The highly excited C-H stretching states of CHD₃, CHT₃, and CH₃D

Gregory A. Voth, R. A. Marcus, and A. H. Zewail^{a)}
Arthur Amos Noyes Laboratory of Chemical Physics,^{b)} California Institute of Technology, Pasadena,
California 91125

(Received 9 July 1984; accepted 11 September 1984)

Unlike many other molecules having local modes, the highly excited C-H stretching states of CHD₃ show well resolved experimental spectra and simple Fermi resonance behavior. In this paper the local mode features in this prototype molecule are examined using a curvilinear coordinate approach. Theory and experiment are used to identify the vibrational state coupling. Both kinetic and potential terms are employed in order to characterize the coupling of the C-H stretch to various other vibrational modes, notably those including D-C-H bending. Predictions are also made for CHT₃ and the role of dynamical coupling on the vibrational states of CH₃D explored. Implications of these findings for mode-specific and other couplings are discussed.

I. INTRODUCTION

The highly excited vibrational states of C-H stretching modes in many molecules have been the subject of considerable interest in recent years.1 The local mode description1 has been used to treat these C-H oscillator systems and has had considerable success in doing so. Of particular relevance to the present paper are the experimental results of Perry et al.2 which, for CHD₃, indicate the specific coupling of the C-H stretch to a bending normal mode. For other molecules, this type of coupling has been discussed previously by several authors.3 The local mode description has recently been extended to handle such couplings,4 using curvilinear coordinate systems. 5-7 These coordinate systems present a natural way of treating molecular vibrations and provide physical insight into the coupling mechanisms between vibrational states. To such vibrational couplings have been attributed the calculated breakdown of localized C-H stretching vibrations, 1-4,8,9 the observed linewidths of aromatic ($\sim 100-200 \text{ cm}^{-1}$) and aliphatic ($\sim 20 \text{ cm}^{-1}$) local mode transitions, 4,9-11 and the postulated onset of extensive intramolecular relaxation. 4,9,12,13

With these aspects in mind, the highly excited C-H stretching vibrations in CHD₃, CHT₃, and CH₃D are studied in the present paper. Recent experimental evidence² has suggested that in CHD₃ there are extremely narrow linewidths (< 1 cm⁻¹) and very limited state mixing at a high level of C-H vibrational excitation. An analysis of this spectral data was performed in terms of a simple Fermi resonance between the C-H stretch and a bending normal mode.² In the present paper, using a curvilinear coordinate treatment, a theoretical analysis is presented for the vibrational eigenstate problem which includes kinetic and potential energy coupling terms. An explanation for the observed spectrum of CHD₃ is proposed and, in turn, predictions are made for the high overtone C-H stretching spectrum of CHT₃. In addition, the difference between the relatively simple CHD₃ spectrum and the highly congested spectrum² for CH₃D is discussed in terms of the different dynamical vibrational mode couplings in these two molecular species.

UNITS)

15, 2, >

WAVELENGTH (nm)

An outline of the present paper is as follows: A brief review of the relevant experimental data² is given in Sec. II. In Sec. III, the curvilinear coordinate formalism is applied to CHD₃ and CHT₃, and couplings between the C-H stretching vibration and other normal modes of these molecules are described. In Sec. IV, the dynamical coupling of the C-H stretching states to bending normal modes in CH₃D is examined. Concluding remarks appear in Sec. V.

II. CHD_3 AND CH_3D : SUMMARY OF THE EXPERIMENTAL RESULTS

Recently, using photoacoustic spectroscopy, the high C-H overtones of methane and of its isotopic derivatives CH₃D, CH₂D₂, and CHD₃ have been studied by Perry et al.² Some results obtained for CHD₃ and CH₃D, both of which have very different spectra, can be summarized as follows:

The CHD₃ overtones corresponding in zeroth order to five, six, and seven quanta in the C-H stretch have remarkable simplicity.² For v=5 and v=6, the spectra have a simple two level Fermi resonance structure (e.g., Fig. 1 for v=6). For v=7, the spectrum is more congested, but it appears to be essentially a three level Fermi resonance.² When the quantity $\Delta E_{ov}/v$ is plotted vs v, ΔE_{ov} being the excitation of the C-H overtone in excess of the zero-point

16,>

l eigenstate problem which includes kinetic and potennergy coupling terms. An explanation for the observed rum of CHD₃ is proposed and, in turn, predictions are for the high overtone C-H stretching spectrum of In addition, the difference between the relatively simble of the highly congested spectrum? For D is discussed in terms of the different dynamical vibration of the different dynamical vibration.

FIG. 1. Experimental v = 6 C-H overtone spectrum for CHD₃ (taken from Ref. 2).

a) Camille and Henry Dreyfus Teacher-Scholar.

b) Contribution no. 7057.

H stretch and may be ignored in the present analysis.

The remaining doubly degenerate E symmetry normal mode is found in the calculations to be strongly coupled to the C-H stretch, with an average off-diagonal matrix element of the $\tilde{G}_{i,i}$ coupling term of ~ 100 cm⁻¹ in the range v = 3-6. Moreover, the harmonic frequency ω_5 of this normal mode satisfies a 1:2 nonlinear resonance condition with the C-H vibrational frequency at the v = 5 and 6 level of excitation. As a result, the states $|v\rangle|0,0\rangle$ and $|v-1\rangle|2,0\rangle$ in this energy regime are approximately degenerate in zeroth order. This bending mode involves the E symmetry deformation of the H-C-D angles and it thus interacts strongly with the C-H stretch via the curvilinear G-matrix coupling effect. The physical origin for this effect is due to the effective mass for the H-C-D bend, as described by the inverse of the G-matrix term, being increased when the local mode is excited and the C-H bond is lengthened. No other normal modes of the molecule satisfy both a low order resonance condition and the condition that the H-C-D bend be included in their motion.

One further possibility to be considered is the coupling of the pure C-H stretching state to A_1 symmetry combination states by terms like $G_{ij}(r)P_iP_j$ in Eq. (3.3b). These combination states have the form $|v-1,...,v_i,v_j,...\rangle$, where the normal mode quantum numbers other than v_i and v_i are zero. The combination state having $v_5 = 1$, $v_6 = 1$ is the only state found to have both an approximate zeroth order degeneracy and a nonnegligible interaction with the pure state $|v,0,0,...\rangle$. In the calculations, it becomes important only for a level of excitation in the C-H oscillator corresponding to at least seven quanta in zeroth order. For six quanta in the C-H stretch, this combination state is sufficiently detuned from the C-H stretching state energy so as to have only a small second order effect on the splitting ($< 5 \text{ cm}^{-1}$) and the relative intensity (<3%) of the Fermi resonance found in this spectral region.

The results of the above analysis indicate that the C-H stretch selectively interacts with the doubly degenerate bending normal mode with harmonic frequency $\omega_5 = 1335$ cm⁻¹, thereby simplifying the quantitative treatment of the C-H stretching states (i.e., only three degrees of freedom need be considered). However, since the magnitude of the pure curvilinear G-matrix interaction ($\sim 100 \, \mathrm{cm}^{-1}$) is larger than what is observed experimentally ($\sim 35 \text{ cm}^{-1}$), the potential energy is postulated to have an important cancellation effect within these matrix elements. Because the available high order force constants^{20(a)} relevant to the Fermi resonances at v = 5 and 6 were found to be inadequate, only first order effects (in terms of degenerate perturbation theory) were treated. As will be shown later for CHD3, this first order treatment is useful in determining both the energies and the relative intensities of the pure C-H stretching mode states and of combination levels involving the C-H stretch and the H-C-D bending mode.

The Hamiltonian for the coupled C-H stretch and doubly degenerate bending mode is

$$H = H_0 + V' \tag{3.8}$$

with

$$H_0 = H_m(r,p) + \frac{1}{2} [(P_1^2 + P_2^2) + \omega_5^2 (Q_1^2 + Q_2^2)]$$
 (3.9)

and

$$V' = \frac{1}{2} \left[\tilde{G}_{5,5}(r) - 1 \right] (P_1^2 + P_2^2) + \frac{F_3}{2} r (Q_1^2 + Q_2^2) + \frac{F_4}{4} r^2 (Q_1^2 + Q_2^2), \tag{3.10}$$

where Q_1 and Q_2 are the degenerate pair of normal mode coordinates for the bending mode with conjugate momenta P_1 and P_2 , $H_m(r,p)$ is the C-H stretch Morse oscillator Hamiltonian, and F_3 and F_4 are the cubic and quartic force constants, respectively, for the interaction of the C-H stretch with the bend.

