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ABSTRACT

The role of chaotic and quasiperiodic behavior of isolated
molecules is discussed. The quantum analog of classical quasi-
periodic states appears to be relatively well understood. A pos-
sible quantum analog of classical chaotic behavior is described,
using overlapping quantum mechanical Fermi resonances as a way
of generating irregularities. The relation of these Fermi reso-
nances to avoided crossings in eigenvalue plots and to various
treatments of intramolecular dynamics in the chemical literature
is outlined.

INTRODUCTION

In this lecture we review several aspects of the role of chaos
in the behavior of isolated molecules:

(1) interests of chemists in the properties of isolated molecules

(2) possible quantum analogs of classical chaotic and quasiperiodic
motion, and the relation to quantum mechanical 'overlapping
Fermi resonances' and overlapping avoided crossings,

(3) relation of 'overlapping Fermi resonances' to theories of
various experimental results.

Since we have discussed some of this material elsewherel'4 we

shall abbreviate this written version of the lecture.
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RELATION TO CHEMISTRY

The relation of chaotic and quasiperiodic nonlinear behavior to
the properties of isolated molecules is twofold: (a) chemical
reactive behavior, (b) spectral properties. As an example of (a),
we note that the rate of dissociation of a molecule, such as

C,H, — 2CH, , (1)
and isomerization of a molecule, such as
CH;NC — CH,CN , (2)

depends on the vibrational energy of the molecule and on whether
the motion is quasiperiodic or chaotic. (More precisely it depends
on the quantum mechanical analogs of these properties.) Spectral
properties, absorption and fluorescence, will also depend on these
properties.

A review of some of the experimental methods of excitation of
the vibrations of molecules, the experimental results, and the
relevant statistical theory of unimolecular dissociations and iso-
merizations are given in ref. 1-4. The statistical theory ("RRKM"
theory) frequently used in interpret’ilti‘i)n of the experiments is in
agreement with most of these data. 1~

Recently, the possible ability of a heavy metal atom to partially
isolate dynamically Eh% péxrts of a molecule that are attached to it
has been discussed. 4 9, © If this isolation can be accomplished it
will offer a possibility of intramolecular laser selective chemistry,
in which one selectively excites one part of a molecule and causes
mainly that part to dissociate or isomerize. Normally, the vibra-
tional energy of excitation would, at least in the absence of the
heavy atom, rapidly redistribute between the various parts of the
molecule (in ~ 1 picosecond). A discussion has been givgn else-
where of the heavy metal atom studies, both experiment® and
theory. 2, 6

ON THE QUANTUM ANALOG OF QUASIPERIODIC AND CHAOTIC
BEHAVIOR

We first recall that nonlinear classical resonances provide an
effective way of exchanging energy between vibrational modes, a
point stressed by many authors (e. g., Chirikov, Ford). It offers
a route to classical chaos. The role of these nonlinear resonances
in coupling vibrational modes is very evident in refs. 2 and 6.

The semiclassical connection between classical quasiperiodic
states and corresponding quantum states was treated in a practical
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way fog the first time for systems with hard-walled potentials by
Keller! and for systems with smooth potentials by Eastes® and by
Noid. © Methods were presented there for calculating action inte-
grals in nonseparable systems. (-9 Since that time a variety of
semiclassical quantization procedures have been introduced and
are complementary to the original trajectory method (cf. ref. 3
for review). The quantum analog of classical quasiperiodic
behavior seems fairly clear (e. g., 1-3): (1) One expects regular
eigenvalue sequences, each sequence corresponding to some mode
being excited and each sequence with a smoothly varying sgacing.
In the terminology of Percival the spectrum is 'regular’. 1 Of
course, in a system with many coordinates and hence with many
eigenvalue sequences it may be very difficult or impractical to
determine if there are regular sequences of eigenvalues, even if
the behavior is actually quasiperiodic. (2) Secondly, one expects
that in this quantum analog the wavefunction § (or | |2) will have
a regular pattern, e.g.® Sometimes, as in the case of the 99-
quasibound state Henon-Heiles system the wave pattern is rather
complicatedll but still regular.

