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A uniform semiclassical theory is developed to treat the interaction of a Morse oscillator with a monochromatic radiation
field. The correspondence with quantum-mechanical dressed state theory for the Rabi and resonant excitation frequencies
is demonstrated, and the semiclassical theory is used to describe resonant one- and two-photon absorption processes. The
results are extended to state-to-state vibrational excitation in a polyatomic species.

Introduction

In the present paper, uniform semiclassical expressions are
obtained for the resonant and Rabi frequencies for one- and
two-photon absorption by a Morse oscillator. The correspondence
of the results for these frequencies with quantum-mechanical
dressed state theory! is described. This semiclassical treatment
is derived for a diatomic molecule and is then adapted to the
excitation of an isolated vibrational state in a polyatomic molecule.
Experimental or theoretical studies of CH,F,? O;,* BCl;,* and SO’
and of certain local mode molecules such as HDO® and CHD;®
suggest that such state-to-state behavior can be observed at low
energies in some polyatomic molecules.

Many studies in the past few years’® have been devoted to the
development of exact and approximate quantum-mechanical
treatments for the vibrational excitation of a single anharmonic
oscillator by an electromagnetic radiation field.? In addition, there
have been several classical and quantum resonance studies of

t Contribution No. 7104,

TABLE I: Quantum (m,+1|r|m,) vs. Semiclassical 7(I,,)

Ny (n,+1|r|n,,), au #1,), au
0 0.1246 0.1246
1 0.1781 0.1781
2 0.2205 0.2205
3 0.2575 0.2576
4 0.2912 0.2913
5 0.3228 0.3229

related driven oscillator systems,?!%'7 including the early work
by Chirikov,'S Shuryak,'¢ and Zaslavsky.!” Recently, Gray'®

(1) E.g., C. Cohen-Tannoudji in “Frontiers in Laser Spectroscopy”,
North-Holland Publishing Co., Amsterdam, 1977, p 14.

(2))W. K. Bischel, P. J. Kelly, and C. K. Rhodes, Phys. Rev. Lett., 34, 300
(1975).

(3) D. Proch and H. Schroder, Chem. Phys. Lett., 61, 426 (1979).

(4) See, for instance, R. V. Ambartzumian and V. S. Letokhov, Acc. Chem.
Res. 10, 61 (1977).

(5) J. V. Tietz and S. 1. Chu, Chem. Phys. Lett., 101, 446 (1983).
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discussed the semiclassical aspects of a Morse oscillator driven
by a classical radiation field by formulating the matrix repre-
sentation of an appropriate classical resonance Hamiltonian!42!
using WKB wave functions?? for the basis states. A uniform
semiclassical “dressed state” approach is developed in the present
paper that circumvents the use of a multilevel matrix treatment
(e.g., ref 18) to describe the absorption of two (or more) photons.
An alternative semiclassical approach for an explicitly time-de-
pendent Hamiltonian is presented in the Appendix.

Classical Resonance Hamiltonian

The energy-conserving classical Hamiltonian for the dipole

interaction of a Morse oscillator with a classical radiation field
:13,23
is13

H = H,(r,p) + h(P* + &*Q%) - (4= / V) Pu(NQ (1)

where P and Q are the abstract momentum and coordinate of the
field, respectively, w is the angular frequency of the field, V., is
the volume of the radiation cavity, u(r) is the dipole moment, and
H,, is the zeroth-order Hamiltonian for a Morse oscillator?* with

(6) (a) For a theoretical study of HDO and related molecules, see J. S.
Hutchinson, E. L. Sibert III, and J. T. Hynes, J. Chem. Phys., 81, 1314
(1984); (b) L. Halonen and M. S. Child, J. Chem. Phys., 79, 4355 (1983);
G. A. Voth, R. A. Marcus, and A. H. Zewail, J. Chem. Phys., 81, 5494
(1984); J. W. Perry, D. J. Moll, A. Kuppermann, and A. H. Zewail, J. Chem.
Phys., 82, 1195 (1985).

