba-
tion term in Eq. (3.17). As a result, the quantum energy ex-
change frequency may be thought of, in the case of an exact
resonance, as being proportional to the coefficient rather
than, as in the purely classical case, the square root of the
coefficient of the cosine function. Thus, it is expected that, in
any wave packet analysis, one must distinguish between the
classical (i.c., many quantum states) and highly quantum
(i.e., few quantum states) cases.

APPENDIX C: NORMALIZATION OF THE WAVE
FUNCTION (4.17)

A normalized wave function N, ¢, (a) satisfies
N2, [ vt e, lakda =1 1)

By truncating the expansion (4.17) at terms of order q and
using Eq. (C1), N2, is found to be given from

1 ~l 4 _qz_[ 1 " 1 ]
Nim 16 L [v(n,)+1]° [v(n,) — 112
1
1024 | [v(n,) + 112[v(n,) + 2]?
1
+
Vn,) — 12 [¥n,) — 2]?
The normalization series in Eq. (C2) may be “slow”

converge for one of the semiclassical eigenstates ¥ ,{a) in-
volved in the resonance, an example being when v{n,) + m is

+

(€2)

small relative to g>™ for that state (m = 1, 2). In that case,
one can determine the other overlaps (¢\'|¢/; ) of nonnegli-
gible magnitude and then use the normalization condition
for the Fermi resonance

S WP =1 (3)

to determine the absolute value of the unknown overlap.
This approximation was tested in quantum mechanical cal-
culations discussed in Sec. V and found to agree with the
exact results in the system chosen to within 2%. The semi-
classical wave functions are not suitable for determining the
overlaps with the zeroth order states when the normalization
series (C2) does not converge for several of the semiclassical
eigenstates.
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