The basis states of the zeroth order Hamiltonian [Eq. (3.9)] are the states $|v\rangle|n,l\rangle_5$, where $|v\rangle$ are the Morse oscillator eigenfunctions¹⁸ for the C-H stretch and $|n,l\rangle_5$ is the doubly degenerate harmonic oscillator basis¹⁹ for the v_5 bending mode. The Fermi resonances in CHD₃ are presumed to involve the pure C-H stretching state $|v\rangle|0,0\rangle_5$ of A_1 symmetry interacting with the A_1 combination state $|v-1\rangle|2,0\rangle_5$. The relevant matrix elements for the bending normal mode are (in units of $\hbar=1$)¹⁹:

$$\langle n,0|P_1^2 + P_2^2|n+2,0\rangle = (n+2)\omega_5/2,$$
 (3.11a)

$$\langle n,0|Q_1^2+Q_2^2|n+2,0\rangle = -(n+2)/(2\omega_5),$$
 (3.11b)

$$\langle n,0|P_1^2 + P_2^2|n,0\rangle = (n+1)\omega_5,$$
 (3.11c)

and

$$\langle n,0|Q_1^2+Q_2^2|n,0\rangle=(n+1)/\omega_5.$$
 (3.11d)

The 2×2 Fermi resonance matrix for this treatment is

$$\begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} = \begin{pmatrix} H_1 + V_{11} & V_{12} \\ V_{12}^* & H_2 + V_{22} \end{pmatrix}, \tag{3.12}$$

where (with 6 = 1)

$$H_1 = (v - \frac{1}{2})\omega_1 - (v - \frac{1}{2})^2\omega_1 \chi + 3\omega_5,$$
 (3.13a)

$$H_2 = (v + \frac{1}{2})\omega_1 - (v + \frac{1}{2})^2\omega_1 \gamma + \omega_5, \tag{3.13b}$$

$$V_{11} = \frac{3\omega_5}{2} \langle v - 1 | [\widetilde{G}_{5,5}(r) - 1] | v - 1 \rangle$$

$$+\frac{3}{\omega_5}\left(\frac{F_3}{2}\left\langle v-1|r|v-1\right\rangle\right.$$

$$+\frac{F_4}{4}\langle v-1|r^2|v-1\rangle$$
, (3.13c)

$$V_{22} = \frac{\omega_5}{2} \langle v | [\widetilde{G}_{5,5}(r) - 1] | v \rangle$$

$$+\frac{1}{\omega_c} \left(\frac{F_3}{2} \langle v | r | v \rangle + \frac{F_4}{4} \langle v | r^2 | v \rangle \right), \qquad (3.13d)$$

and

$$V_{12} = \frac{\omega_5}{2} \langle v - 1 | \widetilde{G}_{5,5}(r) | v \rangle$$
$$- \frac{1}{\omega_5} \left(\frac{F_3}{2} \langle v - 1 | r | v \rangle + \frac{F_4}{4} \langle v - 1 | r^2 | v \rangle \right). \tag{3.13e}$$

The Morse matrix elements of the normal mode-transformed G-matrix element $\tilde{G}_{5.5}(r)$ [Eq. (3.4)] were calculated

by numerical quadrature, as in Appendix A. The matrix elements of r and r^2 , known analytically, 18,21 are discussed in Appendix B. Both the cubic and quartic terms, involving the Morse matrix elements $\langle v|r|v-1\rangle$ and $\langle v|r^2|v-1\rangle$, respectively, were found to be nonnegligible for v=5 or 6. The force constants in these terms were determined by a nonlinear least squares parameter fit²² of the calculated values to the experimental data for v=1 through v=6. This fit was performed using a 2×2 matrix, as in Eq. (3.12), to calculate the energies of the C-H overtones and combinations at each energy level through v=6. Using a grid of values for F_3 and F_4 , the minimum of the least squares function was found. Since only first order effects were considered in this treatment, the cubic and quartic force constants obtained in such an least squares analysis represent a first order estimate.

The kinetic and potential perturbation contributions to the diagonal elements in Eq. (3.12) also contributed in this calculation. The contribution from the G-matrix terms to the matrix elements V_{ii} represents, in effect, a modification of the bending mode's harmonic frequency ω_5 , ^{23,24} namely,

$$H_{ii} = E_{ii}^{m} + (n+1)\omega_{5}' + \langle v|V_{pot}'|v\rangle,$$
 (3.14a)

where

$$\omega_{5}' = \omega_{5} \left\{ 1 + \frac{1}{2} \left[\langle v | \widetilde{G}_{5,5}(r) | v \rangle - 1 \right] \right\}$$
 (3.14b)

and E_v^m is the energy of the Morse oscillator with v quanta. Since the diagonal element $\langle v|\tilde{G}_{5,5}(r)|v\rangle$ is always less than unity (i.e., the effective mass of the bend increases with increasing v), the effective harmonic frequency ω_s' of the bending mode decreases with increasing v. For the CHD₃ molecule, the potential energy term has a similar effect except that it is somewhat more complicated in form. Both contributions give rise, as a result, to an effective anharmonicity for the C-H overtones. ^{23,24} For the point of view of that interpretation, the values of ω_1 and $\omega_1 \chi$ taken from experimentally measured Birge-Sponer lines may deviate somewhat from the "true" Morse parameters for the C-H mode, as is shown later for CHD₃.

The effect of the coupling of the above $|v-1\rangle|2,0\rangle_5$ states to A_1 symmetry states like $|v-2\rangle|4,0\rangle_5$, with four quanta in the bending mode, was also examined. These couplings can, in principle, have a large effect, as was suggested recently for benzene.⁴ In the case of CHD₃, however, these states are strongly detuned from the principal Fermi resonance due, in part, to the diagonal first order energy correc-

tions just mentioned [Eqs. (3.14a) and (3.14b)]. Moreover, these states seem to be particularly sensitive to second order corrections from off-resonant states such as $|v-1\rangle|4,0\rangle_5$ or $|v-3\rangle|4,0\rangle_5$. These corrections tend to lower the energy of these states even more so that they are further detuned from the principal Fermi resonance.

To explore such effects, diagonalizations of 27×27 secular determinants for the Hamiltonian [Eq. (3.8)], including states with four quanta in the bending mode and as many as nine C-H stretching quanta, were performed. Since it is computationally expensive to use a 27×27 matrix diagonalization in the determination of the force constants F_3 and F_4 by the nonlinear least squares fitting procedure described previously, two separate approaches to this problem were taken. The first approach was to determine the values of F_3 and F_4 using a 2×2 matrix such as Eq. (3.12) at each level of C-H excitation (v = 1-6) in conjunction with the force constant fitting procedure discussed previously. A 27×27 matrix was subsequently diagonalized utilizing the force constants thus obtained. The second approach was to extend the nonlinear least squares fitting procedure to include the diagonalization of a 3×3 matrix (including the states with four bending quanta) at each level of C-H excitation. The force constants obtained in this fit were then used in a diagonalization of a 27×27 secular determinant.

The results of all four calculations are shown in Table II together with the experimental values. It is evident that the results for the simple 2×2 treatment and the subsequent 27×27 diagonalization are consistent with the experimental values and with each other (i.e., the results do not differ significantly between the 2×2 and the 27×27 treatment). Interestingly enough, as one can see from Table II, the 3×3 treatment does not fit the experimental data as well nor are the 3×3 results consistent with the subsequent 27×27 matrix diagonalization using those parameters. These results indicate that the simple 2×2 procedure is the best way to fit the experimental data.

Both 27×27 matrix diagonalizations exhibit the strong second order detuning effect of the $|v-2\rangle|4,0\rangle_5$ states mentioned previously. For the diagonalization utilizing the parameters obtained from the 2×2 fitting procedure, this energy shift for the v=6 region was estimated from second order nondegenerate perturbation theory to be

$$\Delta^{(2)} = \frac{|V_{12}|^2}{E_1^{(0)} - E_2^{(0)}} + \frac{|V_{13}|^2}{E_1^{(0)} - E_3^{(0)}} \simeq -80 \text{ cm}^{-1},$$

TABLE II. Comparison of theoretical results.

	v = 5 splitting ^c (cm ⁻¹)	v = 6 splitting ^c (cm ⁻¹)	v = 5 rel. intensity	v = 6 rel. intensity
Expt.	133	74	18 ± 8%	55 ± 10%
2×2	117	79	9%	43%
27×27°	131	78	7%	40%
3×3	99	59	13%	97%
27×27 ^b	138	84	7%	25%

^{*}Calculated using parameters from 2×2 fit.

