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Unlike many other molecules having local modes, the highly excited C-H stretching states of
CHD, show well resolved experimental spectra and simple Fermi resonance behavior. In this
paper the local mode features-in this prototype molecule are examined using a curvilinear
coordinate approach. Theory and experiment are used to identify the vibrational state coupling.
Both kinetic and potential terms are employed in order to characterize the coupling of the C-H
stretch to various other vibrational modes, notably those including D-C-H bending. Predictions

are also made for CHT; and the role of dynamical coupling on the vibrational states of CH,D
explored. Implications of these findings for mode-specific and other couplings are discussed.

I. INTRODUCTION

The highly excited vibrational states of C-H stretching
modes in many molecules have been the subject of consider-
able interest in recent years.! The local mode description’
has been used to treat these C-H oscillator systems and has
had considerable success in doing so. Of particular relevance
to the present paper are the experimental results of Perry et
al.? which, for CHD,, indicate the specific coupling of the C-
H stretch to a bending normal mode. For other molecules,
this type of coupling has been discussed previously by sever-
al authors.® The local mode description has recently been
extended to handle such couplings,* using curvilinear coor-
dinate systems.*>~” These coordinate systems present a natu-
ral way of treating molecular vibrations and provide phys-
ical insight into the coupling mechanisms between
vibrational states. To such vibrational couplings have been
attributed the calculated breakdown of localized C-H
stretching vibrations,'~3? the observed linewidths of aro-
matic (~100-200 cm™!) and aliphatic (~20 cm™') local
mode transitions,*~!! and the postulated onset of extensive
intramolecular relaxation.**'%13

With these aspects in mind, the highly excited C-H
stretching vibrations in CHD,, CHT,, and CH,D are stud-
ied in the present paper. Recent experimental evidence? has
suggested that in CHD, there are extremely narrow
linewidths ( < 1 cm ™) and very limited state mixing at a high
level of C-H vibrational excitation. An analysis of this spec-
tral data was performed in terms of a simple Fermi reso-
nance between the C-H stretch and a bending normal
mode.? In the present paper, using a curvilinear coordinate
treatment, a theoretical analysis is presented for the vibra-
tional eigenstate problem which includes kinetic and poten-
tial energy coupling terms. An explanation for the observed
spectrum of CHD, is proposed and, in turn, predictions are
made for the high overtone C-H stretching spectrum of
CHT,. In addition, the difference between the relatively sim-
ple CHD, spectrum and the highly congested spectrum? for
CH,D is discussed in terms of the different dynamical vibra-
tional mode couplings in these two molecular species.

® Camille and Henry Dreyfus Teacher-Scholar.
® Contribution no. 7057.

5494 J. Chem. Phys. 81 (12), Pt. |, 15 Dec. 1984  0021-9606/84/245494-14$02.10

An outline of the present paper is as follows: A brief
review of the relevant experimental data? is given in Sec. IL.
In Sec. I11, the curvilinear coordinate formalism is applied to
CHD, and CHT,;, and couplings between the C-H stretch-
ing vibration and other normal modes of these molecules are
described. In Sec. IV, the dynamical coupling of the C-H
stretching states to bending normal modes in CH,;D is exam-
ined. Concluding remarks appear in Sec. V.

1. CHD; AND CH;D: SUMMARY OF THE EXPERIMENTAL
RESULTS

Recently, using photoacoustic spectroscopy, the high
C-H overtones of methane and of its isotopic derivatives
CH,D, CH,D,, and CHD, have been studied by Perry et al.?
Some results obtained for CHD, and CH,D, both of which
have very different spectra, can be summarized as follows:

The CHD, overtones corresponding in zeroth order to
five, six, and seven quanta in the C-H stretch have remarka-
ble simplicity.? For v = 5 and v = 6, the spectra have a sim-
ple two level Fermi resonance structure (e.g., Fig. 1 for
v = 6). For v =7, the spectrum is more congested, but it
appears to be essentially a three level Fermi resonance.?
When the quantity AE,, /v is plotted vs v, 4E,, being the

" excitation of the C-H overtone in excess of the zero-point
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FIG. 1. Experimental v = 6 C-H overtone spectrum for CHD, (taken from
Ref. 2).
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H stretch and may be ignored in the present analysis.

The remaining doubly degenerate £ symmetry normal
mode is found in the calculations to be strongly coupled to
the C-H stretch, with an average off-diagonal matrix ele-
ment of the G,; coupling term of ~100 cm™" in the range
v = 3-6. Moreover, the harmonic frequency @ of this nor-
mal mode satisfies a 1:2 nonlinear resonance condition with
the C-H vibrational frequency at the v =5 and 6 level of
excitation. As a result, the states |v)|0,0) and |v — 1}]2,0) in
this energy regime are approximately degenerate in zeroth
order. This bending mode involves the E symmetry defor-
mation of the H-C-D angles and it thus interacts strongly
with the C-H stretch via the curvilinear G-matrix coupling
effect. The physical origin for this effect is due to the effective
mass for the H-C-D bend, as described by the inverse of the
G-matrix term, being increased when the local mode is excit-
ed and the C-H bond is lengthened. No other normal modes
of the molecule satisfy both a low order resonance condition
and the condition that the H-C-D bend be included in their
motion.

One further possibility to be considered is the coupling
of the pure C-H stretching state to 4, symmetry combina-
tion states by terms like 5,-,- (r)P; P, in Eq. (3.3b). These combi-
nation states have the form |v-1,...,v,,9;,...), where the nor-
mal mode quantum numbers other than »; and v; are zero.
The combination state having vs = 1, v; = 1 is the only state
found to have both an approximate zeroth order degeneracy
and a nonnegligible interaction with the pure state |v,0,0,...).
In the calculations, it becomes important only for a level of
excitation in the C-H oscillator corresponding to at least
seven quanta in zeroth order. For six quanta in the C-H
stretch, this combination state is sufficiently detuned from
the C-H stretching state energy so as to have only a small
second order effect on the splitting (< 5 cm™') and the rela-
tive intensity ( < 3%) of the Fermi resonance found in this
spectral region.

The results of the above analysis indicate that the C-H
stretch selectively interacts with the doubly degenerate
bending normal mode with harmonic frequency ws = 1335
cm™ ', thereby simplifying the quantitative treatment of the
C-H stretching states (i.e., only three degrees of freedom
need be considered). However, since the magnitude of the
pure curvilinear G-matrix interaction (~ 100 cm ') is larger
than what is observed experimentally (~35 cm™'), the po-
tential energy is postulated to have an important cancella-
tion effect within these matrix elements. Because the avail-
able high order force constants?®® relevant to the Fermi
resonances at v = 5 and 6 were found to be inadequate, only
first order effects (in terms of degenerate perturbation the-
ory) were treated. As will be shown later for CHD,;, this first
order treatment is useful in determining both the energies
and the relative intensities of the pure C-H stretching mode
states and of combihation levels involving the C-H stretch
and the H-C-D bending mode.