(7) (a) R. B. Walker and R. K. Preston, J. Chem. Phys., 67, 2017 (1977);
(b) F. V. Bunkin and 1. I. Turgov, Phys. Rev. A4, 8, 601 (1973); V. E. Mer-
chant and N. R. Isenor, IEEE J. Quantum. Electron., 12, 603 (1976); F. H.
M. Faisal, Nuovo Cimento Soc. Ital. Fis. B, 33B, 776 (1976); L. M. Narducci,
S.S. Mitra, R. A. Shatas, and C. A. Coulter, Phys. Rev. A4, 16, 247 (1977);
1. Schek and J. Jortner, Chem. Phys. Lett., 63 5 (1976); 1. Schek, M. L. Sage,
and J. Jortner, Chem. Phys. Lett., 63, 230 (1979); L. Schek, J. Jortner, and
M. L. Sage, Chem. Phys., 59, 11 (1981); S. C. Leasure and R. E. Wyatt,
Chem. Phys. Lett., 61, 625 (1979); Opt. Eng., 19, 46 (1980); J. Chem. Phys.,
73, 4439 (1980); S. C. Leasure, K. Milfield, and R. E. Wyatt, J. Chem. Phys.,
74, 6197 (1981); J. V. Moloney and F. H. M. Faisal, J. Phys. B, 12, 2829
(1979); S. 1. Chu, J. V. Tietz, and K. K. Datta, J. Chem. Phys., 77, 2968
(1982); T. S. Ho and S. 1. Chu, J. Chem. Phys., 79, 4708 (1983); D. C. Clary,
Mol. Phys., 46, 1099 (1982); S. Leasure, Chem. Phys, 67, 83 (1982); K. B.
Whaley and J. C. Light, Phys. Rev. 4. 29, 1188 (1984); C. A. S. Lima and
L. C. M. Miranda, J. Phys. Chem., 88, 3079 (1984).

(8) P. S. Dardi and S. K. Gray, J. Chem. Phys., 77, 1345 (1982); 80, 4738
(1984).

(9) “Quantum mechanical” refers to ref 7 and 8 to the treatment of the
molecular system. A standard approach, sometimes called “semiclassical”,
treats the field as a classical oscillator (i.e., with a well-defined phase and
amplitude) and the molecule quantum mechanically. A quantum mechanical
time-dependent Hamiltonian is thus used including a driving term uEp cos wt
to describe the effect of the field on the molecule (e.g., ref 32, p 43). This
treatment is known to be an excellent approximation when the number of
photons in the field is large.!"'>32 We shall refer to this as the “time-de-
pendent, classical radiation field” formulation.

(10) J. Lin, Phys. Lett. A, T0A, 195 (1979); K. M. Christoffel and J. M.
Bowman, J. Phys. Chem. 85, 2159 (1981).

(11) J. R. Stine and D. W. Noid, J. Phys. Chem., 86, 3733 (1982); D. W.
Noid and J. R. Stine, Chem. Phys. Lett., 65, 153 (1979).

(12) M. J. Davis and R. E. Wyatt, Chem. Phys. Lett., 86, 235 (1982).

(13) R. B. Shirts and T. F. Davis, J. Phys. Chem. 88, 4665 (1984). This
paper also contains an independent derivation of a 1:1 classical resonance
Hamiltonian similar to that given by eq 10 of the text.

(14) S. K. Gray, Chem. Phys., 75, 67 (1983).

(15) B. V. Chirikov, Phys. Rep., 52C, 263 (1979), and references cited
therein.

(16) E. V. Shuryak, Sov. Phys.—JETP (Engl. Transl.), 44, 1070 (1976).

(17) G. M. Zaslavsky, Phys. Rep., 80C, 157 (1981), and references cited
therein.

(18) S. K. Gray, Chem. Phys., 83, 125 (1984).

(19) G. H. Walker and J. Ford, Phys. Rev., 188, 416 (1969). For reviews,
see E. F. Jacger and A. J. Lichtenberg, Ann. Phys. N.Y., 71, 319 (1972); M.
Tabor, Adv. Chem. Phys., 46, 73 (1981); P. Brumer, Adv. Chem. Phys., 47,
201 (1981).

(20) R. A. Marcus, Ann. N.Y. Acad. Sci., 357, 169 (1980).

(21) T. Uzer, D. W. Noid, and R. A. Marcus, J. Chem. Phys., 79, 4412
(1983).

(22) R. A. Marcus, Chem. Phys. Lett., 7, 525 (1970).

(23) E. T. Jaynes in “Coherence and Quantum Optics”, L. Mande! and E.
Wolf, Eds., Plenum Press, New York, 1973; M. D. Crisp and E. T. Jaynes,
Phys. Rev. [Sect.] A, 179, 1253 (1969); W. H. Miller, J. Chem. Phys., 69,
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displacement coordinate 7 and conjugate momentum p.

If a canonical transformation is made to Morse oscillator ac-
tion-angle variables (I,,.0,,)** and to harmonic oscillator action-
angle variables (I0,) for the field, given in the latter case by 0
= (2I;/w)'/? cos f;and P = ~(2Iw)"/? sin 6, eq 1 is transformed
to

H= Im")mo - Im2wmox + ij - Eol"(lmvam) Cos 0/ 2

where w,,? and w,,%x are the harmonic angular frequency and
anharmonicity, respectively, of the Morse oscillator and E, =
(8xIw/V,)"/? is defined as the field strength.''2 The actions J;
in eq 2 are defined as the usual action variables? divided by 2=
and A = 1 throughout the present paper.

