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An expression is derived for the pressure dependence of a chemical activation unimolecular rate constant at a fixed total
encrgy and angular momentum in terms of the distribution of unimolecular lifetimes. This rate constant is shown to have
a certain insensitivity at low pressures to the form of the lifetime distribution. A kinetic model is then introduced based
on a finite rate of intramolecular vibrational energy redistribution. The model provides an analytical explanation of a recent
finding in a trajectory calculation for a particular chemical activation system, that the chemical activation unimolecular
rate constant at low pressures equals the r = 0 microcanonical value even though the unimolecular lifetime distribution is
highly non-RRKM. A similar result is predicted for a class of such systems. Implications are described.

1. Introduction

Many different unimolecular reaction rates have been inter-
preted with RRKM theory, ¢.8., ref 1-4. Rapid intramolecular
vibrational energy redistribution is tactily assumed in the theory,
the dissociation probability thus becoming random. Thereby, the
“lifetime distribution™>*? (defined later by eq 3) for a fixed total
energy and angular momentum has the form of an exponential

P(7) = k exp(—kr) 1¢)]

where k is the RRKM rate constant. Information on initial states
prepared nonrandomly has been determined from chemical ac-
tivation experiments at high pressures.’® For a few reactions the
unimolecular decay of a molecule of given energy has been ob-
served in real time in a collision-frec environment.!*'* Nonex-
ponential decay or implications thereof are commonly referred
to as non-RRKM behavior.'"*

Recently the unimolecular dynamics of a mode! alkyl reaction
H—C—C — H + C=C was studied by quasiclassical trajecto-
ries.’ Excitation was by a chemical activation step, H + C=C
— H—C—C, and unimolecular lifetimes were calculated for the
resulting vibrationally excited H—C—C species. This lifetime
distribution was found to be strongly nonexponential and hence
non-RRKM:; most noticeably, it showed a long-time exponential
tail. Nevertheless and perhaps surprisingly, the pressure depen-
dence of the collision-averaged chemical activation rate constant,
derived with the simplest assumptions (strong and random col-
lisions), was found to be relatively insensitive to the non-RRKM
features of the trajectory lifetime distribution. In particular, the
calculated chemical activation unimolecular rate constant, defined
later in eq 2 for an ensemble of systems of fixed total energy,
changed by only a factor of 4 over 4 orders of magnitude change
in pressure (from the low- to high-pressure limit). Moreover, the
trajectory-calculated chemical activation unimolecular rate con-
stant in the low-pressure limit agreed very closely with that of
the trajectory-calculated “r = 0” value'® of the microcanonical
(equilibrium) rate constant, kyc(0).

In the present paper we (1) derive an expression for the pressure
dependence of a chemical activation unimolecular rate constant
in terms of the distribution of lifetimes (section 2), obtain simple
results for this rate constant in the high- and low-pressure limits,
and use them (section 3) to extract kinetic properties from the
trajectory data, (2) introduce a kinetic model for intramolecular
energy transfer based on a decomposition of the intramolecular
phase space into two or three regions (section 4) (a “two-state”
type of model has been used previously to interpret experimental
data for some chemical activation reactions!?), (3) show that a
three-state kinetic model agrees with the trajectory-calculated
distribution and show that the equality cited above, namely, of
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kpmic(0) with the low-pressure limit of the chemical activation
unimolecular rate constant, which occurs in spite of a highly
non-RRKM behavior, is not an accident but rather a property
obeyed by certain kinetic models (section 4), and (4) consider the
molecular aspects of the subdivided phase space, and suggest a
tentative molecular assignment of the phase space as a basis for
a more detailed physical analysis of future trajectory studies
(section 4). The results are discussed and summarized in section
5.

2. Rate Constant Expressions for Collision-Averaged
Unimolecular Rate Constant

The phenomenological collision-averaged chemical activation
rate constant is defined as'’

k=wD/S )
where w is the collision frequency per molecule, D is the probability

of forming decomposition products, and S is the probability of
forming collisionally stabilized reactant. To study the pressure
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Figure 1. Plot of the relative riumber of molecules vs. time for a model
H-C-C Hamiltonian. The line with long dashes is the prediction based
on eq | with k = kyc(0). The solid line is the fit of the three-state model
(three exponentials).!® The linc with short dashes is the fit of the two-
state model two exponentials).

dependence of the chemical activation unimolecular rate constant,
it is useful to relate D and S to the “lifetime distribution” function
P(7), defined in the literature as?