The Hamiltonian for the coupled C-H stretch and dou-
bly degenerate bending mode is

H=H,+ V' (3.8)
with
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Ho=H,(rp)+[(PT + P})+0}(@} + Q)] (3.9)
and

V' =4[Gsln — 1](P? + P2) +%4Q% +032)

+22(0% + 03), (3.10)
where O, and Q, are the degenerate pair of normal mode
coordinates for the bending mode with conjugate momenta
P, and P,, H,,(r,p} is the C-H stretch Morse oscillator Ha-
miltonian, and F; and F, are the cubic and quartic force
constants, respectively, for the interaction of the C-H
stretch with the bend.

The basis states of the zeroth order Hamiltonian [Eq.
(3.9)] are the states |v) |, } s, where |v) are the Morse oscilla-
tor eigenfunctions'® for the C-H stretch and |n,/ ) is the
doubly degenerate harmonic oscillator basis'® for the v;
bending mode. The Fermi resonances in CHD, are pre-
sumed to involve the pure C-H stretching state |v)|0,0) 5 of
A, symmetry interacting with the 4, combination state
|v — 1)]2,0) 5. The relevant matrix elements for the bending
normal mode are (in units of # = 1)!°:

(n,0|P? + P2|n +2,0) = (n + 2)ws/2, (3.11a)

(n0|1Q7 + Q3in +2,0) = — (n +2)/(2w,), (3.11b)

(n,0|P% + P%|n,0) = (n + l)ws, (3.11¢)
and

(n,01Q0% + Q%[n,0) = (n + 1)/ws. (3.11d)

The 2 X2 Fermi resonance matrix for this treatment is

H, H, _(H1+Vll Via )
(Hz, sz)‘ vy H+vy) B
where (with 71 = 1)
H ={— Yo, —@v—1 o,y + 3o, {3.13a)
Hy =@+ Yo, — v+ o,y + s (3.13b)
Vi =25 (o~ 1][Gysr) — 1]lo— 1)
3 (5, _ _
+ o (2 (w—1rjp—1)
L _ .
+ 2 w—1]A 1)), (3.13¢)
V22=%(”I[65.5(’)—1]|U)
(B ey 2 B
= (S0 + 2 0lPm), e

5
and

Via= % (v— llas.s("”")

1 (F. F, 2
—0—5(73 (v — 1|r|v) +2‘1 (v— 1|r|v)) .
(3.13¢)

The Morse matrix e]egaents of the normal mode-trans-
formed G-matrix element G, ; (7} [Eq. {3.4)] were calculated
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by numerical quadrature, as in Appendix A. The matrix ele-
ments of 7 and 72, known analytically,'®?! are discussed in
Appendix B. Both the cubic and quartic terms, involving the
Morse matrix elements (v|r|v — 1) and (v|”|v — 1), respec-
tively, were found to be nonnegligible for v = 5 or 6. The
force constants in these terms were determined by a nonlin-
ear least squares parameter fit?? of the calculated values to
the experimental data for v = 1 through v = 6. This fit was
performed using a 2 X 2 matrix, as in Eq. (3.12), to calculate
the energies of the C-H overtones and combinations at each
energy level through v = 6. Using a grid of values for F; and
F,, the minimum of the least squares function was found.
Since only first order effects were considered in this treat-
ment, the cubic and quartic force constants obtained in such
an least squares analysis represent a first order estimate.
The kinetic and potential perturbation contributions to
the diagonal elements in Eq. (3.12) also contributed in this
calculation. The contribution from the G-matrix terms to
the matrix elements ¥, represents, in effect, a modification

of the bending mode’s harmonic frequency ws,?** namely,
H;, =E]+ (n+ l)ws + (U|V|’,°,|v), (3.14a)
where
1 ~
o1 =agf1 + 3 [1B,s(rl0) — 1]] (3.140)

and E [ is the energy of the Morse oscillator with v quanta.
Since the diagonal element (v|G; s(r)|v) is always less than
unity (i.e., the effective mass of the bend increases with in-
creasing v), the effective harmonic frequency w; of the bend-
ing mode decreases with increasing v. For the CHD; mole-
cule, the potential energy term has a similar effect except
that it is somewhat more complicated in form. Both contri-
butions give rise, as a result, to an effective anharmonicity
for the C-H overtones.?*** For the point of view of that
interpretation, the values of @, and w, y taken from experi-
mentally measured Birge-Sponer lines may deviate some-
what from the “true” Morse parameters for the C-H mode,
as is shown later for CHD;.

The effect of the coupling of the above |v — 1)]2,0)5
states to 4, symmetry states like [v — 2)|4,0)s, with four
quanta in the bending mode, was also examined. These cou-
plings can, in principle, have a large effect, as was suggested
recently for benzene.* In the case of CHD,, however, these
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tions just mentioned [Eqgs. (3.14a) and (3.14b)]. Moreover,
these states seem to be particularly sensitive to second order
corrections from off-resonant states such as |v — 1)|4,0); or
|v — 3)|4,0) 5. These corrections tend to lower the energy of
these states even more so that they are further detuned from
the principal Fermi resonance.

To explore such effects, diagonalizations of 27 X 27 se-
cular determinants for the Hamiltonian [Eq. (3.8)], including
states with four quanta in the bending mode and as many as
nine C-H stretching quanta, were performed. Since it is
computationally expensive to use a 27 X 27 matrix diagonali-
zation in the determination of the force constants F, and F,
by the nonlinear least squares fitting procedure described

previously, two separate approaches to this problem were

taken. The first approach was to determine the values of F;
and F, using a 2 X 2 matrix such as Eq. (3.12) at each level of
C-H excitation (v = 1-6) in conjunction with the force con-
stant fitting procedure discussed previously. A 27X 27 ma-
trix was subsequently diagonalized utilizing the force con-
stants thus obtained. The second approach was to extend the
nonlinear least squares fitting procedure to include the dia-
gonalization of a 3 X 3 matrix (including the states with four
bending quanta) at each level of C-H excitation. The force
constants obtained in this fit were then used in a diagonaliza-
tion of a 27X 27 secular determinant. .

