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A model for orientation effects in electron-transfer reactions
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A method for solving the single-particle Schrodinger equation with an oblate spheroidal potential
of finite depth is presented. The wave functions are then used to calculate the matrix element T,
which appears in theories of nonadiabatic electron transfer. The results illustrate the effects of
mutual orientation and separation of the two centers on T, . Trends in these results are discussed
in terms of geometrical and nodal structure effects. Analytical expressions related to Ty, for
states of spherical wells are presented and used to analyze the nodal structure effects for 75, for

the spheroidal wells.

I. INTRODUCTION

The mutual orientation of the donor and acceptor in an
electron transfer reaction may have observable effects on the
electron transfer rate in certain systems. For example, the
primary photoinduced electron transfer in photosynthetic
reaction centers may be influenced by the orientation of the
reactants. In plant photosystem II the electron acceptor is
probably a pheophytin'-? and the donor may be a substituted
chlorophyll @ monomer.> Both of these molecules are large
and nonspherical suggesting that there may be one or more
preferred orientations for electron transfer. Another biologi-
cally important electron transfer, that between hemes in cy-
tochromes, may also depend on the mutual orientation of the
porphyrin rings of the hemes.*

Orientation effects are beginning to be examined ex-
perimentally in model systems. For example, electron trans-
fer between cofacial porphyrins has been studied and was
observed to be rapid.*¢ Systems involving porphyrins held in
other orientations are under study.” In these systems the
electron transfer is between sites that are chemically linked.
When the pi-type orbitals at the donor and acceptor sites are
largely electronically independent, the electron transfers
may be treated using the usual outer-sphere formalism. It is
with systems such as these in mind that we have set out to
develop a model theoretical system within which to examine
the nature and magnitude of orientation effects on electron-
transfer rates.

The rate constant for nonadiabatic electron transfer
between reactants A and B at fixed separation and orienta-

tion has been examined within the Golden Rule formalism,
8-10 ]

e.g.
k=22 |15, FC. (1)

The Franck—-Condon sum (here denoted FC) has been dis-
cussed in detail elsewhere, for example.'®'? In this paper we
consider the dependence, within the theoretical model de-
scribed below, of the electronic matrix element 73, on the
mutual orientation and separation distance of A and B.
“The matrix element T, depends on the electronic
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wave functions localized on sites A and B. An isolated elec-
tronic site A or B (at infinite separation say) is modeled in
this paper as an oblate spheroid, and the potential for the
electron is set equal to a negative constant inside the well and

. zero outside. It may be recalled that an oblate spheroid can

be obtained by rotating an ellipse about its minor axis.

The volume of the spheroidal potential well is supposed
to enclose the carbon skeleton of an aromatic system. The
circle of revolution generated by the major axis when the
spheroid is rotated about its minor axis is imagined to lie in
the plane of the carbon skeleton. Other models have similar-
ly exploited the delocalized character of the pi electrons in
aromatic systems. In the free electron molecular orbital
model," e.g., the electron is free to move in one dimension
on a ring or intersecting rings, but has zero probability den-
sity’ off of the ring. In another model introduced by
Schmidt™ and developed by Platt'® to calculate electron
densities and electronic spectra of aromatics, the electron is
free to move in a plane in a region bounded by infinite poten-
tial walls. In contrast; in the present paper the electronic
wave function is three dimensional and is not confined to a
well, because the potential used is finite. The wave functions
therefore have long range tails which are important in de-
scribing electron transfer.

The present model yields a predominately exponential
dependence of the rate on separation distance, a dependence

" used or found in various experimental studies.'® The molec-

ular basis of this model may actually be an exchange mecha-
nism involving orbitals of adjacent molecules or atoms."’
There have been previous discussions of orientation ef-
fects in the context of the tunneling of trapped electrons in
glassy matrices. Rice ez al.'® considered orientation effects in
a qualitative way, and concluded that orientation depen-
dence in the electron tunneling rate would be equivalent to a
reduced concentration of electron acceptors, and thereby re-
duce the tunneling relative to an analogous system with no
orientation dependence. Brocklehurst'® examined the orien-
tation dependence of the overlap of electronic wave func-
tions for spherically symmetric sites. He considered both
hydrogenic and spherical-well potentials. The electronic
matrix element was assumed by Brocklehurst to be propor-
tional to the overlap of the wave functions, an approxima-
tion which we consider using states of spherical wells in Ap-
pendix B. He concluded that the orientation effect on the

- electron-transfer rate constant can be as large as 10°. Dok-
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torov et al.?® considered an angular factor, cos” @, in the
unimolecular rate constant for electron tunneling between
spherical sites. For n<4, the effect of this angular depen-
dence was to reduce the overall rate constant. The present
paper considers sites that are asymmetric and therefore geo-
metrically orientable and which presumably better represent
the arcmatic systems toward which this study is aimed.

Spectral properties of porphyrin compounds have been
examined by numerous workers using semiempirical elec-
tronic structure methods.*' 4b initio techniques have also
been used to examine porphyrin electronic structure.”**?
Calculations on diporphyrin systems and their low-lying
charge transfer states have been recently reported.”* Elec-
tronic structure techniques have been used to study orienta-
tion and distance effects for a model transition metal redox
pair® as well as for face-to-face porphyrins at small separa-
tion distances using both semiempirical and ab initio meth-
0ds.?**” For porphyrin electron transfers ab initio calcula-
tions of the electronic matrix element are extremely lengthy.
Moreover, ab initio techniques which employ Gaussian basis
functions are better suited to describe wave functions inside
molecules than to depict the long-range tails of the wave
functions. While our model is significantly less detailed than
that on which these wave functions are based, the present
aim is to include the general features of the problem. In fact,
it is the simplicity of the model which facilitates the calcula-
tions presented here.

The paper is organized as follows. In Sec. II the model
for the potential and the wave functions used are briefly de-
scribed, the calculation of the electron transfer matrix ele-
ment is outlined, and results from calculations of the matrix
element are presented. In Sec. III a more detailed description
of the calculation of the single-site wave functions is given.
The results for the electron transfer matrix element calcula-
tions are discussed in Sec. IV. Concluding remarks are given
in Sec. V. The relation between the Golden Rule rate expres-
sion and the matrix element is given in Appendix A. Expres-
sions for the matrix element for states of spherical wells are

derived in Appendix B. Applications to molecules of experi-
mental interest will be presented in a subsequent article.