A 1:1 resonance condition'*171? exists when, for the value 7,
of the action I, the frequency of the Morse oscillator w,, =
(8H,,/d1,,);, =1, satisfies

wm(lmr) = wmo - ZIM""MOX ~w 3)

When a nonlinear coupling between oscillator modes is present
and there is a near 1:1 resonance, the variable 8, — 6,is a “slow”
angle.!1719 By virtue of eq 3, this angle satisfies

d
a(ﬂm -0) =0 C))
This condition suggests a canonical transformation'>'"!? such as
I,=2, IL=I,+1I (5)

20=10,-0;+9d g=246 6)
where § is a constant chosen as in ref 27 to ensure a real, negative
contribution for the last term in eq 8 (e.g., for the linear dipole
approximation used later, § equals x). The zeroth-order Ham-
iltonian in the new action-angle variables becomes

Hyl,Ig) = 1,2 - WX’} + Igw @)

where @ = (w,0 - w)/2 and x’ = x/4. The perturbation term
in eq 2 —Egu(1,,,0,,) cos 0, is then expanded in a complex-valued
double-Fourier series in ,, and 8, expressed in terms of the new
angle variables « and B, and averaged over the “fast”variable g.
Only the terms having the “slow angle” variable 2a will remain
after this averaging,'>'"!? so the Hamiltonian for this 1:1 reso-
nance system becomes

H=19- 0,1+ I~ V, cos 2a (8)

where ¥V, denotes [2V,_(I,7.I)|: V) is the (1,-1) Fourier com-
ponent, ~(2x) 2 f3* f2 Equ(I,’ 0,,) cos 67 df,, db,, evaluated
at the resonance center'S1"1° I = I.7 and at any I..

Because the angle 8 conjugate to the total action of the system
I, does not appear in eq 8, I, is a constant of the motion in this
approximation. The Hamiltonian (8) may then be written as

H=Iw-Hg=E ®

where E is the total energy and Hy is a “resonance” Hamilto-
nian:15-17.19

Hyg = Eg = p,'x'1,2 - 1,2 +V; cos 2a (10)
The quantity ¥, in eq 10, given earlier, may be rewritten as

Eo 2

" 2xde

12 "L D) 48,, = Eoi 1)

(24) P. M. Morse, Phys. Rev., 34, 57 (1929).

(25) A canonical transformation to Morse oscillator action-angle variables,
with the action defined semiclassically, for & = 1, as I,, — !/,, is given by
Rankin and Miller (C. C. Rankin and W. H. Miller, J. Chem. Phys., 55, 3150
(1971)).

(26) H. Goldstein, “Classical Mechanics”, Addison-Wesley, Reading, MA,
1980, p 457.

(27) G. A. Voth and R. A. Marcus, J. Chem. Phys., in press.
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which is simply the field strength E, times the fundamental Fourier
component f of the dipole moment evaluated at the center of the
resonance.

Uniform Semiclassical Approximation

The oscillator field system may be quantized by converting eq
9 into a Schrodinger equation. To do this, the I;’s are replaced
by semiclassical action operators,2'-?2 given by (1/i) d/da + 1 for
the a motion and by (1/i) d/d8 + 1 for the 8 motion. For a
separable semiclassical basis y(a) ¢(8), this procedure yields the
semiclassical Schrédinger equations for ¥(a) and ¢(B)

d—‘;-i[E,,/w— e =0 (12)
where Eg = Igw and
ﬂ—2i(£—1)(-i—‘k+[A—2q¢>os2¢zz]1p=0 (13)
da? da

where

£ =29/w,’x =21’

A=[4Q+E-E)/ox1-1  q=2V/wn’x (14)

Solution of eq 12 yields an equation for the (normalized) primitive
semiclassical wave function® (27)!/2 exp[i(Is — 1)B]. Equation
13 may be solved by defining an auxiliary function F(a), given
byzl

F(a) = exp[i(1 - §)al¥(a) 1s)

and introducing it into eq 13. One thus obtains Mathieu’s
equation?®?® for F(a)

d2F(a)

de?

+ [a, - 2q cos 2a]F(a) =0 (16)

where
a,=(-1)2+4 a7
The order v of the Mathieu equation®®?* is given by 3°
v=2I,~§=2(1,-1,) (18)

which is, in general, not an integer. The solutions of eq 16 together
with eq 12, 14, and 17 give the uniform semiclassical eigenvalues
for the Hamiltonian (1) as

E = Eg+ I,/Q - a,0,°% (19)

Semiclassical Dressed State Description

When the semiclassical eigenvalues of the Hamiltonian (1) as
given by eq 19 are plotted as a function of the field frequency w
and at constant E,, they exhibit avoided crossings, as in Figure
1. The frequencies w at which these avoided crossings occur may
be obtained from the semiclassical uniform approximation formula
(eq 16); namely, they occur when the orders of the Mathieu
equation correspond to integers??® such that

v=— (20)

Here, v and » correspond to the two different states involved in
the avoided crossing. Typically, the characteristic values a, and
b, of the Mathieu equation (eq 16) are associated with these
states,21.28:29
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Figure 1. A semiclassical two-photon avoided crossing of the dressed
states |0,N+2) and |2,N). The resonant excitation frequency wy/2 =
3879 cm™ is indicated by the location of the avoided crossing.