1 dN(7)
N@©O) dr

In the simplest analysis one assumes that collisions between bath
molecules and the energized reactant are uncorrelated and that
each collision results in stabilization. (One can modify the latter
assumption for the case of “weak” collisions."?) The probability
that the reactant aveids a collision for time 7 is W(r):'®

W(7) = exp(-wr) (4)
Since P(7) dr is the probability that a reactant molecule dis-

sociates in the time interval 7, 7 + dr, the total probability of
dissociation is

P(r) =~ &)

D= _]; “Wr) P(r) dr )
The probability of stabilization S equals 1 - D, i.e.
S=1- _]; W(r) P(r) dr (6)

The above equations yield the chemical activation unimolecular
rate constant k as a function of w, i.e., of pressure.

Of particular interest are the low-pressure (w — 0) and high-
pressure (w — ) limits of the unimolecular rate constant. From
€q 3-S5 one obtains

D=l-w j; "[N(x) / N(O)Je~r dr )

The expression for k in the low-pressure limit 4? is found by writing
k equal to wD/(1 — D): Recognizing that D — 1 as w — 0, we
see that k? equals lim w/(1 - D) as w — 0. After setting the w
= 0 in exp(-wr) in eq 7, one obtains

K = N(0)/ J’; “N(r)dr  (w—0) ®)

In the high-pressure limit S — 1 as w — =, so that the k in
eq 2, denoted by k=, equals wD. Only the extremely small r's
contribute to the integrand in eq 5 when w — =, as one sees from
eq 4. Thus, it is found that k= equals wP(0) fo"e™" dr, i.c.

k*=P0) (0—=) ®

From eq 9 it is seen that k™ is equal to the “lifetime distribution
function™ P(r) evaluated in the limit + — 0. In contrast, eq 8
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Figure 2. Depiction of the classical phase space for the two-state model.
Either region I (eq 10a) or II (eq 18) is excited in the chemical activation
step.

shows that k0 does not provide direct information about P(7) at
r— . A feature of eq 8 is that it does not require an exponential
N(7) for k° to approximately equal the 7 = 0 microcanonical
unimolecular rate constant, kp;c(0).

3. Comparison with an HCC Trajectory Study

The distribution of lifetimes in ref 15 N(7)/N(0) is plotted in
Figure 1 (solid line) for the trajectory-calculated unimolecular
dissociation H—C—C — H + C==C, the latter being initiated
by the step H + C=C — H—C—C. The chemical activation
unimolecular rate constant in the low-pressure limit A° calculated
from trajectories by using eq 8 is found to be 0.91 ps™'.!* This
value may be compared with a kyc(0)'¢ of 1.0 ps~. (This dif-
ference between the rate constants is within the statistical errors
of the trajectory calculations.) The curve predicted by assuming
an exponential lifetime distribution [eq 1 with k = ky;c(0)] is
also given in Figure 1. Figure 1 clearly shows that the near
equivalence of these two rate constants results not from an ex-
ponential trajectory lifetime distribution of eq 1, but rather from
similar areas under the trajectory-calculated and exponential-
calculated curves of N(7)/N(0) vs. 7.

We note in passing that, because the chemical activation ratc
constant at r = 0 was substantially greater than the microcanonical
value at 7 = 0 (4 vs. 1 ps7!), there must have been an initial
nonrandom excitation of the H-C-C phase space in the chemical
activation. This phenomenon has been considered in detail in
previous work. 31419

A kinetic model for treating the nonrandom distribution is
described next.

4. Kinetic Models for Nonexponential Decay

A model in which the intramolecular phase space of the reacting
molecule is treated as containing two or three regions, each with®
its own kinetic behavior, will be referred to as a two- or three-state
model. Two-state and three-state models, both including steps
for intramolecular energy transfer, are described below for in-
terpreting the nonexponential distribution of lifetimes. Indeed,
it has been shown in ref 15 that a model with three time expo-
nentials is needed to represent the trajectory data. However, the
two-state model is instructive and qualitatively applicable and is
considered first.

Two-State Statistical Model. We assume here that the phase
space of the excited molecule can be divided into two parts, as
depicted in Figure 2. The intramolecular relaxation and uni-
molecular dissociation processes are then written as

initiation — N, (10a)
k3
N, ‘_T N, (10b)
3
ky
Ny — products (10¢)

where k, and k; are intramolecular energy-transfer rate constants.
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RRKM and Non-RRKM Behavior in Chemical Activation

In the context of the present study region I is the one initially
excited by the chemical activation process and may include, as
a minimum, extensive excitation of the newly formed C-H bond.
Region II would then consist of the remaining phase space.