Il. WAVE FUNCTIONS AND RESULTS

A. The model

The model involves the interaction of two sites, labeled
A and B (e.g,, molecules or electronically isolated chromo-
phores). The single-site wave functions are taken to be one-
electron wave functions, i.e., only the transferable electron is
considered explicitly. The potential in which the electron
moves is modeled as an oblate spheroidal well. A cross sec-
tion of the potential is sketched in Fig. 1. The potential is
independent of @, the angle of rotation about the z axis. The
cross section is an ellipse having semimajor axis a, semi-
minor axis b, and eccentricity e=\/1 — b */a*. The potential
¥ is zero outside the well and has a constant negative value
inside. Actually, there will also be a Coulombic term when
the molecule is chargel:l,zﬂ but it is assumed, for the present,
that in a medium with some polarity this contribution is
small relative to the values of ¥, used below.
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FIG. 1. Potential well for a single site. There is cylindrical symmetry about
the z axis.

It is convenient to use oblate spheroidal coordinates
(£,77,), defined by

x=1d [(1+E3(1 — n?)]" cos g,

y=14d [(1 +£3)(1 —7%)]"sin g,

z = ldém, (2)
where0<é, — 1<9<1,0<@<27. Thescalefactord hasbeen
chosen so that the surface of the potential well is described by
the single radial-like coordinate & Withd = 2\a® — b *, Vis
defined as

V={—V0; fgé’usﬂi/d_ )
0 £>&
Contours of the coordinate system are presented in Fig. 2.
(The angular coordinate @, not shown, is defined as for
spherical coordinates.) The surface £ = 0is a disk of diame-
ter d. The surface 7 = 0is the xy plane minus this disk.

Spherical coordinates r and @ are given in terms of ob-

late spheroidal coordinates:

d 0 21/2
:-—-] = ‘]',",
R s

cose=g7?{l+§1_1?2}—”2 {4]

FIG. 2. Oblate-spheroidal coordinate system. Contours of constant & are
indicated by solid lines. The dashed lines are contours of constant 7. The
contours of constant % on the right are for ¢ = 0, on the left for ¢ = m.

J. Chem. Phys., Vol. 81, No. 12, Pt. |, 15 December 1984



Siders, Cave, and Marcus: Electron-transfer reactions

It is clear that the oblate spheroidal coordinates become
spherical coordinates at asymptotically large distances from
the potential, in the sense that £&—2r/d and 7—cos 0 as
r—-o.

The single-site wave functions sought are bound-state
solutions to the Schrédinger equation with the potential of
Eq. (3). The Schrédinger equation may be written as a pair of
Helmbholtz’s equatidns, one satisfied inside the well and one
outside, i.e., )

(VP4 k=0 - 5)
with k2 = 2m_(E + V;)/# when £<&, and k> = 2m E /#
when £ > &, m, being the electronic mass. The value of ¥,
affects the eigenvalue E and hence controls the rate of decay
of the wave function with distance and ultimately the decay
of the thermal matrix element.

In Sec. III it is shown that the wave function may be
written as

W';mu g’"’? )EAm:u Z C‘n Wmn 5 §<§0!
. r=0
Voo =, » (6)
V&m0 =4 s z Cothnns €360
r=0

n=2r+m-+s. '

The value of s determines the parity of the wave function
relative to the xy plane of the potential, ¥, being even
when s = 0 and odd when s = 1. The superscript / or o de-
notes the wave function inside or outside the well, respective-
ly.

The functions ¢/, and ¢%,, are solutions of the Schro-
dinger equation in oblate spheroidal coordinates when the
potential is a constant over all space and is equal to its inner
or outer value, respectively. Quantization in the case of a
finite depth well is accomplished by requiring continuity of
the wave function ¥,,,, and its derivative at the boundary,
ie,até =¢,.

The functions %, are separable in oblate spheroidal
coordinates and may be written as

—

__________
- ~

————tm e
*

-
-
N
~

FIG. 3. Contours of ¥ for a state with (m,,u)=(0,0,1), ¥, =10 ¢V,
E= —7.98¢eV,a=4.85A, b=2.55 A. The heavy line is the well bound-
ary. The contours are labeled with values of log,o| ¥ | This state is referred
to later as a (0,0) state.
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4k

FIG. 4. Contours of ¥ for a state with (m,t,u4) = (0,1,1). a,b, and ¥V, are asin
Fig. 3. E= —4.70 eV. The heavy line is the well boundary. The contours
are labeled with values of log,o| ¥ |. Dashed contours indicate ¥ <0. Solid
contours are for ¥> 0. This state is referred to later as a (0,7) state.

Von E@) =R oy G DS 1Mk DPrl), 5<60r (T2)
Vo €@ ) =R 0, GRS 0n (K 5) P (@), £380  (TH)
&,, (@ ) may be written as a linear combination of sin mg and
cos me and the number of nodes in @,,(g) is equal to 2m.
The index n has been chosen to have the possible values
n=mm+ 1,m+2..