The interpretation of the states involved in an avoided crossing
may be clarified by considering the quantum numbers associated
with the zeroth-order actions

Im = (nm + l/2)
Iy=(n'm+ )

where N is a very large number of “background” photons for the
typical laser cavity,?' n is the number of photons to be absorbed
(n << N), and n,, (n’,,) is the quantum number of the Morse
oscillator. These quantum numbers in eq 21 are associated with
the zeroth-order semiclassical eigenstates,?? denoted in this section
by |n,,,N+n) and |n’,,,N). A further simplification may be made
since N is normally so large that it may be taken as a constant,
and hence the field strength Ey = (87Nw/V,)!/? is constant.'"1232

For a two-level model,*? an isolated avoided crossing? of the
eigenvalues indicates a zeroth-order degeneracy between the basis
states (e.g., |7,,,N+n) and |n’,,N) in the present instance) at the
avoided crossing. Therefore, for nonzero coupling between the
field and the oscillator, the avoided crossing condition identifies
the resonant excitation frequency where the Morse state |n,,)
absorbs n photons and is excited to the state [n’,).

The avoided crossing condition is given by eq 20 and is satisfied
whenever £ equals n,, + n’, + 12! or, from eq 14

L' =n,+n,+1)/2 (22)

If=N+n

v=N 1)

This I,/ is seen to be the mean action I, between the two levels
undergoing the avoided crossing. Hence, eq 22 together with eq
3 indicates that, at a field frequency

w = 0,0 — 2I,0,.°x (23)

a field-induced resonance between states with Morse quantum
numbers n,, and n’, occurs. It has been noted (e.g., ref 34) that
n times the classical frequency in eq 23 corresponds exactly to

'(28) N. W. McLachlan, “Theory and Applications of Mathieu Functions”,
Clarendon Press, Oxford, 1947.

(29) M. Abramowitz and 1. A. Stegun, Eds., “Handbook of Mathematical
Functions”, Dover, New York, 1965, Chapter 20.

(30) Since a general solution®® to the zeroth-order Mathieu equation (i.e.,
with ¢ = 0) is ~¢”®, the zeroth-order wave function in the angle @ may be
written from g 15 as ~¢&1*)a, The zeroth-order primitive semiclassical
wave function? is also ~e/llaDa = g2Kim-1/2)2 5o comparison of the two zer-
oth-order wave functions yields » = 2I,, — £ for the order of the Mathieu
equation.?8?

(31) The zero-point energy of the field mode is not written explicitly here
since N >> '/,. For a photon energy of ~1000 cm™, the photon densities
for laser intensities 1 GW/cm? and 1 TW/cm? are ~10'® photons/cm?® and
~10%! photons/cm?, respectively.

(32) R. Loudon, “Quantum Theory of Light”, Clarendon Press, Oxford,
1973, Chapter 7.

(33) E.g., C. Cohen-Tannoudji, B. Diu, and F. Laloe, “Quantum
Mechanics”, Vol. I, Wiley, New York, 1977, Chapter IV.

(34) M. L. Koszykowski, D. W. Noid, and R. A. Marcus, J. Phys. Chem.
86, 2113 (1982); J. R. Stine and D. W. Noid, J. Chem. Phys., T8, 1876 (1983).
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the quantum-mechanical resonant excitation (or Bohr) frequency,
Wy n, = Ey, — E, , between the two Morse oscillator levels with
energies E, and E, .

The splittings between states at isolated avoided crossings
are, 21 for small enough g (the typical case in the present
problem??)

(a; - bl)“-‘mox

(n,—n,+1) AE, = Vo + 0(g) (24a)

4
a, — b)w,? V,?
(o= 1+ 2) AE, = 2 domX _ Y o
4 2w,0x
(24b)

and so on for higher order transitions. One recalls from eq 11
and 22 that the V’s in eq 24a and 24b are functions of n,, and
", When the system is initially in one of the zeroth-order states
involved in the avoided crossing, the splittings AE, of the eigen-
values give the characteristic Rabi frequency wg for oscillation
between these zeroth-order states.’> One may demonstrate this
as follows:

Suppose at ¢ = 0 the system is in an initial state [{(0)) that
may be expressed as a linear combination of only two “exact”
semiclassical wave functions |a) and |b). Due to the coupling
between the field and the oscillator, this state evolves in times as