Solving the system of first-order kinetic equations for the system
of eq 10b and 10c¢, with the initial conditions N; = N(0) and N,
= 0, N(0) being the initial number of HCC molecules, one obtains
the number of surviving HCC molecules at time 7:

N(1)/N(0) = [(ky = A)e™ = (ky = M)e™] /(A = Ag)  (11)

where A, and A, are the cigenvalues of the lincar system in eq 10b
and 10c and satisfy

MN+th=k+k+k MA; = kiky (12)

Using eq 9 and evaluating P(r) in the limit + — O from eq 3
and 11 one obtains the high-pressure chemical activation rate
constant

k-=k1 (l3)

The chemical activation unimolecular rate constant in the low-
pressure limit is found from eq 8 and 11 to be

ko= klkg/(k2 + k;) (14)

There are three rate constants ky—k;, in eq 11-14 and two
quantities (k* and &) known from trajectory data. The remaining
independent constant k, (or k) is then chosen to provide the best.
two-state fit of the calculated N(r)/N(0) to the trajectory data.

We next deduce an expression for kyqc(0), the microcanonical
rate constant at 7 = 0. In terms of the kinetic scheme of eq 10b
and 10c kyc(0) is obtained by assuming a microcanonical
equilibrium of N, and N, at T = 0, N, and N,°% namely one
assumes k,N,¢ = k,N,¢. Since the rate at = = 0 for this system
is kyN,¢, kpic(0) equals k N,/ (N,® + Ny°). One thus finds that

kmc(0) = kyk3/(ky + ky) (15)

Comparison of eq 14 and 15 shows that for the mechanism given
by eq 10 the expression for the low-pressure chemical activation
rate constant A° is identical with that for the microcanonical rate
constant at 7 = 0.

N(7)/N(0) determined with the two-state model is compared
in Figure 1 with the HCC trajectory results and with the prediction
based on eq 1 where k now equals kyc(0). The parameters in
eq 11 chosen as described earlier, are k, = 3.97, k, = 1.17, and
k; = 0.295, all in ps'. Overall, the fit is far superior to the
prediction based on eq 1. It does not, however, account for the
long-time tail of the N(7)/N(0) distribution in Figure 3. For
this, a three-state model, given in the next section, is needed.

The two-state model in eq 10 serves to approximate one aspect
of a variety of chemical activation reactions and ensuing uni-
molecular dissociations. However, other reaction schemes are
possible, for example where the decomposition occurs not to re-
dissociate the newly formed bond, as in eq 10c, but rather to
dissociate another bond. In this case the region initially excited
is not the one which leads directly to the decomposition. An
alternative scheme to eq 10a—10c then is one in which eq 10a is
replaced by a reaction in which region II is initially excited

initiation — N, (16)
but in region I continues to be the exit channel. One then finds
1/ = 1 Jkyye(0) + 17k k= =0 a7n

The results in eq 17 clearly do not apply to the trajectory results
of ref 15, both because according to eq 17 k= = 0 and k®
kumic(0). Because of the nature of the initial excitation and the
dissociation in ref 15, this alternative model should indeed be
inappropriate for those data.

The kinetic model which has been used in the interpretation
of some experimental chemical activation studies'® is a variant
of the above: a phase space region I is initially excited, and two
different products are obtained, one arising from region I and the
other from region II.
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Figure 3. Plots of log N(7)/N(0) vs. time for a quasiclassical simulation
of HCC dissociation following chemical activation. The solid circles
denote the trajectory results.’s The line with long dashes is the prediction
based on eq 1 with k = kygc(0). The line with short dashes is the fit of
the two-state model, eq 11. The solid line is the fit of the three-state
model, eq 21.

Three-State Statistical Model. In the potential energy surface
used in ref 15 there is at high CH excitations a near 2:1 resonance
of the CH and CC stretching vibrations in HCC. (A more realistic
surface is expected to have, instead, at high excitations, a near
2:1 resonance of the CH stretching and HCC bending.) Thus,
it is possible that the relevant phase space is divided from a kinetic
point of view into three regions, involving, respectively, excitation
of the CH stretch, excitation of the CC stretch, and excitation
of the HCC bend. More generally, the several regions might be
the bond stretch of the newly formed or initiaily excited bond,
some subsystem with which it is in a near resonance, and the
remaining coordinates. To this end, and to interpret the trajectory
results in ref 15, a particular “three-state” model is considered,
in which one merely supplements the scheme in eq 10b and 10c
with the step

LR
NN (18)

The value of kyc(0) is now readily shown to be
kwic(0) = ki /it + ky/ky + ku/ks) (19)

instead of eq 15.