The quantum numbers ¢ and u in Eq. (6) will be de-
scribed as follows:  is the number of nodal lines in the two
dimensional £7 subspace and u orders states of equal ¢ by
energy (u = 1,2,...). Atfixed Vy, a, and b, a wave function can
usually be specified using m, t, and u. (Near an avoided cross-
ing the nodal lines become increasingly complicated, how-
ever. When the nodal structure is not too distinct one could
simply use m and a parameter which orders states of the
given m by energy.) '

Contour plots of wave functions for several states hav-
ing m = 0 are shown in Figs. 3-5. Energy levels® for several
states are shown in Fig. 6 as a function of eccentricity at
constant volume for the infinite potential case [Fig. 6(a)] and

FIG. 5. Contours of ¥ for a state with {m,,u) = (0,1,2). a, b, and ¥ areasin
Fig. 3, E= — 4.44 ¢V. The various lines are as in Fig. 4. :
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FIG. 6. Energies relative to the bottom of the potential well vs eccentrlclty
In both (a) and (b) the wells have a constant volume of 251.25 A3, The effec-
tive spherical radius R ¢ [=(a%)"/?] for these results is 3.9145 A. Energy
levels are labeled with / on the right-hand side of the figure and m above
individual curves, where [ and m are the total angular momentum and its z
projection of the state of the spherical well to which a given spheroidal state
correlates. The m and / quantum numbers of the states in Figs. 3-5 are
{m,!} = (0,0),(0,1), and (0,2), respectively. An asterisk indicates the presence
of a radial nodal surface in the spherical wave function. ¥V, equals co in (a)
and 10eV in (b). In both cases only those spheroidal states which correlate to
the four lowest distinct spherical energy eigenvalues are shown.

for ¥, = 10 eV [Fig. 6(b}]. Energy levels are shown as a func-
tion of ¥, in Fig. 7.

For calculations of T, most of the states we have stud-
ied have one nodal line in the £% subspace (i.e., = 1) and
s = 1. Such wave functions provide the closest analog to 2pr
electron systems, s = 1 being appropriate to 7-like symme-
try, since these functions are odd with respect to the xy
plane. For simplicity we will use the notation (m,) to denote
a state with # = 1 and s = 1 for a given m for the rest of the
article, 7 denoting odd symmetry with respect to reflection
in the xy plane. The 7-like nature of the (0,7) state is apparent
in Fig. 4. For comparison with experimental systems de-
signed to assess orientation and distance effects we note that
a (1,7) state has the same nodal structure as the HOMO in
benzene. A (4,7) state has the same nodal structure as the
HOMO in porphine, as determined in ab initio calcula-
tions.?? To illustrate a particular geometrical effect we have

m4
5 T T T T T T y; 03
3

K -~

o e
Q//’ ;/ =1 P3
/ 112
__ o P 7133
3 / 49
~ ; 202
w , S22 2
+ / -

o s} %‘/”—— -

Vo (eV)

FIG. 7. Energies relative to the bottom of the well vs well depth. aand bas in
Fig. 3, volume = 251.25 A%, m and / are indicated on the right-hand side of
the figure and are defined as for Fig. 6.

also given some results for states with zero nodes. We will
refer to them as (0,0) states, since m is zero and, like o,states,
they are even with respect to reflection in the xy plane of the
potential.

B. Electron transfer between sites

The system used to model electron transfer between a
pair of molecules A and B consists of two wells (site A and
site B), each of the type described previously, and one elec-
tron (the “transferable” electron). The rate constant for the
electron transfer reaction

A- +B—>A+B~ : (8)
is given by Eq. (1), using the Golden Rule and Condon ap-
proximations. That rate constant is for transfer between sites
having specific and fixed mutual orientations and fixed rela-
tive separation distance. In order to use Eq. (1), nuclear co-
ordinates and an associated set of vibrational states have
been assumed to be present in the wells and in the interven-
ing medium (along with solvent orientational states), but will
not be dealt with explicitly in this paper. Recent reviews on
this aspect of the electron transfer problem are given in Ref.
30.

The zeroth-order problem is that in which the two wells
do not interact (e.g., the infinite-separation limit). The fol-
lowing two zeroth-order states are considered:

(1) The electronic state at site A, uninfluenced by site B:
The wave function for this state, denoted by ¥ 4,,., is given
by Eq. (6), with the origin of the coordinates at the center of
well A and with &, defining the boundary of well A, The ¥,
appearing in Eq. (3) and appropriate to site A is denoted by
Ve

(2) The electronic state at site B, uninfluenced by site A,
which has as its wave function ¥ 2....., given by Eq. (6), but
centered now on site B, and having ¥V, = V5.

The electronic matrix element Ty, , described in Ap-
pendix A for the present model, is

Toa = (Hypa — SanHaa V(1= |Sas]?); 9
where

Hop = = V3 [ W5 ¥hadrs,

Hou = = V2 [ 92,0 dra, (10a)

Sap =f gAY wB | dr. (10b)

The integrals in Eq. (10a) are over well B, and that in Eq.
(10b) is over all space.

C. Results of calculations of the electron transfer
matrix element

Calculations of the electron transfer matrix elément
were performed with various eigenstates of each of the two
separated wells with specific fixed mutual orientations. The
states and orientations chosen illustrate some general effects
of the shape of the potential well and orientation on the ma-
trix element.

Mutual orientations of the two wells are defined using

J. Chem. Phys., Vol. 81, No. 12, Pt. |, 15 December 1984
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FIG. 8. Coordinate system used to specify the mutual orientation of well A

and well B. The x axes of the wells are assumed parallel and lie in the plane

of the figure in all geometries. @ = 0° corresponds to the z axes of the wells
being superimposed.

the coordinate system in Fig. 8. Well A was assumed fixed
and well B was positioned at various values of R and @. In
the calculations given here the x axes of the wells are parallel,
as are the y axes. @ = 0° corresponds to the wells being dis-
placed along the z axis, and so being in a “face-to-face” con-
figuration. ® = 90° corresponds to displacement along the x
axis, i.e., in an “end-to-end” arrangement.

The values of a and b used (apart from those in Fig. 6)
were chosen as follows: @ was an estimate of the in-plane
radius of porphine, and is the same a as that used by Platt">
to treat porphine as a 2a X 2a square using the Schmidt box
model. The value of b was chosen so that the average thick-

ness of the well (= 4b/3) corresponded to the interplane

_3 1 T
\\
\\\\
\\\
_ T N (0,0) .
= RN
T ~N
S 3
NS
-1k \\\\ ]
(0,1) RN
\\\
~
-15 ! !
10 15 20 25
R(A)

FIG. 9. In|Hy, | as a function of center-to-center separation for a pair of
(0,0)[ = (0,0)] states in each well and for a pair of (0,7)[ = (0,1)] states. @ and
bareasin Fig. 3. E= — 1.1525 eV; ¥, is 2.5937 eV for the (0,0) states and
5.6540 eV for the (0,7) states. Solid lines are for @ = 90° and dashed lines for
o=0.

spacing in graphite, 3.4 A.>! Other values of b are of course
possible. The general features of the orientation dependence
are not qualitatively affected by the choice of b.