In the quantum analog of classical chaotic states one expects
irregular spectra, as Percival has noted 0 (no recognizable . |
regular sequences of eigenvalues), and irregular patterns for |¢ z,
One mechanism for generating these irregularities, we have noted,
lies in "Fermi resonances'', illustrated by avoided cgois'ﬂgs %n
plots of eigenvalues versus perturbation parameters = 4 1
We amplify on this point next:

We note that near-degeneracy of two eigenvalues in itself has
no implications regarding energy transfer between two modes.
However, if this near-degeneracy disappears when a suitable
perturbation parameter is varied, i.e., if the two eigenvalues
participate in an 'avoided crossing', a wavepacket constructed
from a sum of two such states is associated with a quasiperiodic
energy transfer between two modes. The two modes are reason-
ably well described by the two states away from the avoided
corssing (e.g., of Figs 4 and 5 of ref. 12). As discussed else-
where, 4-%.isolated avoided crossings, like isolated classical
resonances, do not yield chaos, but overlapping "avoided crossings"
("overlapping Fermi resonances'’) yield the two attributes of the
chaotic behavior mentioned above--irregular spectra and irregular
gatterns fé)r1 |2 These avoided crossings are discussed in refs.

-4 and 12-13.

We have also noted that classical chazos may be a necessary,
but not a sufficient for '""quantum chaos'' “ Sufficient conditions
have been proposed (ref. 2 and references cited therein) for the
case where a quantum Fermi resonance is generated by a classical
resonance, (i. e., for a quantum resonance which occurs in a

Hamiltonian having a classical resonance in the same phase space

295



region), These conditions have been phrased in quantitative ly
and are2 (1) that the width of the classocal resonances be larger
than h; otherwise the splitting at the avoided crossing becomes
very small, (2) that the overlap of neighboring resonances in
action space be greater thanh; otherwise there will not be a quan-
titatively significant overlap of the corresponding quantum Fermi
res onances (avoided crossings), and (3) that the center of the
resonance be sufficiently close b to a relevant quantum state.

Insight into quantum mechanical avoided crossings and thereby
into the associated quantum Fermi resonances, when generated
by classical resonaPceis ,has been obtained in a recent semi-
classical analysis. 2,14 The splitting of the eigenvalues in the
vicinity of the avoided crossing was calculated in this way from
data on classical trajectories and was found to be in reasonable
agreement with that calculated numerically by diagonalizing a
large basis set. An interesting feature was that the classical
trajectories themselves generated, in the 'primitive semiclassical’
treatment, eigenvalue plots which intersect rather than avoid each
other. 12, The quantum mechanical splitting was associated,
thereby, with a classically-forbidden process. 14,15 Use of low
order perturbation theory led to a functional form of a semi-
classical Hamiltonian suitable for the latter analysis. 14 The
various parameters in this Hamiltonian were then evaluated from
the phase integrals associated with the two sets of trajectories and
with the separatrix separating the two types of trajectories. The
Hamiltonian led to a Mathieu's differential equation of fractional
order for the semiclassical wavefunction, whose eigenvalues
yielded the eigenvalues for the system. 14 A phase integral analysis
of the problem has also been made. 15 Such studies delineate
further the relation between these aspects of quantum and classical
behavior.

RELATION OF AVOIDED CROSSINGS (FERMI RESONANCES) TO
THEORIES OF INTRAMOLECULAR ENERGY TRANSFER

The concept of overlapping avoided crossings (overlapping
quantum mechanical Fermi resonances) is related to a number of
concepts that are used to interpret various types of experimental
data. For example, in interpreting data on the dependence of the
infrared multiphoton absorption cross-section for molecules as a
function of absorbed energy, a series of one-quantum exchanges
to other vibrational modes has been é)roposed to model the absorp-
tion coefficient at higher energies. 16 Such a model, involving the
coupling of many modes by resonances, corresponds to 'over-
lapping Fermi resonances''

A second example is in an interpretation of the linewidths in
CgHg in which a CH overtone vibration is excited and assumed to
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lose its energy by coupling to an HCC mode in a 2:1 Fermi reso-
nance, and that this HCC mode is in turn, coupled to other nearly
resonant modes. 17 Again, such a mechanism would correspond
to the idea mentioned above of '"overlapping Fermi resonances''.
If the linewidth of the high CH overtones is correctly modelled by
this energy loss (T,-type) mechanism, and if indeed the line is not
inhomogeneously broadened, then the linewidth indicates an energy
loss rate from the excited CH vibration in the subpicosecond
region.

A third example of overlapping Fermi resonances may occur
in Jensen's discussion, in this symposium, of the multiphoton
ionization of atom.

In summary, a picture is beginning to emerge in which the
quantum analog of classical quasiperiodic motion is, we believe,
reasonably clear. The many successful examples of gemiclas ical
quantizatign, beginning with the cited work of Keller, ! Eastes
and Noid, are consistent with this view. The quantum analog of
classical chaotic behavior is also, we believe, becoming clearer,
at least qualitatively. One route to this quantum chaos is that of
'overlapping' quantum mechanical Fermi resonances.
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