The set of linear equations for Ny, N,, and N,, plus initial
conditions, contains in the solution five constants: the three
eigenvalues in the time-dependent exponentials, Ay, A;, A3, and
two preexponential factors. Solution of the linear equations yiclds

AAAy = kykaks
5
A|+A2+X3=Izlk‘

NEAMT N = E kT (D)) (20)
and, for N(7)
[kzks + kgks + k;k‘ + )‘,2 - Al Z k,]e'N'

N(r)
NO) i T (v-2) @n
i .
The equations yield
K = kmic(0) k® =k (22)

The rate constants k,—ks for the three-state model can be
determined from the values of k°, k=, and the three A;s, by using
the above equations. Values of k°, k=, Ay, A, and A, for the HCC
trajectory study have been reported previously.!’ The resulting
values for the k;'s are, in units of ps™!, k; = 3.97, k, = 1.14, k;
= 0.796, k, = 0.226, and ks = 0.117. The fit of the three-state
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model to the trajectory data for N(7) is compared with those of
the two-state model and the ky;c(0)-based curve in Figures 1 and
3. The smallness of the k, and ks values is responsible for the
long-time tail in these plots.

When a model which is the three-state analogue of eq 17 is
considered, one finds

10 = 1/kaic(0) + 1 /ky  k*=0 (23)

instead of eq 22.

The three-state model in eq 10 and 18 could also be applied
to the lifetime studies of an ensemble that was initially micro-
canonical rather than being produced by chemical activation. One
could also test it to see whether the &;'s so obtained in a numerical
fit to the trajectory data agree with those obtained above from
a fit to the chemical activation study. However, an accurate
lifetime distribution curve for the former was not given in ref 16.

S, Discussion and Summary

We have seen in ref 15 that a highly nonexponential lifetime
distribution in a quasiclassical simulation of HCC unimolecular
decomposition gave, nevertheless, chemical activation rate con-
stants at low and high pressure which agreed with (k°) or were
not too different from (k°, factor of 4) the value of kyc(0), the
microcanonical rate constant at 7 = 0. Two- and three-state
statistical models are described in the present paper, for which
a slow energy transfer occurs between regions of phase space.
They have a highly nonexponential lifetime distribution for both
the microcanonical and chemical activation ensembles but, nev-
ertheless, give a chemical activation rate constant in the low-
pressure regime which agress analytically with the microcanonical
7 = 0 value. The three-state model was used to fit accurately the
temporal behavior, including the long-time tail.'$ The model may
also apply to other forms of excitation, such as high CH overtome
excitation after a time interval for quantum-mechanical
“dephasing” of the initial excitation.

Although such kinetic models may have a correct physical basis
for some systems, in other cases it may be necessary to formulate
a model which allows nonstatistical transitions in the phase space
that are not simply described by kinetic schemes. This situation
could arise when the intramolecular motion is so highly correlated
that a trajectory undergoes infrequent (and hence nonstatistical)
transitions between different types of motion which may themselves
be nearly quasiperiodic or chaotic.2?

The individual trajectories in ref 15 were not studied in sufficient
detail to see whether one can identify three regions in phase space
(if they indeed exist), for example, in terms of the various ex-
citations of the coordinates mentioned earlier. In such a study
one could use the spectral trajectory method,? applied to each
of the relevant coordinates, to determine from the spectral in-
tensities in the neighborhood of various frequencies the temporal
behavior for occupation of the various parts of phase space.

Some caution is needed in the use of classical trajectory studies.
The long-time tail in Figures 1 and 3 was due to “nearly trapped”
trajectories. Quantum mechanically the system could also escape
from such a trapping by tunneling to other parts of phase space.
Again, another quantum-mechanical effect, one which could occur
particularly at short rather than at long times, is a dephasing of
a time evolving wave packet. The relation between the quan-
tum-mechanical treatment and a kinetic model has been discussed
in ref 22 for radiationless transitions.

We have not commented on the relation between kyc(0) and
the RRKM-calculated value of k appearing in eq 1, since this has
been done in ref 19. The two values agree, within the error of
the harmonic count in the calculation of kgrryy in that reference.
(A more accurate phase space count could be used to see the
precise relation.) This result is not unexpected, since there was
no recrossing? of the transition state in those trajectorics. The
microcanonical distribution of lifetimes in ref 16 was highly
non-RRKM, a result consistent with the kinetic models used here
and consistent with an equality of kpc(0) and kpgxm-
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