Tga and Hy, are compared for the wells at contact for
various states and various angles @ in Table I. It can be seen
that typically Ty, and Hy, agree to within 5%. The agree-
ment becomes even better with increased separation. The

“calculation of Hy, is much less time consuming than Ty, ,

and only values of Hy,, are given in the rest of the article. The
trends seen are unaffected.

Results as a function of distance and orientation are
plotted in Figs. 9-11 for pairs of (0,0) and (0,#) states. In
Figs. 9-12 V,, was chosen so that each state, independently of
m and of the parity, has an energy E = — 1.1525 eV. This

TABLE 1. Comparison of Hy, and Ty, at selected angles @ for potential wells at contact.>®

State 6 (deg) Hy, (eV) Hy, /Tga
0,0} 0 —0.263 1.000
30 —0.229 1.000
45 —0.182 1.006
60 —0.121 1.008
90 —0.045 1.004
0,7m) : 0 0.666 1.084
30 0.474 1.092
45 0.267 1.074
60 0.077 1.025
90 . —0.015 1.000
2,m) 0 0.481 1.007
30 0.040 1.069
45 0.109 1.029
60 0.299 1.035
90 —0.062 1.002
(4,7) 0 0.246 1.001
30 — 0.079 1.012
45 : 0.113 1.013
60 0.279 1.019
90 — 0.066 1.002

2The wells have a = 4.85 A, b = 2.55 A, and ¥, such that E = — 1.1525 eV. For (0,0), (0,7, (2,7), and (4,7),
states, ¥, = 2.5937, 5.6540, 10.6541, and 17.3530 eV, respectively. In the worst case Hy, is converged to

within 2% of the exact value. In general, the convergence is much better.

*@P, (¢ ) = cos me. Similar agreement of Hy, and Ty, is seen for @,, (@) = sin mg or any linear combination

of sin mg and cos mg.
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FIG. 10. |Hy, | asafunction of @ for a pair of (0,0} states. g, b, ¥;, and E are
as in Fig. 9 for the (0,0) states. Shown are results for a constant center-to-
center distance of 10 A and for a constant edge-to-edge distance of 5 A.

value of E yields states which cause |Hy, | to have an (ap- -

proximately) exponential decay whose slope of a In| Hy,, | vs

R plot is from 1.4 to 1.7 depending on the states involved.

These are in the range of some experimental estimates for the

decay of the electronic matrix element with distance for aro-

matic molecule—aromatic anion systems.' [The rate in Ref.

}{(a) is proportional to exp( — 2aR ), where 2« is roughly 1.1
A1)

In Table II Hy, is given as a function of distance for
® =0° and 90° for the (1,7), (2,7), and (4,7) states. Each
eigenvalue of states with 72> 0 is twofold degenerate. The
functions cos mg or sin mg or any linear combination of
them are eigenfunctions of the ¢ portion of the Schrédinger
equation and Hp, will in general depend on which of these
functions is chosen, as well as on the relative orientation of
the wells. In actual molecules of current interest, deviations
from cylindrical symmetry can remove this degeneracy. The
value of Hy, for any arbitrary @,, (i.e., any linear combina-
tion of cos mg and sin mg) for parallel xy planes may be
obtained from the H§, and H§, in Table II using a stan-
dard formula.** For brevnty of graphxcal presentation the
dependence on distance for states with m 5£0 is given in Fig.

® (degrees)

FIG. 11. Hy, asafunction of @ for (0,r}states.a, b, V,, and Eareasin Fig.9
for the (0,7) states. Shown are results for a constant center-to-center dis-
tance of 10 A and for a constant edge-to-edge distance of 5 A.

12 as a root mean square average of Hy, over ¥, and yy, the
angles of rotation of ¥4, and W8, relative to a fixed set of
axes located in well A ‘or well B, respectively,*?

1 ([ 12
(Hpp )y = [4_11'2—.£ A Hia(Vass )dYAd‘}’B]

Bal>+ [HEa V2 (11)

Nonaveraged Hy, ’s are also given in Table I for spheroids in
contact.

- lil. QUANTIZATION AND SINGLE-SITE WAVE

FUNCTIONS

The method used to obtain the wave functions of Sec. 11
is described next.

1

A. Expansion for the separated wave functions

The functions sought are solutions to Eq. (5), valid both

inside and outside the spheroidal well. Neglecting the
boundary conditions at £ = £, the wave function inside the
well can be separated as in Eq. (7a), yielding

TABLE IL. Hy, as a function of center-to-center distance for various {m, ) states at @ = 0° and 90°.*

State R(&) HES@ =0 HE, (0 =90 HEL (O =90
m 10 1.02( - 2) 4.16(—2) —4.78(—3)
15 2.69( — 4) 6.89( — 4) —6.33(—5)
20 9.16( — 6) 1.97(—5) — 1.46( — 6)
25 3.60(—7) 7.06( — 7) —4.39(~8)
@2m 10 3.81(—3) — 4.49(—2) 1.76(— 2)
15 6.08( — —4.76(— 4) 1.61( — 4)

20 1.45( — 6) —1.10{—5) 3.10{ — 6) -
25 4.36( — 8) —349(-7) 8.35( — 8)
(4,m) 10 3.77(—4) —429(—2) 3.68( —2)
5 15 2.02(— 6) —1.29(—4) 1.09( — 4)
20 2.24( — — 1.48(— 6) 1.17(— 6)
25 3.76{ — 10) —3.00(—8) T 2.19(—8)

“The states and wells used are the same as those in Table I. H §, is Hy, calculated using & (@) = sin mg in
each well. HE, is for &@,,(p) = cos mg in each well. The-number in parentheses is the power of 10 to be

multiplied by the number preceding it.
*In the @ = O orientation H g, = H§, .