^b Calculated using parameters from 3×3 fit.

^c Fermi resonance splittings between eigenstates of $|v\rangle|0,0\rangle$ and $|v-1\rangle|2,0\rangle$ parentage.

TABLE III. Molecular parameters for CHD₃(CHT₃).

	Morse harmonic freq. $\omega_1(\text{cm}^{-1})^a$	Morse anharmonicity $\omega_1 \chi (\text{cm}^{-1})^{\text{b}}$	ν _s mode harmonic freq. (cm ⁻¹) ^c	Cubic force constant F_3 (a.u.) ^d	Quartic force constant F_4 (a.u.) ^d
CHD ₃	3133	58.08	1335	- 2.03×10 ⁻⁵	1.83×10 ⁻⁵
CHT,	3133	58.08	1273	-1.82×10^{-5}	1.64×10^{-5}

^a From Ref. 20(a).

where 1 denotes the state $|4\rangle|4,0\rangle_5$, 2 denotes the state $|5\rangle|4,0\rangle_5$, and 3 denotes the state $|3\rangle|4,0\rangle_5$. The exact 27×27 treatment, in this case, has a shift for this state of $\simeq -120 \,\mathrm{cm}^{-1}$ instead of $-80 \,\mathrm{cm}^{-1}$. Due to this detuning effect, we conclude that the states with four quanta in the bend are not important to the observed Fermi resonances.

C. Results for CHD₃

The energies of the C-H stretch overtones for CHD₃, as calculated from the 2×2 fitting procedure given in Sec. III B and utilizing the molecular parameters from Table III, are compared with the experimental results in Table IV. The results are in good agreement with experiment for both the pure C-H stretching states and the combination levels. The corresponding theoretical least squares Birge-Sponer line (in cm⁻¹) through the v = 6 overtone is given by $\Delta E_{ov}/v$ = 3047 - 57.56v. This line was determined by using a linear least squares fit to the calculated points for v = 1 through 4 and fits the theoretical data very well except at v = 5 and 6, where a deviation is expected due to the onset of the Fermi resonances. As compared with Ref. 25, where a fit was obtained for the v = 1-4 C-H overtones, there is, from a phenomenological point of view, two new pieces of experimental data, namely the splittings at v = 5 and 6, and two new parameters introduced into the fit. Of course, this does not require that the model will automatically fit the data, but it does nevertheless. The main virtue, we believe, of the present analysis is that it describes the physics of the problem. In particular, it is found that the treatment of the dynamical (i.e., G-matrix) coupling does not quantitatively explain the

Fermi resonances, i.e., the force constants F_3 and F_4 should be included. Such force constants are ultimately to be compared with *ab initio* calculations. Other treatments which either do not employ curvilinear coordinates and/or potential energy contributions of cubic order or higher can be considered to be more phenomenological.

In Table V, the relative intensities for the two Fermi resonances at v=5 and v=6 are listed along with the off-diagonal matrix elements and the detunings of the diagonal matrix elements. In calculating these relative intensities, the dipole moment for the C-H stretching transitions was assumed to be a function of only the C-H oscillator coordinate r. ^{1(e)} As a result, the relative intensity of the two states involved in the Fermi resonance is determined by the overlap of the zeroth order pure C-H stretching state with the actual eigenstates. The relative intensity is thus defined as

$$I_r = (b/a)^2 \times 100\%,$$
 (3.15)

where

$$a = |\langle v, 0 | \psi_0 \rangle|, \quad b = |\langle v, 0 | \psi_2 \rangle|. \tag{3.16}$$

Here, $|v,0\rangle$ denotes the zeroth order pure C-H stretching state $|v\rangle|0,0\rangle_5$, ψ_0 is the eigenstate of $|v\rangle|0,0\rangle_5$ parentage, and ψ_2 is the eigenstate of $|v-1\rangle|2,0\rangle_5$ combination state parentage. These relative intensities in Table V are in reasonable agreement with the experimental results, but the discrepancy is larger than that for the splittings. This discrepancy may reflect slight inaccuracies in the zeroth order detunings and/or off-diagonal electrical anharmonicity terms contained in the actual dipole moment function. A theoretical spectrum (at v=6) employing the above results

TABLE IV. Energies of C-H overtones and combinations for CHD₃(CHT₃).

State ^a	CHD ₃ expt. ^b (cm ⁻¹)	CHD ₃ calc. (cm ⁻¹)	CHT ₃ calc (cm ⁻¹)
1,0>	2 992	2 990	2 990
2,0>	5 865	5 864	5 865
3,0>	8 623	8 624	8 624
4,0)	11 267	11 269	11 269
4,2>	13 668	13 684	13 558
5,0>	13 801	13 801	13 800
(5,2)	16 156	16 149	16 029
6,0)	16 230	16 228	16 218

^{*}Refers to the zero-order parentage of the state. This notation denotes the states $|v\rangle|n,0\rangle$ (with l=0 in all cases).

^bFrom Ref. 25.

^eCalculated from the quadratic force constants given in Ref. 20(a).

^d As determined from least squares parameter fit.

^bTaken from Ref. 2.

TABLE V. Relative intensities, off-diagonal matrix elements, and diagonal detunings for CHD3 and CHT3.

Molecule and energy level	Expt. relative intensity ^b	Calc. relative intensity	Off diagonal matrix element V_{12} (cm ⁻¹)	Diagonal detuning δ (cm ⁻¹)
CHD ₃ υ = 5	18 ± 8%	9%	– 32	98
CHT_3 $v = 5$	***	4%	– 47	223
CHD_3 $v = 6$	55 ± 10%	43%	- 36	31
CHT_3 $v = 6$		9%	- 52	159

^a The diagonal detuning is defined from Eq. (3.12) as $\delta = (H_2 + V_{22}) - (H_1 + V_{11})$.

and the measured excited state rotational constants from Ref. 2 is shown in Fig. 3. The main discrepancy with the experimental spectrum (shown in Fig. 1) is due to the differences in the relative intensities.

The diagonal first order perturbation contributions [Eq. (3.13d)] to the pure C-H stretching energies are given in Table VI. One sees that, according to the results, these terms contribute even for the fundamental transition. Furthermore, the G matrix and the potential energy contributions are of comparable magnitude for all excitations. Indeed, the effective Morse parameters $\omega_1 = 3105$ cm⁻¹ and $\omega_1 \chi = 57.56$ cm⁻¹ calculated from the theoretical Birge-Sponer line for CHD₃ are quite different from the actual values given for the Morse oscillator in Table III. This difference reflects the diagonal first order perturbation effect. Thus, as noted before, parameters for the C-H bond Morse oscillator potential functions obtained from experimental Birge-Sponer plots should be used with this in mind: they are effective parameters.

The procedure used for calculating the C-H overtones and Fermi resonance combinations was extended to the v=7 region where now both the v_5 and v_6 modes couple to the C-H stretch. A 3×3 matrix was used with the zeroth order A_1 symmetry basis states (with energies $E_{c^0} < E_{b^0} < E_{a^0}$)

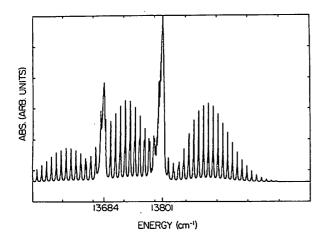


FIG. 3. Theoretical v = 6 C-H overtone spectrum for CHD₃.

$$|a^0\rangle = |6\rangle|2,0\rangle_5|0,0\rangle_6, \tag{3.17a}$$

$$|b^{0}\rangle = |7\rangle |0,0\rangle_{5} |0,0\rangle_{6},$$
 (3.17b)

$$|c^{0}\rangle = |6\rangle \left[\frac{1}{\sqrt{2}} (|1, -1\rangle_{5}, |1, 1\rangle_{6} + |1, 1\rangle_{5} |1, -1\rangle_{6})\right],$$
(3.17c)

where the notation $|v\rangle|n,l\rangle_5|n',l'\rangle_6$ represents the Morse oscillator eigenket for the C-H mode, the $|n,l\rangle$ eigenket for the fifth normal mode ($\omega_5 = 1335$ cm⁻¹), and the $|n,l\rangle$ eigenket for the sixth normal mode ($\omega_6 = 1070$ cm⁻¹), respectively. The term

$$V_{56} = \widetilde{G}_{56}(r)(P_{5,1} P_{6,1} + P_{5,2} P_{6,2}) + F_{56}r(Q_{5,1} Q_{6,1} + Q_{5,2} Q_{6,2})$$
(3.18)

was added to the perturbation given in Eq. (3.10). 20(b) This perturbation term is responsible for the coupling of the $|c^0\rangle$ state to the $|a^0\rangle$ and $|b^0\rangle$ states. The subscripts 5 and 6 have been added here to distinguish between the two normal modes while, as before, the subscripts 1 and 2 in Eq. (3.18) refer to the degenerate pairs of coordinates and momenta for these vibrations. Diagonalization of the 3×3 matrix gave perturbed states $|a\rangle$, $|b\rangle$, and $|c\rangle$ with splittings $\Delta_{bc} \sim 110$ cm⁻¹ and $\Delta_{ab} \sim 55$ cm⁻¹. The experimental results from Ref. 2 give splittings of ~ 120 and ~ 60 cm⁻¹, respectively. No quantitative comparison of the relative intensities could be made since they were not obtained experimentally for this level. Nevertheless, the theoretical results suggest that the intensity may be distributed approximately uniformly over the three levels in qualitative agreement with what may be seen from visual inspection of the spectrum at v = 7.2