(1)) = eHY(0)) = Cjla)e ™ + Cylb)e™™  (25)

where C, equals {a|¢(0)), C, equals (b}{(0)), and H, is the
semiclassical Hamiltonian (9) (expressed, as in the previous
section, in terms of semiclassical action-angle operators). The
probability amplitude [(y(0){¥(#))|? for the state [{(0)) oscillates
in time as cos? ([E, — E;]t/2), where E, > E,. If the field
frequency w is such that the exact states |a) and |b) are at an
avoided crossing, then their splitting AE, = E, — E,, is defined as
the Rabi frequency wg.3

When |¢(0)) is taken to be the “unexcited” dressed state
|, N+n), the probability for being in the excited dressed state
|n,N) is given by*

Pn’,,,n,,,(t) = |<nlm’N|e-iHn’|nm’N+n)|2 (26)
while the probability for being in the |n,,N+n) is given by
Py (D) = (B N+n|e B, N+n) 27

For the present two-level model, the energy absorption® (E(?))
— (E(0)) of the Morse oscillator starting in the state |n,,) is given

by
<‘p(t)|Hm|‘p(t)) - En,,, o~ En’,,,Pr{,,,n,,,(t) + En,,,[Pn,,,n,,,(t) - 1]
Ottt it D)

(28)

This field-induced oscillation between zeroth-order states describes
the time-varying absorption process of n photons by the Morse
oscillator. It has recently been demonstrated numerically that
a two-level Rabi model is a good approximation at (or close to)
resonance even for large laser intensities (e.g., 44 TW/cm?).8

Relationship to Quantum Dressed State Theory

In the quantum dressed state picture,! the classical Hamiltonian
in eq 1 is quantized by first replacing the classical variables
(p.r,P,Q) with the quantum-mechanical operators (5,7,P,Q) and
then solving the matrix representation of the quantum counterpart
of eq 1 for the eigenvalues and eigenvectors. When plotted vs.
w: an avoided crossing of two eigenvalues of this matrix (the
dressed state matrix!%) identifies, as already noted for the sem-

(35) For HF Morse parameters™ and a laser intensity of 1 TW /cm?'® the
expansions for a, and b, in ref 28, p 16, are found to be rapidly convergent.

(36) This matrix is defined as the matrix representation of the Hamiltonian
(1) using the quantum “dressed state” basis' |p,j), where |[p) and |7} denote
a Morse oscillator eigenstate with quantum number p and a harmonic os-
cillator photon state with occupation number j, respectively.
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iclassical case, a resonant excitation frequency, and the splitting
between the states at the avoided crossing is the Rabi frequency
of the transition.! For a given field frequency w, the corre-
spondence of the quantum Rabi and resonant excitation fre-
quencies with those obtained by the semiclassical treatment in
the previous section may be demonstrated as follows:

To describe an isolated quantum-mechanical avoided crossing
corresponding to an n-photon transition, it is convenient to
transform the full dressed state matrtix H via a Van Vleck
transformation3” T-'HT of order k (where k = n). This trans-
formation serves to diagonalize H to order k except for any
zeroth-order states that are degenerate or nearly degenerate. This
procedure is ideal for the present purpose of treating an isolated
avoided crossing, since here one is dealing with a case where only
two zeroth-order states are degenerate or nearly degenerate.
Specifically, if an isolated avoided crossing between two levels,
as in Figure 1, occurs in a small frequency interval Aw, there are
only two states in that interval which are nearly degenerate amid
the vast number of states in H. The Van Vleck transformation
then yields a matrix G that is diagonal to kth order except for
a 2 X 2 submatrix

Cr'mn'm On'mnm | = | En'm +Nw vk (29)
G G vk Epp + OV + mw

'
nmnm nmnm

that includes the two degenerate or nearly degenerate quantum
states |n/,,,N) and |n,,,N+n). Ineq 29, E, (E, ) isthe energy
of a quantum-mechanical Morse oscillator eigenstate |n,,) (|n',)),
V® is the perturbation coupling of order k between states, and
N,n and w are as defined previously. There are, in general, some
diagonal perturbation corrections, but for realistic laser intensities
(<1 TW /cm?), they are estimated to have a negligible effect on
the resonant excitation frequencies.’” The contribution from the
off-resonant components of the matrix H is shifted via the Van
Vleck transformation to the coupling term V). Expressions for
the coupling elements V¥ through third order (k = 3) may be
found in ref 37. In general, a coupling element of at least order
n is necessary to induce an n-photon transition (i.e., V®), where
k < n, would be equal to zero for the n-photon transition). Higher
order terms (k > n) usually have a negligible contribution for such
transitions, so only terms ¥® of nth order will be considered.’®
The two diagonal elements of the matrix (29) become degen-
erate and hence undergo an avoided crossing when nw equals wy,,, -
As in the semiclassical case, there is a field-induced resonant
transition between Morse oscillator states |n,,) and |n’,) at this
frequency. In the previous section, n times the semiclassically
calculated resonance frequency (eq 23) was stated to correspond
exactly with the quantum value for w,,, . This may be demon-
strated by considering the quantum expression for w,,,,:

W = (n’m - nm)wmo - (n/m - nm)(n’m + n, + l)wmox (30)

(37) The Van Vleck transformation is given, for example, in J. E. Wollrab,
“Rotational Spectra and Molecular Structure”, Academic Press, New York,
1967, Appendix 7. In the matrix (29), the diagonal self-energy corrections
for the typical Morse oscillator had a negligible effect on the resonant exci-
tation frequencies for the system treated and have been neglected (.., for
a laser intensity of 1 TW/cm?, the one- and two-photon peaks for HF show
virtually no shifts from the expected zero-order Morse oscillator resonant
excitation frequencies®). A modified version of the Van Vieck transformation
has been used recently to treat two-state systems in quantized fields (P. K.
Aravind and J. O. Hirschfelder, J. Phys. Chem., 88, 4788 (1984)).

(38) For the perturbation ¥V = —(4xw?/V,)!2u(r)Q in eq 1, the quantum
one- and two-photon matrix elements are given at resonance by v =
{n’,,NV|n,,,N+1) and

(WMD) P N4 2)
PO = Y5
XY T N 2 o o,

respectively. The summations in the latter case are over the photon states |/)
and Morse oscillator states [p), excluding those appearing in the diagonal
elements of eq 29. The equality at resonance 2w = wyy,,n,, has been used here
to simplify the expression for ¥ in ref 37. For the general case of the field
tuned slightly off-resonance from the two-photon transition frequency wy,,,,,
VA is given by the above expression with an added multiplicative factor (d,;
+ A/2)/(d,; + A), where d,; is the denominator term from above and A is
defined as wy,,,, — 2.

T
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TA;!LE II: Quantum (n,+2|r|n,+1)(n,+1|r|n,) vs. Semiclassical
(#(I)E

N (it 2P+ 1) (Pt L) Fan1’
0 0.0222 0.0235
1 0.0393 0.0401
2 0.0568 0.0574
3 0.0750 0.0755
4 0.0940 0.0945
5 0.1139 0.1143

For the 1:1 resonance, this is simply nw, where w is the classical
frequency in eq 23 and » equals n’,, — n,,.

At the resonant field frequency, the matrix (29) yields the
time-dependent Rabi flopping formula® ~ sin? (wg?/2) for the
probability of being in the dressed Morse oscillator state |n/,,,N)
after starting in dressed state |n,,,N+n), where the quantum Rabi
frequency wg for n photon absorption equals 2|V™}.33 1t is seen
from eq 24a, 24b, and 29 that, at resonance, the semiclassically
calculated Rabi frequency AE, is to be compared, in this ap-
proximation, to the quantum Rabi frequency 2|V]. These
quantities are now considered for two specific cases:

(a) One-Photon Absorption. The semiclassical one-photon Rabi
frequency is given by eq 24a as Egfi, whereas the quantum one-
photon Rabi frequency is given by*® Ey(n’,|a|n,,) with n’,, equal
to n, + 1. In this case, the Morse oscillator matrix element
(n’y|in,,) appearing in the quantum-mechanical quantity V"
is to be compared with the fundamental Fourier component j (cf.
eq 11) evaluated at the mean action 7,, = n,, + 1 for the one-
photon transition. The same semiclassical Rabi frequency for
one-photon absorption in terms of a Fourier component has been
obtained by a somewhat different argument.!® These Fourier
components have recently been shown to give excellent agreement
with the quantum matrix elements for Morse***® and other*®4!
oscillators. By use of HF Morse parameters™ and a linear dipole
approximation, values of (n,+1|rn,) and #(I,,) are calculated and
compared in Table 1.

(b) Two-Photon Absorption. The semiclassical two-photon
Rabi frequency is given by eq 24b as (Egit)?/2w,2x. For this case,
fi is the fundamental Fourier component of the dipole moment
function evaluated at the mean action I,, = (2n,, + 3)/2 for the
two-photon transition between the Morse states |n,,) and |n,,+2).
It is clear that the semiclassical two-photon Rabi frequency has
the proper dependence on the field strength*? unlike the two-level
model in a previous semiclassical study.!®* Moreover, this quantity
is inversely dependent on u,%x, reflecting the detuning of the
two-photon resonance by the Morse anharmonicity.