J. Chem. Phys., Vol. 81, No. 12, Pt. |, 15 December 1984

i

K
2
;
4
:
k




Siders; Céve, and Marcus: Electron-transfer reactions 5619

R(A)

FIG. 12. In(Hy, ),, as a function of center-to-center distance for a pair of
(1,m[ = (1,1)] states in each well and for a pair of (4,7)[ = (4,1)] states. In all
. cases a, b, and E are as in Fig. 9. ¥, for the (1,7) states is 7.9296 and for the
{4,m) states is 17.3530 eV. Solid lines are for @ = 90" and dashed lines for
6=0.

d*e!, . |
d¢2m +m2¢:”= X » ‘ . .(12)
d dst,, |
- |
| d? oM ac 1si =0 13
5l k) i—m}”*‘ mn{ S mn =0, (13)
d dR',, ‘ |
gl
2 2
+{—dz—§2k2+ '"52 A:',,,,}R‘;,,,,=0 (14)

for the separated equations.

Any choice of k? (i.e., of energy for fixed V) yields a
sequence of discrete elgenvalues Al.,. The subscript m de-
scribes the elgenvalue in Eq. (12). The subscript n orders the
elgenvaluesﬂ, and was defined in Sec. IL. The ¢%, are odd
or even with respect to reflection in the xy plane as n — m is
odd or even. ‘

Equations (12) through (14) for a given k } yield a parti-
cular set of solutions ¥, of the form shown in Eq. (7a). The
function ¥2,,, neglecting the boundary conditions at £ = £,
can similarly be separated as in Eq. (7b). The related separat-
ed differential equations are identical to Egs. (12)-{14), with/
replaced by o. The angle function @,,(@)-is the same both
inside and outside the well so the superscripts i and o are
suppressed in Eq. (7).

The inner and outer radial functions R /,,(£;k7) and
R, (£k?2) were evaluated through their expansions in
spherical and modified spherical Bessel functions j, (dk,§ /2)
and k,(d |k,|£/2), respectively. The angular functions
St (7;k?) and S9,,(n;k 2) were evaluated through their ex-
pansions in the associated Legendre functions P (7). The
radial and angular functions R, and S, in Eq. (7), their
expansion coefficients, and the eigenvalues 4,,, are dis-
cussed by Flammer,?> who presents tables of both. Hodge**
has given an algorithm for obtaining them which was easily
programmed and was used for the calculations in the present
paper.® The radial and angular functions were converged to
at least four significant figures in all cases.?®

B. Quantization in the limit Vo—

In this case the sum for ¥ in Eq. (6) reduces to a single
term and the allowed energy levels are those for which k?
yields

R Esk]) =0, : (15)
since the wave function must vanish for £>&,. In the spheri-

_cal limit {b—a) the energy eigenvalues given in Fig. 6(a), are

simply those for which bk, is a zero of the nth-order spheri-
cal Bessel function. An oblate spheroidal square well has
been used as a model for the potential in which a nucleon

~ moves in the nucleus.?” In this context the energy levels have

been calculated previously in the limit ¥, = o.*®

C. Quanitzation for finite V,
The wave functions in this case must be writien as asum

* of inner or outer functions because both the angular and

radial parts of the wave functions depend on the energy.
Quantization is accomplished by requiring that the wave
function and its normal derivative be continuous at £ = £,
ie.,

11m Wmtu(§ﬂ’¢7)k = hm v, m(§77,¢, o (16)

' av/ : e
lim S5 (k) = lim R Emgik 1)
cer o o™ & -

Continuity of 3% /dn at the boundary § &, is ensured by

Eq. (16).
The following method was used to determine the energy

eigenvalues E,,, for which Egs. (16) and (17) are satisfied.

'Each outer angular function S, (7;k 2) was expanded inthe

complete set of inner angular functions S, (77;k 7), thereby
yielding ¥,,,, as an expansion in S’ (n;k ?) for both £<&,
and for £>£,. Equating the two expansions term by term at
§=2Eoyields ‘
C'=MC. ‘ (18)
In Eq. (18) C’ denotes.the column vector with elements
(Cm+s9clm+s+2’ ) and Co denotes (Cm+s’cm+s+2’ )
the C*’s and the C'’s being the coefficients appearing in Eq.
(6). Both vectors are of infinite dimension but are truncated
in practice. The elements of the matrix M depend on the
energy and on the quantum number m, and are given by

q!S >R mp(gO:k )

H= (19a)
’ mq IS mq mq(§0’k :2) *
where
p=m+2(—1)+s, j>1;
g=m+2k—1)+s, k>l (19b)

~ Similarly, continuity of the normal derivative at £ = £,
yields the matrix equation
c=MC, - (20)
where
IS >dR p(fo’k )/d§0
mq |qu )dR mq (§0a 12)/d§0 )
and p and g are again given by Eq. (19b). Equations (18) and
(20) yield

’
k=

(21)
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Cco=M"'M'C°. (22)

Thus, C°is an eigenvector of the matrix M~ 'M’ having
a unit eigenvalue. An energy eigenvalue and eigenvector C°
is found by iterating theenergy in Eq. (22) to obtain an eigen-
vector with unit eigenvalue. The inner expansion coefficients
C' are then obtained using Eq. (18) and this C°. The wave
functions are normalized by the factor 4,,,, in Eq. (6), 4,,.,
being (P2, |¥i.) y~!/2, where W*,, is the unnormalized
solution.

V. DISCUSSION

In this section the dependence of Hy, on distance and
the factors affecting.the orientation dependence of Hg, are
discussed.

Figures 9 and 12 give plots of In|Hg, | or In(Hg, ),, vs
distance and it is seen that Hy, decreases, as expected, pre-
dominantly exponentially with distance for all the states
considered. In Appendix B analytical expressions for Hg, as
a function of distance are derived for certain states of spheri-
cal wells.*® For spherical states analogous to the (0,0) states
of spheroidal wells, we find [Eq. (B10)]

#A}

Hy, = —R;‘;;exp( —aR), @
where A, is the radial normalization constant, given in Ap-
pendix B, for single-well wave functions. R is the distance
between the well centers, and a = ( — 2m, E /#)'/2. It can

be seen explicitly that the large-R asymptotic distance de- -

pendence of In|{Hy, | is linear.
For spherical states analogous to the spheroidal (0, 77)
states one has [Eqgs. (B11) and (B12)]

__c(r .1 _ — o0°
Hy, = ((aR 7 + R )3) exp(—aR) (©=90)(24)
and

_C(L L2 2 Ny — —0
Han = (5 + okt o) SRl —aR) (©=0)

(25)

The constant C'is defined by comparing with Egs. (B11) and
(B12) and using Eq. (B3).