The results of all four calculations are shown in Table I1
together with the experimental values. It is evident that the
results for the simple 2 X2 treatment and the subsequent
27% 27 diagonalization are consistent with the experimental
values and with each other (i.e., the results do not differ sig-
nificantly between the 2 X2 and the 27X 27 treatment). In-
terestingly enough, as one can see from Table II, the 33
treatment does not fit the experimental data as well nor are
the 3X 3 results consistent with the subsequent 27 X 27 ma-
trix diagonalization using those parameters. These results
indicate that the simple 2 X 2 procedure is the best way to fit
the experimental data.

Both 27 X 27 matrix diagonalizations exhibit the strong
second order detuning effect of the |v — 2)|4,0) s states men-
tioned previously. For the diagonalization utilizing the pa-
rameters obtained from the 2 X 2 fitting procedure, this ener-
gy shift for the v = 6 region was estimated from second order
nondegenerate perturbation theory to be

. : 2 2
states are strongly detuned from the principal Fermi reso- @ Vo [V1s] ~ —80 cm™},
nance due, in part, to the diagonal first order energy correc- EQ—EY EP-EY
TABLE II. Comparison of theoretical results.

v=>5 v="6 v=>, v=~6
splitting® splitting® rel. rel.

{em™") {cm™") intensity intensity

Expt. 133 74 18 + 8% 55+ 10%
2x2 117 79 9% 43%
27X27° 131 78 7% 40%
3x3 99 59 13% 97%
27X 27° 138 84 7% 25%

* Calculated using parameters from 2 X 2 fit.
® Calculated using parameters from 33 fit.

* Fermi resonance splittings between eigenstates of |v}|0,0) and jv — 1)|2,0) parentage.
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TABLE I1I. Molecular parameters for CHD,;(CHT,).

Morse Morse vs mode Cubic force Quartic force
harmonic anharmonicity harmonic constant constant
freq. w,(cm ™' @, yfem™')P° freq. (em™')° F;(a.u)® Fy(a.u)
CHD, 3133 58.08 1335 —2.03x10~° 1.83x10°°
CHT, 3133 58.08 1273 —1.82x10"° 1.64x10~?

*From Ref. 20{a).

®From Ref. 25.

¢ Calculated from the quadratic force constants given in Ref. 20{a).
¢ As determined from least squares parameter fit.

where 1 denotes the state [4)]4,0)s, 2 denotes the state
[5)]14,0)s, and 3 denotes the state |3)|4,0);. The exact
27X 27 treatment, in this case, has a shift for this state of
~ — 120cm ™! instead of — 80 cm™". Due to this detuning
effect, we conclude that the states with four quanta in the
bend are not important to the observed Fermi resonances.

C. Results for CHD;

The energies of the C-H stretch overtones for CHD,;, as
calculated from the 2 X 2 fitting procedure given in Sec. III B
and utilizing the molecular parameters from Table III, are
compared with the experimental results in Table IV. The
results are in good agreement with experiment for both the
pure C-H stretching states and the combination levels. The
corresponding theoretical least squares Birge-Sponer line
(in cm™") through the v = 6 overtone is given by AE,,/v
= 3047 — 57.56v. This line was determined by using a linear
least squares fit to the calculated points for v = 1 through 4
and fits the theoretical data very well except at v = 5 and &,
where a deviation is expected due to the onset of the Fermi
resonances. As compared with Ref. 25, where a fit was ob-
tained for the v = 14 C-H overtones, thers is, from a phen-
omenological point of view, twe new pieces of experimental
data, namely the splittings at v = 5 and 6, and two new pa-
rameters introduced into the fit. Of course, this does nct
require that the modei will automatically fit the data, but it
does nevertheless. The main virtue, we believe, of the present
analysis is that it describes the physics of the problem. In
particular, it is found that the treatment of the dynamical
{i.e., G-matrix) coupling does not quantitatively explain the

TABLE 1V. Energies of C-H overtones and combinations for CHD;(CHT,).

Fermi resonances, i.e., the force constants F; and F, should
be included. Such force constants are ultimately to be com-
pared with ab initio calculations. Other treatments which
either do not employ curvilinear coordinates and/or poten-
tial energy contributions of cubic order or higher can be con-
sidered to be more phenomenological.

In Table V, the relative intensities for the two Fermi
resonances at v = 5 and v = 6 are listed along with the off-
diagonal matrix elements and the detunings of the diagonal
matrix elements. In calculating these relative intensities, the
dipole moment for the C-H stretching transitions was as-
sumed to be a function of only the C—H oscillator coordinate
r.'! As a result, the relative intensity of the two states in-
volved in the Fermi resonance is determined by the overiap
of the zeroth order pure C-H stretching state with the actuai
eigenstates. The relative intensity is thus defined as

I = (b /a)’*x 100%, (3.15)
where
a=[{v,0]¥)], b=I[{v,0]¥,)| (3.16)

Here, ju,0) denotes the zeroth order pure C-H streiching
state |)]0,0)s, ¥, is the eigenstate of |¥}|0.0); parentage,
and ¢, is the cigenstate of |v — 1)|2,0); combination state
parentage. These relative intensities in Table V are in reason-
able agreement with the experimental results, but the dis-
crepancy is larger than that for the splittings. This discrep-
ancy may refiect slight inaccuracies in the zeroth order
detunings and/or off-diagonal electrical anharmonicity
terms contained in the actual dipole moment function. A
theoretical spectrum (at v = 6) employing the above results

CHD, expt® CHD; calc. CHT, calc.
State® (em™Y) {em™") (cm~"
|1,0) 2992 2990 2990
|2,0) 5865 5864 5865
13,0) 8 623 8624 8624
14,0} 11267 11269 11269
|4,2) 13 668 13 684 13 558
|5,0) 13 801 13 801 13 800
15,2) 16 156 16 149 16 029
16,0) 16 230 16228 16218

*Refers to the zero-order parentage of the state. This notation denotes the states |v)|n,0) (with /=0 in all

cases).
*Taken from Ref. 2.
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TABLE V. Relative intensities, off-diagonal matrix elements, and diagonal detunings® for CHD, and CHT;.