To demonstrate the correspondence of the semiclassical Rabi
frequency with the quantum result, the quantum two-photon
coupling element ¥ is examined. This coupling term for the
resonant field frequency 2w = w,_, , where n’, = n,, + 2, and
for large N is given by*

E 2 m+2 - ~ -
o= —% (R 212p) (plit|nm) o

P w - wp,,m

with E, being a constant. If one uses the resonance condition (eq
23) and notes that the term with (n,,+2|ijn,,+1){(n,+1|ijn,,) is
the dominant contribution to the sum over Morse states [p),* the

(39) From footnote 38, V") is given by —(dxw?/ V)2 (n’, |2, ) (NQ|-
N+1). If harmonic oscillator selection rules are used for the field mode, this
expression reduces to —(8x(N + 1)w/V,)"/*(n’,|a|n,) /2. Since N >> 1 and
Nequals I, V1V may be written as —Eo(n'|iln,,) /2, where Eq = (8xIw/V,)'/?
as in the text.

(40) D. M. Wardlaw, private communication.

(41) D. M. Wardlaw, D. W. Noid, and R. A. Marcus, J. Phys. Chem., 88,
536 (1984).

(42) E.g., T. Oka and T. Shimizu, Phys. Rev. A4, 2, 587 (1970), and
references cited therein.

(43) From footnote 38, the summation over the field states |j) in the
expression for ¥ has only one nonzero term (i.e., for {j) = |N+1)). Since
each numerator term reduces to Ey?(n’,[ilp) (plajn,,} /4 (cf. footnote 39), the
summation is then given by eq 31.
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quantum two-photon Rabi frequency is given approximately by

Eg?
2]V =~ ”» ox(nm+2|ﬁ|n,,,+l)(n,,,+1|ii|nm) (32)
m

From eq 24b and 32, the agreement between the semiclassical
and quantum Rabi frequencies is expected to be good if

[BT)1? 2 (myt2a|n,+1) (1t 1]ain,,) (33)

A comparison of these two quantities for HF and a linear dipole
approximation is given in Table II.

Adaptation to a Polyatomic Molecule

For a nonrotating polyatomic molecule in a radiation field, it
is assumed that the Hamiltonian may be written as

H = Hyl) + Iw - Eqn(L0) cos 6, (34)

Here, I and 6 refer to the radiation field as before, and the (1,6)
form a set of “good” action-angle variables describing perhaps
Morse-like vibrational modes with no internal resonances.'>!?
These variables may be obtained, for instance, by perturbative
or other approximate methods. If there is a resonance between
the field and some vibrational frequency w,, = dH,/dl,, of the
molecule, I,, being the mth action with conjugate angle 8,,, then
the angle variable 8,, — 8, becomes a “slow” angle. If the Ham-
iltonian H in eq 34 is averaged over all molecular angle variables
6; except 0, and if Hy, can be expanded in a Taylor series in I,
about I,, = 0, one obtains

H = H,(1,,1) + Iw — E¢-a(1,0,,) cos 6, + H(I) (35)

where H(I') is a constant term for the set of actions I’ excluding
I,. If H, is truncated at a quadratic function of I,, (wWhich may
depend on I'), the Hamiltonian in eq 35 has the form of eq 2, but
w, now denotes (9H,/dl,); =0 and w,’x denotes '/,(8*Ho/
81, ,=0-

Discussion

A semiclassical treatment of one- and two-photon absorption
by a Morse oscillator has been presented in this paper that has
a direct correspondence with the quantum-mechanical dressed state
approach. The use of the Mathieu function uniform approximation
allows one to calculate the Rabi and resonant excitation fre-
quencies directly from eq 23-24b without the use of a multistate
matrix treatment. For this reason, the present uniform semi-
classical method is useful for characterizing multiphoton ab-
sorption processes in a simple way. In addition, it has been noted!®
that, for realistic laser intensities (<1 TW/cm?), two-photon
absorption may correspond to a nonclassical path. (More spe-
cifically, classical calculations® have shown no two-photon ab-
sorption.) This fact indicates the usefulness of an appropriate
uniformization procedure to treat such a process purely semi-
classically, for such a uniform approximation permits quantum-
mechanical tunneling.

It has been noted!® that the solutions of the Mathieu equation
(eq 16) contain contributions from unphysical “states” corre-
sponding to negative quantum numbers. This problem arises
whenever primitive semiclassical wave functions in an (approx-
imate) action-angle representation®? are used. In the case of an
oscillator, one usually omits, by fiat, states with negative principal
quantum numbers. In the present case, however, these “states”
are distant in energy and found not to have a significant con-
tribution. A similar situation would occur in other uses of Mathieu
functions, e.g., in a description of molecular Fermi resonances.?’

The uniform semiclassical technique presented in this paper
is not applicable in the regime of overlapping classical reso-

(44) Including only the nearly resonant term for the dressed state |n,+-
1,N+1) (cf. footnote 36) is similar to making the rotating wave approximation
(RWA). For a discussion of the usual RWA, see ref 48. A discussion of the
RWA in relation to dressed state theory is given in ref 1, p 18. Using the
parameters for HF given in ref 7a and a laser intensity of 1 TW /cm?, we found
the neglected terms in the summation (eq 31) to contribute less than 5% to
the Rabi frequency.



nances'*1"1%20 and /or overlapping avoided crossings (e.g., ref 20).
When there are overlapping classical resonances, the dynamics
are thought to be chaotic classically,!>171920 and when there are
overlapping avoided crossings, the system may in some sense be
regarded as quantum mechanically chaotic (e.g., ref 20). One
could use, however, a multilevel semiclassical matrix treatment!®
when a simple two-level treatment is not applicable.