In both orientations it is seen that In| Hy, | depends pre-
dominantly linearly on distance. The exponential depen-
dence arises from the overlap of the radial part of ¥4, a
modified spherical Bessel function, with ¥ B_Since the outer
spheroidal wave functions are composed of sums of modified
spherical Bessel functions a similar distance dependence of
Hy, is expected and is found.

In general, the functional form of the preexponential
part of the distance dependence of Hy, is dependent on the
potential functions at the two centers. For one-dimensional
square wells Hy, is proportional to an exponential function
of R.*° For transfer of an electron between two protons Hg,
is a polynomial in powers of R multiplied by an exponen-
tial.*! The dominant part of Hy, in all these cases is a decay-
ing exponential but the potential shape and nodal structure
of the wave functions cause slowly varying deviations from
purely exponential behavior.

In analyzing the orientation effects exhibited in Figs. 9

to 12, there are two principal factors to be considered, the
well shape and the nodal structure. They are discussed be-
low, initially for fixed center-to-center and then for fixed
edge-to-edge distance:

(1) In the (0,0) case (Fig. 9) there are no nodal complica-
tions, and the shape of the spheroidal well favors a larger

|Hpg, | in the @ = 90° orientation than in the @ = 0° at fixed

center-to-center distance.

(2) [The following results are intended to refer only to
(m,) states.] For a fixed center-to-center distance, as the
number of nodes in the ¢ portion of the wave function in-
creases (i.c., as m increases) the ratio |Hg, (@ = 90%)|/
|Hga (@ = 0°)] increases (cf. Figs. 9 and 12). The pairs of (0,)
states have larger |Hy, |’s at @ = 0° than at @ = 90°, while
all other (m,7) states have larger |Hy, |’s at @ = 90°. [Cf. Fig.
12, including the (2,7) case of Table I11.]

Result (1) is due to the smaller edge-to-edge distance
occurring in the ® = 90° configuration at a fixed center-to-
center distance, and illustrates one geometrical shape effect.

- We have also observed result (2) for Hg, for spherical-well

potentials.*” To understand these results we consider the
form of Hy, in the spherical case {cf. Appendix B). In es-
sence, with increasing m the wave functions tend increasing-
ly rapidly to zero along their z axes, and so the face-to-face
configuration becomes decreasingly favored. We have

Hyp = — f VEUR WAL,
well B

«f JrlBara)P(c0s 0510 % pa)

XV ki (Bara)P{cos 0,)9D,, (@ )dTs,

. where the subscripts A and B denote variables appropriate to

the functions at site A and B, respectively. / is the total angu-
lar momentum quantum number. Spherical states which
have similar nodal structures to the (m,7) spheroidal states
considered have / = m + 1. The variables (r,,0,.¢,) de-
pend implicitly on (rg,05,@5). Since the integration is over
well B the predominant angular dependence of Hy, on @ for
the orientations examined in this paper (xy planes of each
well parallel) arises from the function P *(cos 8, ) which is of
the form:

PTcos 0,)xsin™ 8, cos 8,, [=m+1, m>O0.

In the @ = O° orientation, the relevant 8, approach zero as
R— 0, for all values of ry, 05, and @y in well B, and so
sin™ @, goes to zero increasingly rapidly with increasing m
in the vicinity of well B. In the @ = 90° orientation, 8, ap-
proaches 90° as R— oo and cos 8, tends to zero in the vicini-
ty of well B, but for all (m,/) spherical states considered
cos @, is always raised to the first power. Therefore, as m
increases the @ = 90° orientation is increasingly favored
over the @ = 0° orientation. For the (m,/) = (0,1) state, only
the cos §, term occurs, and so the & = 0° configuration is
favored. Since the spheroidal wave functions are composed
of sums of Legendre polynomials P}, dominated by a few of
them, and because of the correspondence between 7 and
cos 6, this explanation is the anticipated one for this orienta-
tion dependence in the spheroidal case. Results {1) and (2) are
thus at least qualitatively explained.
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TABLE III. Normalized projections P2 of the (m,z,u) = (0,1,2) state in the limit 7—» o0.*

n e=0.1 e=0.5 e=0.9
0 0.0003 0.2153 0.4045
2 0.9997 0.7825 0.5637
4 0.0000 0.0022 0.0315
6 0.0000 0.0000 0.0004

*The quantity P2 is defined in Eq. (28); e is the eccentricity of the well at a constant volume of 251.25 A%, For
these calculations, ¥, = 10 eV. Because #n — m is even, P2 =0 for all odd n. The eccentricity of the wells in

Figs. 3-5 and 9-12 is ~0.85.

Although distances in experiments are often quoted as
center-to-center distances it is useful, because of the expo-

~nential decay of the wave functions, to examine the results at

constant edge-to-edge distances. The data presented are suf-
ficient to make comparisons of Hy, for fixed edge-to-edge
separation. Equal edge-to-edge separations in the two orien-
tations are obtained by comparing Hy, for which the center-
to-center separation is 4.6 A [=2(a — b )] larger in the
© = 90° orientation. For the systems examined in this paper,
Hy, was always larger at @ = 0° than at @ = 90° for m <4
and was roughly equal for m = 4 at the two @s.

The explanation presumably lies in a geometrical shape
effect: In the @ = 0° configuration the spheroids present a
larger cross section and smaller thickness to each other,
thereby favoring a higher overlap. However, the difference
in |Hg, |’s decreases with increasing m for the reason dis-
cussed above, and still larger m’s may reverse the favored
O = (’ result.