Molecule Expt. Calc. Off diagonal Diagonal
and energy relative relative matrix element detuning
level intensity® intensity Vi;{em™") S (em™"
CHD,
I 18 + 8% 9% -3 98
CHT,
b5 4% —47 223
CHD,
- 55+ 10% 43% ~36 31
CHT,
v=6 9% -5 159
*The diagonal detuning is defined from Eq. (3.12) as § = (H, + V20) — (H, + V1))
®Taken from Ref. 2.
and the measured excited state rotational constants from |a® = [6)]2,0)5|C,0)6, {3.17a)
Ref. 2 is shown in Fig. 3. The main discrepancy with the 0
. - . ‘ . 5% =17)/0,0)5/0,0 3.17b
experimental spectrum (shown in Fig. 1) is due to the differ- 6% = >l_ '1 510006, ( )
ences in the relative intensities. . . € = 16) |—= (i1, = Ds LD+ LDs|1 = 1>6)] :
The diagonal first order perturbation contributions Ly2

{Eq. (3.13d)] to the pure C-H stretching energies are given in
Table V1. One sees that, according to the results, these terms
contribute even for the fundamental transition. Further-
more, the G matrix and the potential energy contributions
are of comparable magnitude for all excitations. Indeed, the
effective Morse parameters o, =3105 cm~' and
@, ¥ = 57.56 cm~! calculated from the theoretical Birge-
Sponer line for CHD, are quite different from the actual
values given for the Morse oscillator in Table II1. This differ-
ence reflects the diagonal first order perturbation effect.
Thus, as noted before, parameters for the C-H bond Morse
oscillator potential functions obtained from experimental
Birge-Sponer plots should be used with this in mind: they
are effective parameters.

The procedure used for calculating the C-H overtones
and Fermi resonance combinations was extended to the
v = 7 region where now both the v; and v, modes couple to
the C-H stretch. A 3X3 matrix was used with the zeroth
order 4, symmetry basis states (with energies Eo <Ejo
<Ep)

ABS. (ARB. UNITS)

al A 1
13684 13801
ENERGY (cm™)
FIG. 3. Theoretical v = 6 C-H overtone spectrum for CHD,;.

(3.17¢)

where the notation |v) |n,/ }s|n',l ') ¢ represents the Morse os-
cillator eigenket for the C—H mode, the |n,] ) eigenket for the
fifth normal mode (@w; = 1335 cm~'), and the |n,/ ) eigenket
for the sixth normal mode (g = 1070 cm™"), respectively.
The term

Vie = 556(")(?5,1 PG,, - Ps,z P6.2)

+ Fsen@s.1 Qo1 + @s.29s.2) (3.18)

was added to the perturbation given in Eq. (3.10).2°® This
perturbation term is responsible for the coupling of the |c%)
state to the |@°) and |5 ?) states. The subscripts 5 and 6 have
been added here to distinguish between the two normal
modes while, as before, the subscripts 1 and 2 in Eq. (3.18)
refer to the degenerate pairs of coordinates and momenta for
these vibrations. Diagonalization of the 3 X3 matrix gave
perturbed states |a), | ), and |c) with splittings 4,, ~110
cm~" and 4,, ~55 cm™". The experimental results from
Ref. 2 give splittings of ~120 and ~60 cm ™", respectively.
No quantitative comparison of the relative intensities could
be made since they were not obtained experimentally for this
level. Nevertheless, the theoretical results suggest that the
intensity may be distributed approximately uniformly over
the three levels in qualitative agreement with what may be
seen from visual inspection of the spectrum at v = 7.

D. Results for CHT;

The theoretical treatment of Sec. III A for the v = 1-6
transitions in CHD, was applied to CHTj to investigate the
effect of the isotopic substitution D to T. It was again con-
cluded that the fifth normal mode is the only vibration inter-
acting strongly with the C-H stretch by G-matrix coupling
and that the simplified treatment of Sec. III B may be ap-
plied to CHT,. The cubic and quartic force constants found
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TABLE VL. Calculated first order diagonal corrections to the local mode states in CHD,.

Zero-order G-matrix Potential energy Total
local mode contribution contribution correction
state v {em™") {em™") fem™!)

1 -20 —21 —41
2 —-34 -35 —69
3 —48 —47 —95
4 - 62 - 59 —121
5 - 76 — 69 — 145
6 —-90 —78 — 168

for CHD, were transformed to the CHT; normal mode coor-
dinate system with the aid of the transformation in Appen-
dix C. The results for the energies are given in Table IV. The
relative intensities of the Fermi resonances, the off-diagonal
matrix elements, and the detunings of the diagonal matrix
elements are given in Table V. This model predicts signifi-
cantly less intensity sharing by the combination states in the
v =5 and 6 regions than in CHD, due to a detuning of the
Fermi resonance: the fifth normal mode for CHT, has a har-
monic frequency of only ws = 1273 cm ™" as opposed to 1335
cm ™! for CHD,. This effect far outweighs the contribution
due to the increased magnitude of the off-diagonal matrix
element (as seen in Table V) and results in a much “purer”
C-H stretching state at v = 5 and 6.

This analysis of CHT, raises two interesting questions.
First, the density of vibrational states would obviously be
higher for CHT, than for CHD,. Thus, CHT, presents a case
in which the experimental verification of the results predict-
ed by this model would indicate that the density of states
need not predominate in determining the degree of state mix-
ing in structually similar molecules. Rather, the degree of
mixing of states may be determined primarily by a specific
physical mechanism, as in the case of CHD;. Second, CHT,
has the possibility of having 1:3 nonlinear resonance condi-
tions between the C-H stretch, an 4, mode (w; = 905cm™!),
or a doubly degenerate E mode (wg = 900 cm ™ !). This reso-
nance condition is possible around the v = 3 or 4 level of
excitation in the C-H mode. However, the sixth mode in-
volves almost entirely T-C-T bending and C-T stretching
motions and so is not expected to be physically coupled to
the C-H stretch. The third mode, on the other hand, in-
volves both the H-C-T and the T-C-T bending, but, as was
found for the 4, symmetry modes in CHD,, it has no G-
matrix element providing coupling to the C-H stretch. In
addition, the resonant [v — 1,3), states of either mode can-
not couple directly to the pure C—H stretching states via the
perturbation terms like those given in Eq. (3.10) as long as
the harmonic oscillator basis is a good one for those normal
modes. Experimental observation of significant 1:3 Fermi
resonances in this molecule would indicate that the simple
theoretical/physical picture presented in Egs. (3.8)3.13¢)
needs extension. Possible extensions include a dynamical de-
pendence of the G-matrix term in Eq. (3.10) on the normal
mode @, or the presence of significant fourth order force
constants proportional to rQ 3 or rQ ¢ in the potential energy
function.

A curvilinear coordinate treatment is next used to esti-
mate the vibrational state mixing in CH,D.