D. Results for CHT₃

The theoretical treatment of Sec. III A for the v=1-6 transitions in CHD₃ was applied to CHT₃ to investigate the effect of the isotopic substitution D to T. It was again concluded that the fifth normal mode is the only vibration interacting strongly with the C-H stretch by G-matrix coupling and that the simplified treatment of Sec. III B may be applied to CHT₃. The cubic and quartic force constants found

^bTaken from Ref. 2.

TABLE VI. Calculated first order diagonal corrections to the local mode states in CHD₃.

Zero-order local mode state v	Ğ-matrix contribution (cm ^{−1})	Potential energy contribution (cm ⁻¹)	Total correction (cm ⁻¹)
1	- 20	- 21	- 41
2	– 34	– 35	– 69
3	 48	– 47	– 95
4	– 62	– 59	- 121
5	– 76	– 69	- 145
6	– 90	– 78	– 168

for CHD₃ were transformed to the CHT₃ normal mode coordinate system with the aid of the transformation in Appendix C. The results for the energies are given in Table IV. The relative intensities of the Fermi resonances, the off-diagonal matrix elements, and the detunings of the diagonal matrix elements are given in Table V. This model predicts significantly less intensity sharing by the combination states in the v=5 and 6 regions than in CHD₃ due to a detuning of the Fermi resonance: the fifth normal mode for CHT₃ has a harmonic frequency of only $\omega_5 = 1273$ cm⁻¹ as opposed to 1335 cm⁻¹ for CHD₃. This effect far outweighs the contribution due to the increased magnitude of the off-diagonal matrix element (as seen in Table V) and results in a much "purer" C-H stretching state at v=5 and 6.

This analysis of CHT₃ raises two interesting questions. First, the density of vibrational states would obviously be higher for CHT₃ than for CHD₃. Thus, CHT₃ presents a case in which the experimental verification of the results predicted by this model would indicate that the density of states need not predominate in determining the degree of state mixing in structually similar molecules. Rather, the degree of mixing of states may be determined primarily by a specific physical mechanism, as in the case of CHD₃. Second, CHT₃ has the possibility of having 1:3 nonlinear resonance conditions between the C-H stretch, an A_1 mode ($\omega_3 = 905$ cm⁻¹), or a doubly degenerate E mode ($\omega_6 = 900 \text{ cm}^{-1}$). This resonance condition is possible around the v = 3 or 4 level of excitation in the C-H mode. However, the sixth mode involves almost entirely T-C-T bending and C-T stretching motions and so is not expected to be physically coupled to the C-H stretch. The third mode, on the other hand, involves both the H-C-T and the T-C-T bending, but, as was found for the A_1 symmetry modes in CHD₃, it has no Gmatrix element providing coupling to the C-H stretch. In addition, the resonant $|v-1,3\rangle$, states of either mode cannot couple directly to the pure C-H stretching states via the perturbation terms like those given in Eq. (3.10) as long as the harmonic oscillator basis is a good one for those normal modes. Experimental observation of significant 1:3 Fermi resonances in this molecule would indicate that the simple theoretical/physical picture presented in Eqs. (3.8)-(3.13e) needs extension. Possible extensions include a dynamical dependence of the G-matrix term in Eq. (3.10) on the normal mode Q_6 or the presence of significant fourth order force constants proportional to rQ_3^3 or rQ_6^3 in the potential energy function.

A curvilinear coordinate treatment is next used to estimate the vibrational state mixing in CH₃D.

IV. THEORY FOR CH₃D A. Vibrational analysis

The CH₃D molecule has three equivalent C-H oscillators, so it is useful to prediagonalize the CH₃ local mode problem¹ before treating the interactions of these modes with the bending normal modes. The properly symmetrized zeroth order local mode basis states for C_{3v} symmetry were found using the method of Halonen and Child.^{21,25} For the sake of brevity, these basis states are not presented here, but they consist in general of the A_1 , A_2 , E_a , and E_b linear combinations of different permutations of the unsymmetrized local mode state

$$|v_1,v_2,v_3\rangle$$
, (4.1)

where the subscripts 1, 2, and 3 refer to the Morse oscillator basis states for the three C-H bonds. The corresponding C-H local mode Hamiltonian is

$$H_m = H_m^0 + V_m', (4.2)$$

where

$$H_{m}^{0} = \sum_{i}^{3} H_{i}(p_{i}, r_{i})$$
 (4.3)

and

$$V'_{m} = \sum_{i>j}^{3} G_{ij} p_{i} p_{j} + \sum_{i>j}^{3} F_{ij} r_{i} r_{j}, \qquad (4.4)$$

and may be diagonalized in the symmetrized local mode basis. In these equations, $H_i(p_i,r_i)$ is a Morse oscillator Hamiltonian with curvilinear bond displacement coordinate r, and conjugate momentum p_i ; G_{ij} and F_{ij} are the off-diagonal Gmatrix element and the off-diagonal quadratic force constant, respectively, for two C-H stretching local modes i and j. The G-matrix element used in this calculation may be found analytically, 16 the quadratic stretch-stretch interaction force constant was obtained from the Gray and Robiette potential energy surface, 20(c) and the Morse parameters are the same as those used for CHD₃ (Table III). The eigenvalues and eigenfunctions of this Hamiltonian were calculated for manifolds with v = 4, 5, and 6 total quanta in the C-H stretches.^{21,25} Couplings by the perturbation term (4.4) between manifolds of states with different total v were neglected since they are far off resonance. Each manifold of states has four independent blocks of A_1 , A_2 , E_a , and E_b symmetry, and the properly symmetrized "pure" local mode states (i.e., symmetrized linear combinations of $|v,0,0\rangle$) are nearly degenerate for all blocks that included such states (there is one pure state each in the A_1 , E_a , and E_b blocks).

The interaction of the prediagonalized local mode

states with the bending degrees of freedom was next calculated. This step is usually omitted in the customary local mode treatment 1,21,25 but, as was learned in the CHD₃ analysis, is useful in understanding the breakdown of localized C-H stretching vibrations. As a first step, the interaction of the CH₃ local modes with the bending vibrations was calculated using only the G-matrix coupling technique presented in Sec. III A. Due to the limited experimental resolution of individual vibrational lines at v=6 in this molecule, a treatment of the potential energy contributions to the state coupling was not attempted.

The description of the normal modes was made by performing a standard normal mode analysis ¹⁶ on the quadratic Hamiltonian

$$H_N = \frac{1}{2} \sum_{i,j} G_{ij}(\mathbf{x}_0) p_i p_j + \frac{1}{2} \sum_{i,j} F_{ij} q_i q_j, \qquad (4.5)$$

where the primes on the summations indicate a summation over all internal symmetry coordinates q_i (see Table VII) other than the three C-H stretching coordinates. This treatment defines three normal modes with harmonic frequencies $\omega_3=1366~{\rm cm}^{-1},~\omega_5=1524~{\rm cm}^{-1},~{\rm and}~\omega_6=1222~{\rm cm}^{-1}$ that are in approximate 1:2 nonlinear resonance with the C-H stretches. The fifth and sixth vibrations are both doubly degenerate modes of E symmetry while the third vibration is the A_1 symmetry umbrella mode. $^{20{\rm (a)}}$ As for CHD3, the C-H stretching coordinates are treated separately when defining the zeroth order oscillator basis.