While we have largely considered the orientations
@ =90° and @ = 0 in this article for purposes of illustra-
tion, other orientations are also of considerable interest. In
fact, as m increases, maxima will occur in Hy, at @’s other
than @ = 0°[cf. (2,7) and (4,7) results in Table I]. The angles
at which these maxima occur are near the maxima in the
angular function P {*(cos 6 ) of the spherical state which has
similar nodal structure to the spheroidal state in question
[~ 55°for the (2,7r) states and ~ 63° for the (4,7) states]. It can
be seen in Fig. 6 that 6, equals @ and 6, equals 7 — @,
where 6, and @y are the spherical polar angles in each well,
so the maxima of Hy, as a function of @ are related to maxi-
main P["(cos 6, ) and P ["(cos &). This analogy with spheri-

- cal functions is adequate for the reasons stated previously.

We have also examined the angular dependence of the
spheroidal wave functions at R = «. At a large radial dis-
tance each of the outer radial functions has the same asymp-
totic form, independently of m or n:

RE(Ek)~—— e, 1o, (26)
ar

where a=|k,| = (2m, |E | /#*)'/2. Hence, the wave function
W,,,,“ at a fixed large r and fixed ¢ varies as

' [z CiSmlrk?)|e=ar (o), @21

where in Eq. (27) we set % = cos 6.
To exhibit the angular dependence of ¥,,,, at large »,
¥,... in Eq. (27) was projected onto the associated Legendre

polynomials P (cos 6). If the angular probability distribu-
tion at large » were insensitive to the nonzero eccentricity of
the spheroidal well one would find [(P7|¥,,.. )| equal to
zero except for a single value of n. Calculated projections,
defined as

2 |< mtuIPm>|2/ I( mtuIPm>|2
Pn ) = oo,
<Pm|Pm>'2 z (PmIPm>|2 r
(28)

are given in Table I1I for wells of three eccentricities, all with
avolume of 251.25 A3, The data clearly indicate that even at
r = oo the electron “sees” the nonsphericity of the potential
well.

V. CONCLUSION

A model electron transfer system involving nonspheri-
cal (oblate spheroidal) donor and acceptor sites and a trans-
ferable electron has been presented. The wave functions for
the isolated donor and acceptor sites and the matrix element
for electron transfer have been described and the results of
several calculations presented. Thus, a machinery has been
developed for the calculation of orientation effects, especial-
ly for electron transfer between large aromatic molecules:

The sample calculations illustrate the effects of well
shape and nodal structure on the orientation and distance
dependence of the electron transfer matrix element. They
indicate to a first approximation for the system and states
studied, that the geometrical shape effect, for a constant
edge-to-edge distance, causes |Hp, | to be larger for @ = 0°
(face-to-face configuration) than for ® = 90° (end-to-end ar-
rangement). This effect is reduced with increasing m, a result
explained by examining the long-range behavior of a pair of
spherical wells. This increasing m effect is expected to apply
to states similar to the HOMO or LUMO of large aromatic
molecules. ‘

When the results are presented instead at a given cen-
ter-to-center separation they are significantly influenced by
the greater edge-to-edge distance for the ® = 0° configura-
tion (face-to-face), so that now | Hy, | is largest at @ = 90° for
most of the states considered.
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APPENDIX A: GOLDEN RULE RATE EXPRESSION AND
MATRIX ELEMENTS

The rate expression used to characterize electron trans-
fer in this paper is a Golden Rule rate constant obtained by
using a Born-Oppenheimer analysis by Holstein*> and has
been presented in a paper by Kestner ez al.’® Another presen-

tation of the derivation which corrects some typographical
errors there is found in Ref. 44. The pertinent results are
particularized below to the present model.
— J

f YBYyByAd, (f WA'!I/BdT) (f WA'VB!I/Adf)

Siders, Cave, and Marcus: Electron-transfer reactions

The rate expression for transfer of an electron from site
4 to site B when only a single electronic state is assumed on
either site may be written in thp Golden Rule and Condon
approximations as

Ko =—ITBA12( 1 » o~ BT
4 Yave

X[ (v lva) POIE,, ~ E,)). @y

In Eq. (A1) v, denotes one of a set of nuclear wave functions
appropriate to the electron being localized at site A, v; de-
notes a similar set for the electron localized at site B,and @, -
is the nuclear partition function appropriate to the electron
being localized on site A. For the case of nonorthogonal elec-
tronic basis states, Ty, is equal to

TBA"'

2
1— 'f A R

We define
Hy, .=_j PEYBPAdr, S,y = f vAwRgr,

Ho = f A PREAL (A3)
For the type of potential used in this study, the integrals Hy,
and H,, over all space are reduced to integrals over well B,
since V'® is zero outside well B. One thus obtains Eq. (9).

APPENDIX B: SPHERICAL WAVE FUNCTIONS AND
THEIR ELECTRON TRANSFER MATRIX ELEMENTS

1. Spherical wave functions

In the spherical limit a—b, the wave function of Eq. (6)
assumes the simpler form given in Eq. (B1), where / is the
total angular momentum quantum number.

Wml (r 6’¢’;E )
o (B" k.(ab)/j,(Bb), r<b,
b is the radius of the spherical well,

B=[2m(Vo+E))"*/#% a=[-2mE|V¥% and
P,,(p) is any linear combination of cos mg and sin me with
the absolite square of the coefficients equal to 1. The angular
function P " is an associated Legendre polynomial. We have
used the definition of P}* given by Arfken.*’ The constants
A, and N,,, are normalization constants for the radial part of
the wave function and for the (m,/) spherical harmomc, re-

spectively:
3 4 { kiab)

b Py —-1/72
f 28R dr + f kary? dr]
0 b

JjiBb)
‘ (B2)
_ ) (l+m)' —12 ‘
le {21+ 1 (I m)l V] ’ (B3/)

(A2)

r - ‘
where vis 27 if m = 0 and 7 for m#£0. The ¥, given by Eq.

(B1)is clearly continuous at the boundary r = b. The value of
Ein a and B was determined by making d¥,,,,/dr continuous
there.*® To compare the spherical (m,/ ) states with the spher-
oidal (m,) states having similar nodal structure we use the
relation! = m + 1. Spherical (m,/) = (0,0) states correspond
to the (0,0) states used in Sec. II.