IV. THEORY FOR CH3D
A. Vibrational analysis

The CH,D molecule has three equivalent C-H oscilla-
tors, so it is useful to prediagonalize the CH; local mode
problem' before treating the interactions of these modes
with the bending normal modes. The properly symmetrized
zeroth order local mode basis states for C;, symmetry were
found using the method of Halonen and Child.?!* For the
sake of brevity, these basis states are not presented here, but
they consist in general of the 4, 4,, E,, and E, linear combi-
nations of different permutations of the unsymmetrized lo-
cal mode state

|01,02,03), (4.1)
where the subscripts 1, 2, and 3 refer to the Morse oscillator

basis states for the three C-H bonds. The corresponding C-
H local mode Hamiltonian is

H, =H® +Vv;, (4.2)
where
3
H(r)n =2Hi(pi’ri) (4.3)
and
3 3
Vo =zthipi b +2Ejri ;s (4.4)

i>j i>j
and may be diagonalized in the symmetrized local mode ba-
sis. In these equations, H,(p,,r;) is a Morse oscillator Hamil-
tonian with curvilinear bond displacement coordinate r; and
conjugate momentum p;; G; and F; are the off-diagonal G-
matrix element and the off-diagonal quadratic force con-
stant, respectively, for two C~H stretching local modes / and
J. The G-matrix element used in this calculation may be
found analytically,'S the quadratic stretch—stretch interac-
tion force constant was obtained from the Gray and Robiette
potential energy surface,’® and the Morse parameters are
the same as those used for CHD; (Table I1I). The eigenvalues
and eigenfunctions of this Hamiltonian were calculated for
manifolds with v =4, 5, and 6 total quanta in the C-H
stretches.?»** Couplings by the perturbation term (4.4)

_ between manifolds of states with different total v were ne-

glected since they are far off resonance. Each manifold of
states has four independent blucks of 4,, 4,, E,, and E,
symmetry, and the properly symmetrized “pure” local mode
states (i.e., symmetrized linear combinaticns of |,0,0)) are
nearly degenerate for all blocks that included such states
(there is one pure state each in the 4,, E,, and E, blocks).
The interaction of the prediagonalized local mode
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states with the bending degrees of freedom was next calculat-
ed. This step is usually omitted in the customary local mode
treatment'?' but, as was learned in the CHD, analysis, is
useful in understanding the breakdown of localized C-H
stretching vibrations. As a first step, the interaction of the
CH, local modes with the bending vibrations was calculated
using only the G-matrix coupling technique presented in Sec.
III A. Due to the limited experimental resolution of individ-
ual vibrational lines at v = 6 in this molecule, a treatment of
the potential energy contributions to the state coupling was
not attempted.

The description of the normal modes was made by per-
forming a standard normal mode analysis'® on the quadratic
Hamiltonian

1 1
Hy = ?Z Gy (xolp: p; +7 z Fyq:q;, (4.5)
i B

where the primes on the summations indicate a summation
over all internal symmetry coordinates g; (see Table VII)
other than the three C-H stretching coordinates. This treat-
ment defines three normal modes with harmonic frequencies
w; = 1366 cm™', ws = 1524 cm™', and w4 = 1222 cm™!
that are in approximate 1:2 nonlinear resonance with the C—
H stretches. The fifth and sixth vibrations are both doubly
degenerate modes of E symmetry while the third vibration is
the 4, symmetry umbrella mode.?®® As for CHD,, the C-H
stretching coordinates are treated separately when defining
the zeroth order oscillator basis.

The curvilinear Hamiltonian used for this problem,
containing the third, fifth, and sixth normal modes and the
C-H local modes, is

H=H,+V'+V, (4.6a)
where

Hy=H, +%(P§ +020Y)
1
+7 [(P§.1 +P§.z)+w§(Q§.l +Q§.2)] (4.6b)
1
+7 [(Pé.l +P§.z)+0)§(Q§,| +Q2,z)],

2 1 ~
v =7 [G3(rysrers) — 1]

TABLE VILI. Internal symmetry coordinates for CH,D.*

a=r

Q2=n

g=n

44=’3l

gs=—1Ia+ea+ay— B —F,— B
V6

1
9s=—2a, ~a, —a,)

J6
qv=%(2ﬁ.—ﬂz—ﬁs)

1
B=—Ila;—a,)

2
99=%Wz"ﬁs)

“The coordinates are defined the same way as in Table I except that 7is now
the C-D displacement coordinate and r; is a C-H displacement coordi-
nate.

1 & =
+? 2 [GS,S;n(rlrrzyr:;) - I]P;n
n=1
1 & =
+? z [ Ge.6n(risraors) — 1P, (4.6¢)
n=1

2 ~
+ 3 Gsgnlrurars)Ps, P,
n=1

and the diagonal matrix element of the ¥, potential energy
term is written as

W3l Vylv3) = — (03 + §w; ¥s. (4.6d)
Here, H,, is the C-H local mode Hamiltonian from Eq. (4.2),
53., (r1,7,75) is the normal mode transformed G-matrix ele-
ment [Eq. (3.4)] for the nondegenerate 4, mode, é,._k,, (risrasrs)
is the normal mode transformed G-matrix element for dou-
bly degenerate normal mode / with degenerate partner n, and
@S'G:n(r,,rz,r;‘) is the G-matrix cross term for the degenerate
normal modes 5 and 6 and degenerate partner #. All of these
G-matrix elements are assumed to depend only on the three
C-H bond lengths r,, 7,, and r;. This approximation is analo-
gous to the one made for CHD,, where the C-H mode was
taken to be the only vibration with appreciable amplitude.
The |v;) ket denotes a vibrational state of the 4, mode such
that (v;|V,|v;) has the effect of a diagonal anharmonicity
with the adjustable anharmonicity parameter w; y;. The
work of Gray and Robiette?®® suggests that this anharmoni-
city is significant and should not be neglected; an approxi-
mate value of 20 cm ™' was chosen for this parameter. The
other matrix elements of this vibrational mode are still treat-
ed in the harmonic limit, however, because this anharmoni-
city is not large enough to cause significant deviations from
harmonic oscillator values.

The basis states defined by the zeroth order Hamilton-
ian [Eq. (4.6b)] are ,

hb) = Ivij’r)|U3)l”5’15)|n6n16)y (47)
where |v,/,I" ) represents the jth eigenket (ordered by increas-
ing energy) of the prediagonalized CH, local mode Hamil-
tonian H,, [Eq. (4.2)] from the manifold with v total C-H
stretching quanta and symmetry I'. Also, |v,) is the nonde-
generate harmonic oscillator basis for the third mode and
|7;,1;) is the doubly degenerate harmonic oscillator basis for
the fifth and sixth modes.