The curvilinear Hamiltonian used for this problem, containing the third, fifth, and sixth normal modes and the C-H local modes, is

$$H = H_0 + V' + V_d, (4.6a)$$

where

$$\begin{split} H_0 &= H_m + \frac{1}{2} \left(P_{3,1}^2 + \omega_3^2 Q_3^2 \right) \\ &+ \frac{1}{2} \left[\left(P_{5,1}^2 + P_{5,2}^2 \right) + \omega_5^2 (Q_{5,1}^2 + Q_{5,2}^2) \right] \quad (4.6b) \\ &+ \frac{1}{2} \left[\left(P_{6,1}^2 + P_{6,2}^2 \right) + \omega_6^2 (Q_{6,1}^2 + Q_{6,2}^2) \right], \\ V' &= \frac{1}{2} \left[\widetilde{G}_{3,3} (r_1, r_2, r_3) - 1 \right] \end{split}$$

TABLE VII. Internal symmetry coordinates for CH₃D.ª

$$q_{1} = r$$

$$q_{2} = r_{1}$$

$$q_{3} = r_{2}$$

$$q_{4} = r_{3}$$

$$q_{5} = \frac{1}{\sqrt{6}} (\alpha_{1} + \alpha_{2} + \alpha_{3} - \beta_{1} - \beta_{2} - \beta_{3})$$

$$q_{6} = \frac{1}{\sqrt{6}} (2\alpha_{1} - \alpha_{2} - \alpha_{3})$$

$$q_{7} = \frac{1}{\sqrt{6}} (2\beta_{1} - \beta_{2} - \beta_{3})$$

$$q_{8} = \frac{1}{\sqrt{2}} (\alpha_{2} - \alpha_{3})$$

$$q_{9} = \frac{1}{\sqrt{6}} (\beta_{2} - \beta_{3})$$

$$+\frac{1}{2}\sum_{n=1}^{2} \left[\widetilde{G}_{5,5;n}(r_{1},r_{2},r_{3})-1\right] P_{5,n}^{2}$$

$$+\frac{1}{2}\sum_{n=1}^{2} \left[\widetilde{G}_{6,6;n}(r_{1},r_{2},r_{3})-1\right] P_{6,n}^{2}$$

$$+\sum_{n=1}^{2} \widetilde{G}_{5,6;n}(r_{1},r_{2},r_{3}) P_{5,n} P_{6,n},$$
(4.6c)

and the diagonal matrix element of the V_d potential energy term is written as

$$\langle v_3 | V_d | v_3 \rangle = -(v_3 + \frac{1}{2})^2 \omega_3 \chi_3.$$
 (4.6d)

Here, H_m is the C-H local mode Hamiltonian from Eq. (4.2), $G_{3,3}(r_1,r_2,r_3)$ is the normal mode transformed G-matrix element [Eq. (3.4)] for the nondegenerate A_1 mode, $\overline{G}_{i,i,n}(r_1,r_2,r_3)$ is the normal mode transformed G-matrix element for doubly degenerate normal mode i with degenerate partner n, and $G_{5,6,n}(r_1,r_2,r_3)$ is the G-matrix cross term for the degenerate normal modes 5 and 6 and degenerate partner n. All of these G-matrix elements are assumed to depend only on the three C-H bond lengths r_1 , r_2 , and r_3 . This approximation is analogous to the one made for CHD₃, where the C-H mode was taken to be the only vibration with appreciable amplitude. The $|v_3\rangle$ ket denotes a vibrational state of the A_1 mode such that $\langle v_3|V_d|v_3\rangle$ has the effect of a diagonal anharmonicity with the adjustable anharmonicity parameter $\omega_3 \chi_3$. The work of Gray and Robiette 20(a) suggests that this anharmonicity is significant and should not be neglected; an approximate value of 20 cm⁻¹ was chosen for this parameter. The other matrix elements of this vibrational mode are still treated in the harmonic limit, however, because this anharmonicity is not large enough to cause significant deviations from harmonic oscillator values.

The basis states defined by the zeroth order Hamiltonian [Eq. (4.6b)] are

$$|\psi\rangle = |v, j, \Gamma\rangle |v_3\rangle |n_5, l_5\rangle |n_6, l_6\rangle, \tag{4.7}$$

where $|v_j, \Gamma\rangle$ represents the jth eigenket (ordered by increasing energy) of the prediagonalized CH₃ local mode Hamiltonian H_m [Eq. (4.2)] from the manifold with v total C-H stretching quanta and symmetry Γ . Also, $|v_3\rangle$ is the nondegenerate harmonic oscillator basis for the third mode and $|n_i, l_i\rangle$ is the doubly degenerate harmonic oscillator basis for the fifth and sixth modes.

The matrix elements for the doubly degenerate bending modes were calculated in the same way as those for CHD₃/CHT₃ [Eqs. (3.10a)–(3.10c)] while the nondegenerate matrix elements were calculated from standard harmonic oscillator formulas.¹⁹ The matrix elements

$$\langle v', j', \Gamma | \widetilde{G}_{Lin}(r_1, r_2, r_3) | v, j, \Gamma \rangle,$$
 (4.8)

in the prediagonalized local mode basis set $|v_{ij}, \Gamma\rangle$, were non-trivial and could have required copious quantities of computer time. Several simplifications which made the evaluation of Eq. (4.8) tractable are given in Appendix D.

B. Results for CH₃D

In the notation of Eq. (4.7), the pure local mode state for v = 6 is

$$|\psi_{i}\rangle = |6,1,\Gamma\rangle|0\rangle|0,0\rangle|0,0\rangle, \tag{4.9}$$

^a The coordinates are defined the same way as in Table I except that r is now the C-D displacement coordinate and r_i is a C-H displacement coordinate.

where $|v,1,\Gamma\rangle$ is defined as the symmetrized state of pure local mode parentage and of Γ symmetry. These pure states are always lowest in energy within a manifold with v total quanta [i.e., in the notation of Eq. (4.7), they are denoted by j=1]. The only zeroth order states with less than or equal to four quanta in the bending modes found in the calculations to strongly interact by G-matrix coupling with this state are

$$|\psi_2\rangle = |5,1,\Gamma\rangle|2\rangle|0,0\rangle|0,0\rangle, \tag{4.10a}$$

$$|\psi_3\rangle = |5,1,\Gamma\rangle|0\rangle|0,0\rangle|2,0\rangle, \tag{4.10b}$$

and

$$|\psi_4\rangle = |4,1,\Gamma\rangle|4\rangle|0,0\rangle|0,0\rangle, \tag{4.10c}$$

where Γ denotes states of A_1 , E_a , or E_b symmetry. In the calculations, it was also found that no states from Eq. (4.7) containing local mode combination states are found to mix to any appreciable extent with the states (4.9) and (4.10a)–(4.10c) when the full matrix diagonalization (including the bending degrees of freedom) is performed.

An approximate theoretical spectral envelope was calculated for the v=6 overtone of CH₃D at 300 K (see Fig. 4). Standard selection rules for parallel and perpendicular type vibrational/rotational transitions in symmetric top molecules were used. ¹⁴ Moreover, as in the case of CHD₃, the body fixed C-H stretching dipole moment operator was assumed to have the form ^{1,21}

$$\mu(\mathbf{r}) = \sum_{i=1}^{3} \mu(r_i) \mathbf{e}_{r_i}, \tag{4.11}$$

where e_{r_i} is a unit vector directed along the *i*th C-H bond. The overlaps of the molecular eigenstates with the zeroth order pure C-H stretching state thus determine the relative intensities of the vibrational transitions. For Fig. 4, the individual vibrational/rotational lines were given a Lorentzian shape with a width at half-maximum of 1 cm⁻¹, as was determined experimentally.² A value of -0.2 cm⁻¹ was assumed for the ground to excited state rotational constant difference $\Delta B = (B_v - B_0)$, representing a crude estimate of the change in the rotational constant in going to the excited

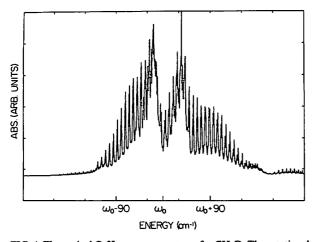


FIG. 4. Theoretical C-H overtone spectrum for CH₃D. The rotational contours were calculated using the rotational constants $B \simeq 3.88$ cm⁻¹ and $A \simeq 5.25$ cm⁻¹ [Ref. 20(a)] and the excited state rotational constant difference $\Delta B \simeq -0.2$ cm⁻¹. The individual vibrational/rotational transitions were given a Lorentzian line shape with a width at half-maximum of 1 cm⁻¹.

state. The overall spectral envelope is not particularly sensitive to changes in the value of this parameter.