Theintegrals in Eq. (B2) can be evaluated in closed form
to yield

A, = {k,_,(ab Ky, ilab)— [kf(ab )/fzz(ﬂb)]

Xjr— 1186 Vs 1(Bb )}~ 32/ )2, (B4)
2. Analytical matrix elements for spherical wave
functions

It is possible to transform the matrix element Hy,,
which is defined as a three-dimensional volume integral in
Eq. (A3), to a two-dimensional surface integral. A method
due to Bardeen* is used to effect the transformation. '

For simplicity, the following discussion is restricted to
the special case in which the same wave function is used in
each well. That is, both wells have equal radius and depth,
and (m,/) is the same for both Y2, and WB,. For this case,
Hy, is defined as in Eq. (B5),

Hga=-V,

well B

In'well B, — V,¥®" equals (E — T)!I’B'andhenceEq (BS)

PAPPdr, . (BS)

-becomes

VAE - T)Wdrg. (B6)

Hy, =
. well B

The subscripts ml/ on ¥, and ¥ 2, have been suppressed.
Here T is the kinetic energy operator — #°V2/2m,. It is as-
sumed in what follows that the centers of the wells lie along

the z axis of a right circular cylindrical coordinate system,
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wellBatz= + R /2,andwellAatz= — R /2. The region

of integration may be extended beyond the boundary of well
B since (E — T)¥®* vanishes outside well B. In particular,
the region 20, will be used. Also, ¥ “E equals T¥  in any
region that does not include well A, so Eq. (B6) yields

_ =

f (PBV2PA _ AP )dr  (BY)

Gauss’ theorem applied to Eq. (B7) yields

_ﬁz 2T @ .
2me J;=0-I;=0

A 0P
WA
X( 9z

. |
_ g "gz )rdr dp.  (BS)

Gauss’ theorem is applicable to Eq. (B7) because the discon-
tinuity in V2% ® is merely a step discontinuity on the bound-
ary of well B. The integral in Eq. (B8) is written in right
circular cylindrical coordinates (7,@,z). The surface of inte-
gration is the plane z = 0, located midway between the two
wells.
Equation (B8) can be further simplified by making use
of the symmetry of the wave functions. In particular, ¥#
=(—1)—"W® and GWA/3z=(—1)""+'9¥B/3z at
z=0. We have ' o

27
0Jr=o0 -
p=0Jr= _
p A* A
x(w"’gz + oA ";; )rdra'¢7. (B9)

We have used Eq. (B9) to evaluate Hy, for three parti-
cular cases: (m,/ ) = (0,0), (0,1), and (1,1). Explicit expressions
are given in Egs. (B10)~(B12), wells B and A centered at
z= +R/2,onthelinex=y=0,

H —-—ﬁZAg (—aR) 0, I=0
= — exp{—aR), m=0, [I=0.
ba 2m,a’R P
(B10)
#3413 a’R?
B"‘=m,(z‘R3 (l+aR+ 2 )
Xexp{—aR), m=0, I=1, (B11)
#7341 ‘
Hgy=—————(14aR
ba 2m,a’R 3 T+ )«
Xexp(—aR), m=1, I=1. (B12)

These choices for (m,/ ) correspond for @ = 0° to spher-

oidal states (0,0), (0,7), and (1,0), respectively. (@ is defined in -

Fig. 6.) For @ = 90°, with parallel y axes, parallel z axes, and
superimposed x axes in the two wells, Eq. (B10} corresponds
to (0,0) states and Eq. (B12) to (0,7} states. For & = 90° and
(1,0) states, Eq. (B11) applies if @,,(¢) = cos mg, and Eq.
(B12) applies if @,, = sin me. It is possible, in principle, to
obtain analytical expressions for Hy, for states of higher m
values. However, exact numerical results can be easily ob-
tained for spherical wells and it was considered unnecessary
to derive exact analytical ones for the present purposes. Ap-
proximate analytic ones will be given elsewhere

25 T T T T
(0,1)(6=90°)
201 ©0,1(6=0°)]
| < 15} —
[99] Icn
?o ~ ok i
(0,0
Sk -
0
5 25

R(A)
FIG. 13. Dependence of — 25y, /V,Hp, for spherical wells on the separa-
tion distance R between the well centers. The well radius is 3.9145 A and

E = —1.1525 eV for all states. The spherical states are labeled as (m,/).
[Vo =2.489 73 eV for (m,]) = (0,0}, and ¥, = 4.199 03 eV for (m,/) = (0,1).]

3. Comparison of electronic matrix elements to overlap
integrals for spherical wells

In an earlier theoretical study of orientation effects'” it
was assumed that the matrix element Hy, is approximately
proportional to the overlap integral Sy, . For (m,/) = (0,0)
states (i.e., states for which / = m = 0 with spherical wells of

~ radius b ) the overlap is given by

A% exp(—aR)
2R

X[ 4a;2 +\l —e > L (R — 2b)]

Spall =0)=

'~ (B13)

Using Eq. (B10) for Hy, , one finds the ratio of Sy, to Hy, is
given by

;’ VOSBA _ _ p—2ab
2, —1+4|E| [l e + a(R —2b)],
=1=0 ' (B14)

For sphencal (m !/} = (0,1) states at orientations @ = 0°
and @ = 90°, Hy,, is given by Eqgs. (B11) and (B12). No closed
form expressions for Sy, are available, but these overlap
integrals are readily evaluated numerically. The results are
shown in Fig. 13.

Since Hy, is the overlap of the two functions in well B
‘multiplied by 72 the quantity plotted would be approxi-
mately constant if S;, were proportional to Hy, . It is seen
that the ratio grows linearly with distance and depends on
orientation. Over short variations of distance proportional-

‘ity may be an adequate approximation but for large varia-
tions it clearly breaks down.
~ Onthebasisof the spheroidal results in Table I we again
expect Ty, ~Hy, to within 10%, at least for the results in
Fig. 13, for which R>10 A. On this basis, Fig. 13 also repre-
sents a plot of the ratio — VS, /2Ty, .
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