The matrix elements for the doubly degenerate bending
modes were calculated in the same way as those for CHD,/
CHT,; [Eqs. (3.10a}3.10c)] while the nondegenerate matrix
elements were calculated from standard harmonic oscillator
formulas.'® The matrix elements

W', T \Gnlrorars)lo ), (4.8)

in the prediagonalized local mode basis set |v,j,I” ), were non-
trivial and could have required copious quantities of com-
puter time. Several simplifications which made the evalua-
tion of Eq. (4.8) tractable are given in Appendix D.

B. Results for CH;D

In the notation of Eq. (4.7), the pure local mode state for
v==6is

[#,) =16,1,I"}|0}0,0}|0,0), (4.9)
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where |v,1,1") is defined as the symmetrized state of pure
local mode parentage and of 7" symmetry. These pure states
are always lowest in energy within a manifold with v total
quanta [i.e., in the notation of Eq. (4.7), they are denoted by
Jj = 1]. The only zeroth order states with less than or equal to
four quanta in the bending modes found in the calculations
to strongly interact by G-matrix coupling with this state are

[#2) = |5,1,T"}(2)10,0)10,0), (4.10a)

[#s) = |5,1,1")]0(0,0)|2,0), (4.10b)
and

[¥a) = [4,1,1"}|4)[0,0)0,0), (4.10c)

where I" denotes states of 4,, E,, or E, symmetry. In the
calculations, it was also found that no states from Eq. (4.7)
containing local mode combination states' are found to mix
to any appreciable extent with the states (4.9) and (4.10a}-
(4.10c) when the full matrix diagonalization (including the
bending degrees of freedom) is performed.

An approximate theoretical spectral envelope was cal-
culated for the v = 6 overtone of CH,D at 300 X (see Fig. 4).
Standard selection rules for parallel and perpendicular type
vibrational/rotational transitions in svmmetric top mole-
cules were used.'* Moreover, as in the case of CHD,, the
body fixed C-H stretching dipole moment operator was as-
sumed to have the form'?!

3

ulr)= 3 plre.,

i=1

(4.11)

where e, is a unit vector directed along the ith C-H bond.
The overlaps of the molecular eigenstates with the zeroth
order pure C-H stretching state thus determine the relative
intensities of the vibrational transitions. For Fig. 4, the indi-
vidual vibrational/rotational lines were given a Lorentzian
shape with a width at half-maximum of 1 cm ™', as was de-
termined experimentally.? A value of — 0.2 cm™! was as-
sumed for the ground to excited state rotational constant
difference 48 = (B, — B,), representing a crude estimate of
the change in the rotational constant in going to the excited

ABS.(ARB. UNITS)

Ub+90
ENERGY am-)

FIG. 4. Theoretical C-H overtone spectrum for CH;D. The rotational con-
tours were calculated using the rotational constants B~3.88 cm™"' and
A=5.25 cm™"' [Ref. 20(a)] and the excited state rotational constant differ-
ence 48~ — 0.2 cm™". The individual vibrational/rotational transitions
were given a Lorentzian line shape with a width at half-maximum of 1
cm™!

state. The overall spectral envelope is not particularly sensi-
tive to changes in the value of this parameter.

When compared with the experimental spectrum in
Fig. 2, two features of the theoretical spectral envelope in
Fig. 4 are immediately apparent. First, the two main peaks of
the experimental envelope presumably correspond to states
of zeroth order parentage |6,1,4” |0} |0,07|0,0) for the eigen-
state to higher energy and |5,1,7")|0)]0,0)|2,0) for the ei-
genstate to lower energy, with an experimental splitting of
~60 cm ™!, The theoretical spectrum has these same states
present with a splitting of ~ 50 cm™!. Moreover, the relative
heights of the two peaks seem to be in qualitative agreement
for the two spectra. A second feature is that the theoretical
spectrum is noticeably less congested than the experimental
one. We have considered the Coriolis interactions among
only the pure local mode states and found them to be very
ineffective in contributing to the observed spectral conges-
tion (Appendix E).

For the theoretical spectrum at v = 6 shown in Fig. 5, a
Lorentzian line shape for each vibrational/rotational transi-
tion with a width of 30 cm™"' was assumed and is much
closer in appearance to the experimental one. If cne assumes
a high degree of level mixing of the rc-vibrational states at
v = 6, then the “Golden Rule” formula (27/A)(¥ }?p,, may
be used for the rate constant k£ for decay of the excitation.
The homogeneous linewidth 4% is then given by & /2mc,*
where ¢ is the speed of light. Using the expression
(2J + 1)p,(I") for the average density of ro-vibrational states
p,, With symmetry I” and rotational quantum number J,*’
typical values of the effective coupling element (¥') needed
to give linewidths ot 30 cm ~ ' are found to be on the order of
0.1-1.0cm ™", depending on the value of J and the symmetry
I. (Note the difference in magnitude of these matrix ele-
ments coupling to individual bath states as compared to
those coupling the stretch to the bend in CHD,). In these
calculations, values of 1.85, 1.85, and 7.40 states/cm ™~ ' were
used for the density o, (") of 4,, 4,, and & symmetry vibra-
tional states, respectively, at the energy of the v = 6 transi-
tion.'> Whether the physical origin of the extra broadening
in Fig. 5 is due to higher order potential energy and/or Cor-
iolis interactions is at present not known. It should, however,

ABS. (ARB. UNITS)

ENERGY (@m')

FIG. 5. Theoretical C-H overtone spectrum for CH, D including a broaden-
ing of 30 cm ™! for each vibrational/rotational transition.
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be mentioned that thermal congestion may be the source of
the observed broadening in this molecule provided there are
small but not negligible Coriolis interactions.

V. CONCLUDING REMARKS

In this paper, a theoretical analysis of the C-H stretch-
ing vibrations in CHD,, CHT;, and CH,D was performed.
The various coupling mechanisms in these molecules result-
ing from dynamicai and, in the case of CHD; and CHT,,
potential energy interactions were considered. For CHD,,
the simplicity of the observed C-H overtone spectrum was
qualitatively explained by treating the curvilinear G-matrix
coupling® of the C-X siretch with the other vibrational nor-
mal modes, but this coupling is seen to be too large to quanti-
tatively explain the Fermi resonances with the v; mode. Po-
tential emergy contributions are therefore assumed to
contribute a cancellation effect within the interaction matrix
elements between zeroth order states. It was further con-
cluded that the existence of a low order resonance condition
vetween the C-H siretch and the other vibrations was cru-
cial in determining the degree of vibrational mode coupling
in these molecules. In CHD;, it was deduced from the calcu-
lations that the C-H stretching local mode selectively inter-
acts by these mechanisms with only one doubly degenerate
normal mode involving D-C-H bending. Another approach
to the present probiem is the rectilinear coordinate method
used by Quack ef a/.?*?*° for the C-H stretching states in the
CHX,; species (where XX = D, F, etc.).