The uniform semiclassical method allows one to calculate the
absorption probabilities using the Fourier components of the dipole
moment function, some of which exist in analytic form.445 In
some cases, this may be preferable to calculating the more com-
plicated quantum dipole matrix elements for the Morse oscillator 4
When not determined analytically, the Fourier components for
any general dipole moment function may be found numerically
by integrating a classical trajectory with the appropriate mean
action as an initial condition and then calculating the power
spectrum of u(r).3441.47
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Appendix: An Alternative Semiclassical Approach

It has been noted!!~!? that the time-independent? and time-
dependent, classical radiation field® formulations of the mole-
cule-field Hamiltonian are equivalent when the number of photons
N is large. For completeness, we derive here the semiclassical
Schradinger equation (eq 13) starting from the time-dependent,
classical radiation field point of view.

The time-dependent Hamiltonian for the interaction of a Morse
oscillator with a classical radiation field is given by®

H(r,p,t) = H,(r,p) — Equ(r) cos wt (A1)
where H,(r,p) is the Morse oscillator Hamiltonian in terms of
the displacement coordinate r and its conjugate momentum p.

Written in Morse oscillator action-angle variables (/,,,6,,),2 eq
Al becomes

H(l,.0,,,1) = Imwmo - Imzwmox - EO”’(Irmem) Cos w? (A2)

(45) 1. E. Sazonov and N. 1. Zhirnov, Opt. Spectrosc., 34, 254 (1973); R.
H. Tipping, J. Mol. Spectrosc., 83, 402 (1974).

(46) M. L. Sage, Chem. Phys., 35, 375 (1978); J. A. C. Gallas, Phys. Rev.
A, 21, 1829 (1980).

(47) D. W. Noid, M. L. Koszykowski, and R. A. Marcus, J. Chem. Phys.,
67, 404 (1977).

(48) M. Sargent, M. O. Scully, and W. E. Lamb, “Laser Physics”, Ad-
dison-Wesley, Reading, MA, 1974, p 18; M. Quack, J. Chem. Phys., 69, 1282
(1978).
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The formulation of the resonance Hamiltonian for the 1:1
resonance is performed in two steps. First, the V = —Equ(/,,,0,,)
cos wt perturbation term is expanded in a Fourier series in 8,
the result is expressed in terms of the “slow” angle variable 4,
— wt and averaged over all remaining functions of 8,,. Second,
the time-dependent canonical transformation

I,=21, 20 =0, —wt+34 (A3)
is introduced to yield a new set of action-angle variables (I, )

appropriate for the 1:1 resonance. This transformation is generated
by the F)-type generating function (e.g., ref 18 and ref 26, p 383)

F, =10, —wt+38)/2 (Ad)
and thus gives the new Hamiltonian K from the expression
K = H(1,,0,t) + 3F, /0t (A5)

The new Hamiltonian X now given by
K=1I(w,?~w)/2-L%,%/4-Vocos2a (A6)

where V} is the same as in eq 11 of the text. Using the definitions
of @ and x’ given previously, we can write the resonance Ham-
iltonian as

Hy = K = 0,2 - O + V, cos 2a (A7)

which is identical with eq 9 of the text minus the constant [y
term. Gray'® has obtained a very similar, but not identical (be-
cause of the use of a slightly different canonical transformation),
resonance Hamiltonian.

As in the text, introduction of the semiclassical action operator
(1/i) d/de + 1 into eq A7 yields eq 13. As a result, both the
time-dependent, classical radiation field and time-independent
formulations yield the same uniform semiclassical Mathieu
equation and hence the same semiclassical resonant and Rabi
frequencies.

The direct correspondence of the time-independent semiclassical
formulation with the quantum dressed state theory is presented
in the text. The time-dependent, classical radiation field Ham-
iltonian (A1) may be converted to a time-independent Floquet
matrix* that is formally equivalent®-* to the quantum dressed
state matrix when N is large.. The language of avoided crossings
may then be used in relation to the so-called quasi-energies* of
this Floquet matrix.

(49) J. H. Shirley, Phys. Rev., 138, 979 (1965); Ph.D Thesis, California
Institute of Technology, Pasadena, CA, 1963.

(50) M. J. Davis, R. E. Wyatt, and C. Leforestier, in “Intramolecular
Dynamics”, J. Jortner and B. Pullman, Eds., Reidel, Dordrecht, 1982, p 403.