When compared with the experimental spectrum in Fig. 2, two features of the theoretical spectral envelope in Fig. 4 are immediately apparent. First, the two main peaks of the experimental envelope presumably correspond to states of zeroth order parentage $|6,1,\Gamma\rangle|0\rangle|0,0\rangle|0,0\rangle$ for the eigenstate to higher energy and $|5,1,\Gamma\rangle|0\rangle|0,0\rangle|2,0\rangle$ for the eigenstate to lower energy, with an experimental splitting of \sim 60 cm⁻¹. The theoretical spectrum has these same states present with a splitting of ~ 50 cm⁻¹. Moreover, the relative heights of the two peaks seem to be in qualitative agreement for the two spectra. A second feature is that the theoretical spectrum is noticeably less congested than the experimental one. We have considered the Coriolis interactions among only the pure local mode states and found them to be very ineffective in contributing to the observed spectral congestion (Appendix E).

For the theoretical spectrum at v = 6 shown in Fig. 5, a Lorentzian line shape for each vibrational/rotational transition with a width of 30 cm⁻¹ was assumed and is much closer in appearance to the experimental one. If one assumes a high degree of level mixing of the ro-vibrational states at v=6, then the "Golden Rule" formula $(2\pi/\hbar)\langle V \rangle^2 \rho_m$ may be used for the rate constant k for decay of the excitation. The homogeneous linewidth $\Delta \bar{\nu}$ is then given by $k/2\pi c$, ²⁶ where c is the speed of light. Using the expression $(2J+1)\rho_{\nu}(\Gamma)$ for the average density of ro-vibrational states ρ_m with symmetry Γ and rotational quantum number J_r^{27} typical values of the effective coupling element $\langle V \rangle$ needed to give linewidths of 30 cm⁻¹ are found to be on the order of $0.1-1.0\,\mathrm{cm}^{-1}$, depending on the value of J and the symmetry Γ . (Note the difference in magnitude of these matrix elements coupling to individual bath states as compared to those coupling the stretch to the bend in CHD₃). In these calculations, values of 1.85, 1.85, and 7.40 states/cm⁻¹ were used for the density $\rho_{\nu}(\Gamma)$ of A_1, A_2 , and E symmetry vibrational states, respectively, at the energy of the v = 6 transition. 15 Whether the physical origin of the extra broadening in Fig. 5 is due to higher order potential energy and/or Coriolis interactions is at present not known. It should, however,

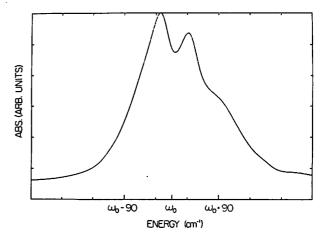


FIG. 5. Theoretical C-H overtone spectrum for CH₃D including a broadening of 30 cm⁻¹ for each vibrational/rotational transition.

be mentioned that thermal congestion may be the source of the observed broadening in this molecule provided there are small but not negligible Coriolis interactions.

V. CONCLUDING REMARKS

In this paper, a theoretical analysis of the C-H stretching vibrations in CHD₃, CHT₃, and CH₃D was performed. The various coupling mechanisms in these molecules resulting from dynamical and, in the case of CHD₃ and CHT₃, potential energy interactions were considered. For CHD₃, the simplicity of the observed C-H overtone spectrum was qualitatively explained by treating the curvilinear G-matrix coupling4 of the C-H stretch with the other vibrational normal modes, but this coupling is seen to be too large to quantitatively explain the Fermi resonances with the v_5 mode. Potential energy contributions are therefore assumed to contribute a cancellation effect within the interaction matrix elements between zeroth order states. It was further concluded that the existence of a low order resonance condition between the C-H stretch and the other vibrations was crucial in determining the degree of vibrational mode coupling in these molecules. In CHD3, it was deduced from the calculations that the C-H stretching local mode selectively interacts by these mechanisms with only one doubly degenerate normal mode involving D-C-H bending. Another approach to the present problem is the rectilinear coordinate method used by Quack et al. 28,29 for the C-H stretching states in the CHX_3 species (where X = D, F, etc.).

Predictions for CHT, are also presented, using the same model as for CHD₃, the only difference being in the normal mode frequencies due to the isotopic substitution D to T. The predictions of this model indicate the existence of a purer C-H stretching mode than was found for CHD₃ because the 1:2 resonance condition between the C-H stretch and the bend is detuned upon isotopic substitution. It is suggested that more subtle vibrational state mixing effects such as higher order resonances with other normal modes, weak potential energy couplings, and a higher density of states may be present in this molecule, although our model indicates that these are not important. The results presented in this paper for CHD, and CHT, together with the work of Sibert et al.4 on the benzene local modes suggests it is possible that many intermediate and large size molecules may exhibit interesting behavior that only the detailed examination of the vibrational state coupling can reveal. One possibility is that certain molecular systems may be thought of as decoupled or very weakly coupled subsets of strongly interacting vibrational modes. There are implications of this picture for vibrational energy redistribution 12 and laser selective chemistry.13 In fact, the results presented here are consistent with the recent observation in anthracene30 of simple quantum beats, indicating that only a few (\sim 3) levels are involved in the coupling even though the total density of states is quite high.

For CH₃D, it is found that the pure C-H stretching local modes do, in fact, mix to a greater degree by G-matrix coupling with bending normal modes than was found in CHD₃. It was also shown that local mode combination states¹ were not significantly coupled to these pure local

modes. Thus, the present model suggests that the energy flow from an initially excited zeroth order nonstationary state like Eq. (4.9) would go almost exclusively into the bending degrees of freedom coupled to the C–H stretches and not into local mode combination states. This picture is similar to that presented by several authors^{4.9} for C_6H_6 .

While the calculated spectral envelope (Fig. 4) for CH_3D is congested due to vibrational/rotational transitions, we were unable to explain the observed high degree of spectral congestion (see Fig. 2) using pure G-matrix coupling effects. Potential energy or Coriolis couplings between the rovibrational states may be responsible for the added degree of congestion observed experimentally in this molecule.

ACKNOWLEDGMENTS

This work is supported by grants from the National Science Foundation. We would like to thank Dr. J. W. Perry for many helpful discussions on the experimental and theoretical aspects of this work and Dr. A. G. Robiette for information on the various coordinate systems used in our calculations.

APPENDIX A: INTEGRATION OF THE \widetilde{G} MATRIX ELEMENTS FOR CHD₃, CHT₃

The matrix elements $\langle v | \tilde{G}_{5.5}(r) | v' \rangle$ appearing in Eqs. (3.7) and (3.13c)–(3.13e) were calculated as follows: Computer subroutines were written (1) to calculate the G matrix 16 for a general tetrahedral molecule, the input parameters being the atomic masses and the bond lengths; (2) to calculate the normal mode matrix L^{-1} for all the displacement coordinates at their equilibrium value; (3) to perform the symmetry coordinate transformation [Eq. (3.5)] and the normal mode transformation [Eq. (3.4)]; (4) to calculate the value of the integrand $\psi_{\nu}^*(r)\widetilde{G}_{5.5}(r)\psi_{\nu'}(r)$ from the matrix element $\langle v|G_{5.5}(r)|v'\rangle$ for an arbitrary value of the C-H bond displacement coordinate r, ψ_n and $\psi_{n'}$ being the Morse oscillator eigenfunctions^{17,18}; and (5) to numerically integrate the integral $\langle v | \tilde{G}_{5.5}(r) | v' \rangle$ using Gaussian quadrature³¹ for the classically allowed region and Laguerre quadrature31 for the classically unallowed region. These subroutines were linked into a main computer code such that a value of $\overline{G}_{5,5}(r)$ could be calculated at each r and the numerical integration in Eq. (5) performed. It was found that 64-point Gaussian quadrature and 30-point Laguerre quadrature gave values for the integrals converged to at least six decimal places.

APPENDIX B: MORSE MATRIX ELEMENTS FOR / AND /2

The Morse matrix elements in Ref. 21 for $r = (R - R_0)$ were simplified to give

$$\langle v+j|r|v\rangle = \frac{(-1)^{j+1}}{a} \frac{[(k-2v-1)(k-2v-2j-1)]^{1/2}}{j(k-2v-j-1)} \times \left[\frac{(v+j)(v+j-1)...(v+1)}{(k-v-1)(k-v-2)...(k-v-j)}\right]^{1/2}$$
(B1)

and

$$\langle v|r|v\rangle = \frac{1}{a} \left[\ln k - \left(\sum_{m=1}^{p-1} \frac{1}{(p-m)+z} + \Phi(1+z) \right) \right]$$

$$+\sum_{i=1}^{v} \frac{1}{(k-v-i)} (1-\delta_{vo})$$
, (B2)

where $\Phi(x)$ is the digamma function, ^{32}k denotes $\omega/\omega\chi$, and a denotes $(2\mu\omega\chi)^{1/2}/\hbar$. Also, μ is the reduced mass of the two particles having an internuclear separation R and

$$z = k - Int(k), \quad p = Int(k) - 1 - 2v,$$
 (B3)

where Int(k) is the integer nearest to k from below.