Predictions for CHT, are also presented, using the same
model as for CHD;, the only difference being in the normal
mode frequencies cue to the isotopic substitution D to T.
The predictions of this mode! indicate the existence of a
purer C-H sireiching mode than was found for CHD, be-
cause the 1:2 resonance condition between the C-H stretch
and the bend is detuned upon isotopic substitution. It is sug-
gested that more subtie vibrational state mixing effects such
as higher order resonances with other normal modes, weak
potential energy couplings, and a higher density of states
may be present in thiz molecuie, although cur model indi-
cates that these are r:ot important. The results presented in
this paper for CHD; and CHT,, together with the work of
Sibert ef al.* on the benzene local modes suggests it is possi-
ble that many intermediate and large size molecules may
exhibit interesting behavior that only the detailed examina-
tion of the vibrational state coupling can reveal. One possi-
bility is that certain molecular systems may be thought of as
decoupled cr very weakly coupled subsets of strongly inter-
acting vibrational modes. There are implications of this pic-
ture for vibrational energy redistribution'? and laser selec-
tive chemistry.”® In fact, the results presented here are
consistent with the recent observation in anthracene®® of
simple quantum beats, indicating that only a few (~ 3) levels
are involved in the coupling even though the total density of
states is quite high.

For CH,D, it is found that the pure C-H stretching
local modes do, in fact, mix to a greater degree by G-matrix
coupling with bending normal modes than was found in
CHD;. It was also shown that local mode combination
states' were not significantly coupled to these pure local

modes. Thus, the present model suggests that the energy
flow from an initially excited zeroth order nonstationary
state like Eq. (4.9) would go almost exclusively into the bend-
ing degrees of freedom coupled to the C-H stretches and not
into local mode combination states. This picture is similar to
that presented by several authors*® for C;H,,.

While the calculated spectral envelope (Fig. 4) for
CH,D is congested due to vibrational/rotational transitions,
we were unable to explain the observed high degree of spec-
tral congestion (see Fig. 2) using pure G-matrix coupling ef-
fects. Potential energy or Coriolis couplings between the ro-
vibrational states may be responsible for the added degree of
congestion observed experimentally in this molecule.
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APPENDIX A: INTEGRATION OF THE G MATRIX
ELEMENTS FOR CHD;, CHT,

The matrix elements (v|G;s(r)|v') appearing in Egs.
{3.7) and (3.13c}+{3.13e) were calculated as follows: Comput-
er subroutines were written (1) to calculate the G matrix'® for
a general tetrahedral molecule, the input parameters being
the atomic masses and the bond lengths; (2) to calculate the
normal mode matrix L~! for all the displacement coordi-
nates at their equilibrium value; (3) to perform the symmetry
coordinate transformation [Eq. (3.5)] and the normal mode
transformation [Eq. (3.4)]; (4) to calculate the value of the
integrand gb:‘(r)g’s,s (NY,(r) from the matrix element
(v|Gs5(r)|v') for an arbitrary value of the C-H bond dis-
placement coordinate #, ¥, and ¥, being the Morse oscilla-
tor eigenfunctions'”’®; and (5) to numerically integrate the
integral (v|Gss(r)|v’) using Gaussian quadrature®! for the
classically allowed region and Laguerre quadrature®! for the
classically unallcwed region. These subroutines were linked
into a main computer code such that a value of @5,5 (r) could
be calculated at each 7 and the numerical integration in Eq.
(5) performed. It was found that 64-point Gaussian quadra-
ture and 30-point Laguerre quadrature gave values for the
integrals converged to at least six decimal places.

APPENDIX B: MORSE MATRIX ELEMENTS FOR r AND r?

The Morse matrix elements in Ref. 21 for r=(R ~ R,)
were simplified to give

(v +j|r|v)
(=W [k—20— 1k —2w—2—1)]"
B jk—20—j—1)
172
] (B1)

a
. [ w+)v+j—1)..v+1)
k—v—1)k—v—2)..k—v—})
d

an
p—=1 1

i) == |k~ ('S

rn=l(P—m)+Z

+ P (1 +z))
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1-s.)]. (B2)

where @ (x) is the digamma function,*? 4 denotes w/wy, and
adenotes (2uwy )'/?/4. Also,  is the reduced mass of the two
particles having an internuclear separation R and

z=k—Intlk), p=Intlk)—1— 2y, (B3)

where Int(k ) is the integer nearest to & from below.

The off-diagonal Morse matrix elements of 7 are given
by Gallas in Ref. 18{a). However, the diagonal matrix ele-
ments of 7, when calculated from the formula given by Gal-
las,'®* can in general pose serious numerical difficulties [see
Ref. 18(b}]. They were instead calculated from the formula

WPy~ > (olr| i) lrv), (B4)

jibound)

M E (k—v J)

=1

which assumes an approximate completeness relation

S N =1 (B5)
Jlbound}
for the Morse oscillator bound states. For relatively low val-
ues of v, it is not expected that the contribution in Eq. (B4)
from the continuum wave functions is significant.

APPENDIX C: TRANSFORMATION OF FORCE
CONSTANTS FOR CHD; TO CHT,

The transformation of the cubic and quartic force con-
stants from CHD, normal mode coordinates to CHT; nor-
mal mode coordinates was performed in a straightforward
way using the equations

a=LQ, ¢=LQ, (C1)
where the primed quantities refer to CHT,, the unprimed
quantities refer to CHD,, the Q’s are the normal modes, and

the q’s are the internal symmetry coordinates (Table I).
Equating the two expressions in Eq. (C1), one obtains

Q=L"'L'Q, ' (C2)
ie.,

Q=AQ, (C3)
where

A=L"'L" (C4)

The cubic and quartic force constants for CHT, are
then easily found to be

nim = z F.jk A Ajl Aim (C5)
ifk
and
l'tlmp = hz;,‘ Fhijk Ay, 4y Ajm Akp' (C6)
£,

In this case, 4,, is defined to be equal to unity and the other
A,; and 4;; are set equal to zero. This was done because
coordinate 1 is taken to be the local mode C-H stretching
coordinate, and the normal mode transformation is per-
formed independently of this coordinate.

APPENDI!X D: MATRIX ELEMENTS OF G FOR CH,D

Let G, ;(T1»72,73) be any general normal mode trans-
formed G-matnx element from Eq. (4.6¢). The matrix ele-
ments [Eq. (4.8)] between CH, local mode states jandj' from
manifolds with total C-H stretching quanta v and v’ [the I
indices from Eq. {4.8) have been suppressed] are

No N,
S > Chi*G,Ch, (D)

f=0i=1
where /), is the number of symmetrized zeroth order wave
functions for the manifold with v C-H stretching quanta and

Cj:',z = (U:io’l’:.»: (DZ)
with |v,i,) being the symmetrized zeroth order wave func-
tion:

bio) = 3 C2 low). (D3)
FJ
In Eq. (D3),

(v |Gy vy =

Ci = (pw|v.,)=the symmetrization coefficients,*
{D4)

and /N, is the number of different permutations p of the un-
symmetrized local mode state |p;v) with v total C-H quanta
[in an abbreviated notation for Eq. (4.1)]. Furthermore,

Z Z Crux(p’s v’]G,Ilpu)C (D5)
p=1p=
The matrix elements (p';v’| @,.j |p;v) were computed nu-
merically by the following procedure: {1) the standard G ma-
trix in internal valence coordinates is calculated in terms of
the atomic masses and the quantities (v, |r;” '|v;)é o

vk ?
(v, 2|v; )6w5u o and (v (r 7)) opy v/)8, ., Where

[v;), |v}), etc. are Morse oscillator eigenfunctions""‘8 appro-
priate to the states |p;v) and |p’;0'); (2) the symmetry coordi-
nate transformation [Eq. (3.5)] is performed with the symme-
try coordinates from Table VII; (3) the normal mode
transformation [Eq. (3.4)] is performed with the L~ matrix .
calculated from the normal mode analysis of Eq. (4.5). As
before, the three C-H coordinates were excluded from this
transformation. The ijth term of this matrix of values corre-
sponds to the matrix element (p’;v’|(~;ij |p;v). This procedure
yields values for the matrix elements in Eq. (D1) efficiently
and economically. A direct multidimensional numerical in-
tegration in terms of the three C-H coordinates was antici-
pated to be too expensive and, because of the dependence on
several coordinates, probably inaccurate.

APPENDIX E: CORIOLIS INTERACTION AND LOCAL
MODE DEGENERACY

In order to determine whether Coriolis interactions can
strongly effect the threefold near degeneracy of the zeroth
order states in Egs. (4.9)-4.10c) for the present model of
CH,D, a simple calculation was performed to estimate these
effects for the pure 4,, E,, and E, symmetrized zeroth order
CH, local mode states®
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[93d,) =— (10,0} + [05,0) + [0,05)),  (E1)
N

[UsE,) = —— (2/5,0,0) — [05,0) — [00,0)),  (E2)
%

and
[¥sEy) = L (10,,0) — |0,0,0)). (E3)
2

In this calculation, a rectilinear coordinate treatment was
used due to the relative simplicity of the equations in this
approach.®® In addition, it is well known that the description
of molecular vibrations in the curvilinear coordinate ap-
proach differs most strongly from the rectilinear treatment
only for the bending modes.>® For these reasons and because
we only desire to estimate these rotational effects, the recti-
linear coordinate approach is well suited to our purpose.

The first order Coriolis effect is described in the small
amplitude limit by the vibration/rotation coupling term?

?, a
er=—zI_pzi (E4)

z

where ?’, is the z projection of the rotational angular momen-
tum, j, is the z projection of the vibrational angular momen-
tum, and I is the z component of the inertia tensor (taken as
a constant). The orientation of the molecule is such that the z
axis in the body fixed coordinate system is along the symme-
try axis of the molecule. The contribution to this term from
the CH, local mode coordinates r,, r,, and r; is

A

3
Vi =~ 30 1 5 (Es)
z i<j
where the £ 7, are the Coriolis zeta constants,>* and p, is the
momentum operator conjugate to 7;. The first order matrix
elements are then (with 7% = 1)

EW = — X (G ICEANT), (E6)
where C (f,p) is the summation term in Eq. (E5) and the states
|#:;I ) are states from Egs. (E1)~(E3). The zeta constants for
the coordinate system defined by the normal mode transfor-
mation of Eq. (4.5) {(excluding the C-H coordinates) and the
three C-H stretching coordinates were calculated using
standard techniques.® The values for these constants were
foundtobe ], = — &3, = &3 = 0.06. The values of the x
and y zeta constants £ and £ were also calculated and
found to be even smaller. As a check of the present method, a
complete normal mode calculation was performed (includ-
ing the C-H coordinates), and we reproduced exactly all of
the relevant normal mode zeta constants for CH,D (see Ta-
ble VI of Ref. 20).

In standard normal mode theory,*? the matrix element
[Eq. (E6)] between doubly degenerate normal modes of E
symmetry yields the value — (K /I{ + /)5, ., where [,
is the magnitude of the vibrational angular momentum of
degenerate state /, and hence splits the degeneracy of this
mode due to the difference in the values of the diagonal ele-
ments. For the local mode states [Egs. (E1)—(E3)}, the matrix
element in Eq. (E6) was evaluated numerically. It was found

that the only nonzero first order matrix element is between
the E, state [Eq. (E2)] and the E, state [Eq. (E3)] and, for
v = 6, that it is extremely small (~4X10~7 cm™!).

The second order Coriolis interactions of the states in
Egs. (E1}{E3) with the symmetrized zeroth order local
mode combination states of |5,1,0) parentage were next cal-
culated. To do this, a Van Vleck transformation®® through
second order was employed in order to treat the problem by a
simple 2X 2 matrix for the states (E2) and (E3) with v = 6.
The only nonzero perturbations were the first order correc-
tions just described and diagonal second order corrections
arising from the coupling to the E symmetry combination
states of |5,1,0) parentage. These interactions were again
found to be very small (~10~2cm™!). It is clear that, while
the degeneracy of the local mode states (E1)-(E3) is lifted by
the Coriolis interactions, this effect is expected to be entirely
negligible on the scale of Fig. 4 and thus contributes little to
the observed spectral congestion. The weakness of these in-
teractions is primarily due to the smallness of the zeta con-
stants §; for the local mode coordinates appearing in Eq.
(E5) and because the local mode states presumably have very
little vibrational angular momentum. Whether Coriolis ef-
fects are important for the pure local mode states in other
molecules with different symmetries remains an open ques-
tion.*® It is also again emphasized that the above calculations
assume the local axial symmetry of the CH, group in the
CH,D molecule.
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