The off-diagonal Morse matrix elements of r^2 are given by Gallas in Ref. 18(a). However, the diagonal matrix elements of r^2 , when calculated from the formula given by Gallas, ^{18(a)} can in general pose serious numerical difficulties [see Ref. 18(b)]. They were instead calculated from the formula

$$\langle v|r^2|v\rangle \simeq \sum_{j \text{ bound}} \langle v|r|j\rangle\langle j|r|v\rangle,$$
 (B4)

which assumes an approximate completeness relation

$$\sum_{j \mid \text{bound} \mid} |j\rangle \langle j| \simeq 1 \tag{B5}$$

for the Morse oscillator bound states. For relatively low values of v, it is not expected that the contribution in Eq. (B4) from the continuum wave functions is significant.

APPENDIX C: TRANSFORMATION OF FORCE CONSTANTS FOR CHD₃ TO CHT₃

The transformation of the cubic and quartic force constants from CHD₃ normal mode coordinates to CHT₃ normal mode coordinates was performed in a straightforward way using the equations

$$\mathbf{q} = \mathbf{L}\mathbf{Q}, \quad \mathbf{q} = \mathbf{L}'\mathbf{Q}',$$
 (C1)

where the primed quantities refer to CHT₃, the unprimed quantities refer to CHD₃, the Q's are the normal modes, and the q's are the internal symmetry coordinates (Table I). Equating the two expressions in Eq. (C1), one obtains

$$\mathbf{Q} = \mathbf{L}^{-1} \mathbf{L}' \mathbf{Q}', \tag{C2}$$

i.e.,

$$\mathbf{Q} = \mathbf{A}\mathbf{Q}',\tag{C3}$$

where

$$\mathbf{A} = \mathbf{L}^{-1} \mathbf{L}'. \tag{C4}$$

The cubic and quartic force constants for CHT₃ are then easily found to be

$$F'_{nlm} = \sum_{ijk} F_{ijk} A_{in} A_{jl} A_{km}$$
 (C5)

and

$$F'_{nlmp} = \sum_{hijk} F_{hijk} A_{hn} A_{il} A_{jm} A_{kp}. \tag{C6}$$

In this case, A_{11} is defined to be equal to unity and the other A_{1i} and A_{i1} are set equal to zero. This was done because coordinate 1 is taken to be the local mode C-H stretching coordinate, and the normal mode transformation is performed independently of this coordinate.

APPENDIX D: MATRIX ELEMENTS OF \widetilde{G} FOR CH₃D

Let $\widetilde{G}_{ij}(r_1,r_2,r_3)$ be any general normal mode transformed G-matrix element from Eq. (4.6c). The matrix elements [Eq. (4.8)] between CH₃ local mode states j and j' from manifolds with total C-H stretching quanta v and v' [the Γ indices from Eq. (4.8) have been suppressed] are

$$\langle v',j'|\widetilde{G}_{ij}|v,j\rangle = \sum_{l=0}^{N_0'} \sum_{j=1}^{N_0} C_{l,v'}^{f,v'*} \mathbf{G}_{l,i} C_{l,v}^{f,v}, \tag{D1}$$

where N_0 is the number of symmetrized zeroth order wave functions for the manifold with v C-H stretching quanta and

$$C_{i:v}^{j,v} = \langle v, i_0 | v, j \rangle, \tag{D2}$$

with $|v,i_0\rangle$ being the symmetrized zeroth order wave function:

$$|v,i_0\rangle = \sum_{p}^{N_p} C_{p;v}^{i;v} |p;v\rangle.$$
 (D3)

In Eq. (D3),

$$C_{p;v}^{i,v} = \langle p; v | v, i_0 \rangle$$
 = the symmetrization coefficients,²⁵
(D4)

and N_p is the number of different permutations p of the unsymmetrized local mode state $|p;v\rangle$ with v total C-H quanta [in an abbreviated notation for Eq. (4.1)]. Furthermore,

$$\mathbf{G}_{\vec{r},i} = \sum_{p=1}^{N_p} \sum_{p'=1}^{N_p'} C_{p';v'}^{i;v'*} \langle p';v' | \widetilde{G}_{ij} | p;v \rangle C_{p;v}^{i;v}.$$
 (D5)

The matrix elements $\langle p';v'|\tilde{G}_{ii}|p;v\rangle$ were computed numerically by the following procedure: (1) the standard G matrix in internal valence coordinates is calculated in terms of the atomic masses and the quantities $\langle v_i | r_i^{-1} | v_i' \rangle \delta_{v_i v_i'} \delta_{v_k v_k'}$, $\langle v_i | r_i^{-2} | v_i' \rangle \delta_{v_i v_i'} \delta_{v_k v_k'}$, and $\langle v_i v_j | (r_i r_j)^{-1} | v_i' v_j' \rangle \delta_{v_k v_k'}$, where $|v_i\rangle$, $|v_i'\rangle$, etc. are Morse oscillator eigenfunctions ^{17,18} appropriate to the states $|p;v\rangle$ and $|p';v'\rangle$; (2) the symmetry coordinate transformation [Eq. (3.5)] is performed with the symmetry coordinates from Table VII; (3) the normal mode transformation [Eq. (3.4)] is performed with the L^{-1} matrix calculated from the normal mode analysis of Eq. (4.5). As before, the three C-H coordinates were excluded from this transformation. The ijth term of this matrix of values corresponds to the matrix element $\langle p';v'|\tilde{G}_{ii}|p;v\rangle$. This procedure yields values for the matrix elements in Eq. (D1) efficiently and economically. A direct multidimensional numerical integration in terms of the three C-H coordinates was anticipated to be too expensive and, because of the dependence on several coordinates, probably inaccurate.

APPENDIX E: CORIOLIS INTERACTION AND LOCAL MODE DEGENERACY

In order to determine whether Coriolis interactions can strongly effect the threefold near degeneracy of the zeroth order states in Eqs. (4.9)–(4.10c) for the present model of CH_3D , a simple calculation was performed to estimate these effects for the pure A_1 , E_a , and E_b symmetrized zeroth order CH_3 local mode states²⁵

$$|\psi_1;A_1\rangle = \frac{1}{\sqrt{3}} (|v,0,0\rangle + |0,v,0\rangle + |0,0,v\rangle),$$
 (E1)

$$|\psi_2;E_a\rangle = \frac{1}{\sqrt{6}}(2|v,0,0\rangle - |0,v,0\rangle - |0,0,v\rangle),$$
 (E2)

and

$$|\psi_3; E_b\rangle = \frac{1}{\sqrt{2}} (|0,v,0\rangle - |0,0,v\rangle).$$
 (E3)

In this calculation, a rectilinear coordinate treatment was used due to the relative simplicity of the equations in this approach.³³ In addition, it is well known that the description of molecular vibrations in the curvilinear coordinate approach differs most strongly from the rectilinear treatment only for the bending modes.^{5,6} For these reasons and because we only desire to estimate these rotational effects, the rectilinear coordinate approach is well suited to our purpose.

The first order Coriolis effect is described in the small amplitude limit by the vibration/rotation coupling term³³

$$V_{vr} = -\frac{\widehat{P}_z \, \widehat{p}_z}{I_z} \,, \tag{E4}$$

where \hat{P}_z is the z projection of the rotational angular momentum, \hat{p}_z is the z projection of the vibrational angular momentum, and I_z is the z component of the inertia tensor (taken as a constant). The orientation of the molecule is such that the z axis in the body fixed coordinate system is along the symmetry axis of the molecule. The contribution to this term from the CH₃ local mode coordinates r_1 , r_2 , and r_3 is

$$V'_{vr} = -\frac{\hat{P}_z}{I_*} \sum_{i \le j}^3 \zeta_{ij}^z (\hat{r}_i \hat{p}_j - \hat{r}_j \, \hat{p}_i), \tag{E5}$$

where the ζ_{ij}^z are the Coriolis zeta constants, ^{33,34} and \hat{p}_i is the momentum operator conjugate to \hat{r}_i . The first order matrix elements are then (with $\hbar = 1$)

$$E^{(1)} = -\frac{K}{I_z} \langle \psi_i; \Gamma | C(\hat{\mathbf{r}}, \hat{\mathbf{p}}) | \psi_r; \Gamma' \rangle, \tag{E6}$$

where $C(\hat{\mathbf{r}}, \hat{\mathbf{p}})$ is the summation term in Eq. (E5) and the states $|\psi_i; \Gamma\rangle$ are states from Eqs. (E1)–(E3). The zeta constants for the coordinate system defined by the normal mode transformation of Eq. (4.5) (excluding the C-H coordinates) and the three C-H stretching coordinates were calculated using standard techniques. The values for these constants were found to be $\xi_{12}^z = -\xi_{13}^z = \xi_{23}^z = 0.06$. The values of the x and y zeta constants ξ_{ij}^x and ξ_{ij}^y were also calculated and found to be even smaller. As a check of the present method, a complete normal mode calculation was performed (including the C-H coordinates), and we reproduced exactly all of the relevant normal mode zeta constants for CH₃D (see Table VI of Ref. 20).

In standard normal mode theory,³³ the matrix element [Eq. (E6)] between doubly degenerate normal modes of E symmetry yields the value $-(K/I_z)(\pm l_i)\delta_{ii}\delta_{\Gamma\Gamma}$, where l_i is the magnitude of the vibrational angular momentum of degenerate state i, and hence splits the degeneracy of this mode due to the difference in the values of the diagonal elements. For the local mode states [Eqs. (E1)–(E3)], the matrix element in Eq. (E6) was evaluated numerically. It was found

that the only nonzero first order matrix element is between the E_a state [Eq. (E2)] and the E_b state [Eq. (E3)] and, for v = 6, that it is extremely small ($\sim 4 \times 10^{-7}$ cm⁻¹).

The second order Coriolis interactions of the states in Eqs. (E1)-(E3) with the symmetrized zeroth order local mode combination states of |5,1,0\rangle parentage were next calculated. To do this, a Van Vleck transformation³⁵ through second order was employed in order to treat the problem by a simple 2×2 matrix for the states (E2) and (E3) with v=6. The only nonzero perturbations were the first order corrections just described and diagonal second order corrections arising from the coupling to the E symmetry combination states of |5,1,0\rangle parentage. These interactions were again found to be very small ($\sim 10^{-2}$ cm⁻¹). It is clear that, while the degeneracy of the local mode states (E1)-(E3) is lifted by the Coriolis interactions, this effect is expected to be entirely negligible on the scale of Fig. 4 and thus contributes little to the observed spectral congestion. The weakness of these interactions is primarily due to the smallness of the zeta constants ζ_{ii}^{z} for the local mode coordinates appearing in Eq. (E5) and because the local mode states presumably have very little vibrational angular momentum. Whether Coriolis effects are important for the pure local mode states in other molecules with different symmetries remains an open question.36 It is also again emphasized that the above calculations assume the local axial symmetry of the CH₃ group in the CH₃D molecule.

¹For reviews, see (a) B. R. Henry, Acc. Chem. Res. 10, 207 (1977); (b) H. L. Fang and D. L. Swofford, *Advances in Laser Chemistry*, edited by B. A. Garetz and J. R. Lombardi (Heyden, London, 1982); (c) M. L. Sage and J. Jortner, Adv. Chem. Phys. 47, 293 (1981).

²J. W. Perry, D. J. Moll, A. Kuppermann, and A. H. Zewail, J. Chem. Phys. (in press).

³See, for example, W. Kaye, Spectrochim. Acta 6, 257 (1954); H. L. Fang and R. L. Swofford, J. Chem. Phys. 72, 6382 (1980); O. Sonnich Mortensen, B. R. Henry, and M. A. Mohammadi, *ibid.* 75, 4800 (1981).

⁴(a) E. L. Sibert III, W. P. Reinhardt, and J. T. Hynes, Chem. Phys. Lett. 92, 455 (1982); (b) E. L. Sibert III, Ph.D thesis, University of Colorado, Boulder, 1983; (c) E. L. Sibert III, W. P. Reinhardt, and J. T. Hynes, J. Chem. Phys. 81, 1115 (1984); E. L. Sibert III, J. T. Hynes, and W. P. Reinhardt, ibid. 81, 1135 (1984).

⁵R. Meyer and H. H. Günthard, J. Chem. Phys. 49, 1510 (1968); L. A. Gribov, Opt. Spectrosc. 31, 842 (1971); H. M. Pickett, J. Chem. Phys. 56, 1715 (1972); C. R. Quade, *ibid*. 64, 2783 (1976); 79, 4089 (1983); W. B. Clodius and C. R. Quade, *ibid*. 80, 3528 (1984).

⁶A. R. Hoy, I. M. Mills, and G. Strey, Mol. Phys. 24, 1265 (1972).

⁷E. L. Sibert III, J. T. Hynes, and W. P. Reinhardt, J. Phys. Chem. 87, 2032 (1983).

⁸E. B. Wilson Jr., J. C. Decius, and P. C. Cross, *Molecular Vibrations* (McGraw-Hill, New York, 1955), p. 74.

⁹M. L. Sage and J. Jortner, Chem. Phys. Lett. 62, 451 (1979); P. R. Stannard and W. M. Gelbart, J. Phys. Chem. 85, 3592 (1981).

¹⁰J. W. Perry and A. H. Zewail, J. Phys. Chem. 85, 933 (1981).

¹¹W. P. Reinhardt (private communication to A. H. Zewail regarding theoretical predictions of these differences in linewidth).

¹²For reviews, see D. W. Noid, M. L. Koszykowski, and R. A. Marcus, Annu. Rev. Phys. Chem. 32, 267 (1981); S. A. Rice, Adv. Chem. Phys. 47, 117 (1981).

¹³A. H. Zewail, Physics Today 30, No. 11 (1980).

¹⁴Reference 8, p. 364.

¹⁵S. M. Lederman (private communication).

16Reference 8, Chap. 4.

¹⁷P. M. Morse, Phys. Rev. 34, 57 (1929).

- ¹⁸(a) J. A. C. Gallas, Phys. Rev. A 21, 1829 (1980); (b) V. S. Vasan and R. J. Cross, J. Chem. Phys. 78, 3869 (1983).
- ¹⁹S. Califano, Vibrational States (Wiley, New York, 1976), Chap. 9.
- 20 (a) D. L. Gray and A. G. Robiette, Mol. Phys. 37, 1901 (1979); (b) The value of F_{56} in Eq. (3.18) was calculated from the Gray and Robiette surface, and we made no effort to find an improved value so as to better fit the data at v=7; (c) The quadratic force constants from Ref. 20(a) are assumed to be reasonably accurate. The potential parameters in their work are derived primarily from experimental and ab initio studies for low excitation in the C-H and other modes.
- ²¹L. Halonen and M. S. Child, Mol. Phys. 46, 239 (1982).
- ²²J. Mathews and R. L. Walker, *Mathematical Methods of Physics* (Benjamin, Menlo Park, California, 1970), pp. 387-393.
- ²³M. L. Sage, J. Phys. Chem. 83, 1455 (1979).
- ²⁴O. S. Mortensen, B. R. Henry, and M. A. Mohammadi, J. Chem. Phys. 75, 4800 (1981).
- ²⁵L. Halonen and M. S. Child, J. Chem. Phys. 79, 4355 (1983).
- ²⁶See, for instance, K. E. Jones, A. H. Zewail, and D. J. Diestler, in Ad-

- vances in Laser Chemistry, edited by A. H. Zewail (Springer, Berlin, 1978), p. 258
- ²⁷S. M. Lederman and R. A. Marcus, J. Chem. Phys. 81, 5601 (1984).
- ²⁸H. R. Dübal, M. Lewerenz, and M. Quack, Faraday Discuss. Chem. Soc. 75, 358 (1983); K. von Puttkamer, H. R. Dübal, and M. Quack, *ibid*. 75, 197 (1983).
- ²⁹S. Peyerimhoff, M. Lewerenz, and M. Quack, Chem. Phys. Lett. 109, 563 (1984).
- ³⁰P. M. Felker and A. H. Zewail, Chem. Phys. Lett. **102**, 113 (1983); Phys. Rev. Lett. **53**, 501 (1984).
- ³¹Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1965), Chap. 25.
- ³²Reference 31, Chap. 6.
- ³³J. E. Wollrab, Rotational Spectra and Molecular Structure (Academic, New York, 1967), Chap. 3.
- ³⁴Reference 19, p. 97.
- ³⁵Reference 33, Appendix 7.
- ³⁶I. Abram, A. de Martino, and R. Frey, J. Chem. Phys. 76, 5727 (1982).