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Densities of vibrational states of given symmetry species. Linear molecules
and rovibrational states of nonlinear molecules
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A simple statistical expression is given for the density of states of any symmetry species for linear
molecules. Molecules with one and two pairs of doubly degenerate bending modes are considered.
The results of our previous paper for vibrational states of nonlinear molecules are also extended to
include density of rotational-vibrational states by symmetry species. The various expressions are

tested by comparing with exact counts of states.

I. INTRODUCTION

In a recent paper,' we derived a simple statistical
expression for thedensity p(I" ) of vibrational states with sym-

metry species I" for nonlinear molecules, or for the number

N (I") of states of symmetry I with energy less than or equal
to £ in terms of the total number of states N with energy less
than or equal to E:

p\r)=pfr, N(I')=Nfr, (13'.

where the fraction of states of symmetry I is
r=8rRr/(Ry +2Rg + 3R)np. (1b)

Here, p is the total density of states, determined by exact
count or by use of an approximate formula such as that of
Whitten-Rabinovitch. [In using a formula such as Eq. (1a)
one is often interested in the case of high energies, where
Whitten-Rabinovitch is applicable.] g is 1, 2, or 3 accord-
ingly as I'is of an 4, E, or T (non, doubly, or triply degener-
ate) species, the R ’s are small integers whose values for the
various types of molecular point groups are given in Ref. 1
and n~ is the number of symmetry species of type 4, E, or T.
An equivalent equation appears in the general work by
Quack? on group representatione. in scattering theory and
most recently by Pechukas® in his nice treatment of molecu-
lar symmetry point groups. For any given symmetry species
the number of scattering channels (Quack) or fraction of vi-
brational states (Pechukas) is written in their notation as
[, W(EJ)/gor n /g, respectively. In each case the result
excluded the symmetry associated with rotation about the
C_ symmetry axis of linear molecules.

Exact counts were given to test the accuracy of the for-
mula in Ref. 1.Sinha and Kinsey® have recently presented a
fast computational method for an exact count.

In Sec. II of the present paper we develop statistical
formulas for the density of vibrational states by symmetry
species for linear molecules. In the process we first consider
the purely classical density of states, using the vibrational
angular momentum component as a representation of sym-
metry species. The formulas are then converted to a “semi-
classical” .form (to agree better with the exact quantum
count) by introducing an expression analogous to that of
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Whitten and Rabinovitch® for unrestricted counts of states.
Comparisons with exact quantum counts are given in Sec.
IIL

The density of rovibrational states by symmetry species
is treated for nonlinear molecules in Sec IV. Such systems
are of interest because coupled rovibrational states have been
invoked to explain the onset of intramolecular vibrational
relaxation at energies where the density of vibrational states
alone is too small to explain the data.® A simple formula,
analogous to that which we derived in Ref. 1, is obtained for
these rovibrational states. The formula is compared with an
exact quantum count of rovibrational states. The results are .
discussed in Sec. V. '

Il. DENSITY OF VIBRATIONAL STATES OF LINEAR
MOLECULES BY SYMMETRY SPECIES '

In the case of nonlinear molecules there are a finite
number of symmetry species. With increasing energy, the
partitioning of states among symmetry species became ener-

_ gy independent and was given by a simple formula (Eq. (1)).

In the case of linear molecules, however, there are an infinite
number of symmetry species, each characterized by the pro-
jection of the angular momentum along the internuclear
axis.” The partitioning of states by symmetry species no
longer approaches a constant value with increasing energy,
and so the formula derived in the present paper is no longer
quite as simple. ’

Two cases are considered below: (A) linear molecules
with one degenerate pair of bending modes (e.g., CO,); and
(B) linear molecules with two degenerate pairs of bending
modes (e.g., C,H,). The case of more than two degenerate
modes can be treated similarly, but is rarer and is omitted
here.

A. One degenerate pair of modes

_ We use the symbol / to denote quantum number for the
(signed) component of angular momentum along the inter-
nuclear axis of the molecule. We first show that the classical
number of vibrational states with energy less than or equal to
E for a molecule with s vibrations and with a given value of
isNUE):

NYE)=(E = |l |hv) ~'/2(s — )hvIL,hv,, 2)
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where v is the vibration frequency of the degenerate bending
mode (i = 1,2) and in the present section the v, (i = 3 tos) are
vibration frequencies of the remaining s-2 modes.

The derivation of Eq. (2) is given in Appendix A. It
involves consideration of the partitioning of the energy E
among all vibrational modes subject to the constraint that
the (signed) component of the vibrational angular momen-
tum along the internulcear axis is specified. Incidentally, in-
tegration of Eq. (2) over the limits of /, namely from — E /hv
to E /hv (Appendix A), for a given E yields E* /si(hv)*I1; hv;,
the conventional expression for the classical number of
states of s oscillators with energy less than or equal to E.

The accuracy of Eq. (2) can be improved by converting
to an expression which parallels that used by Whitten and
Rabinovitch® for the unrestricted number of states (cf. Ap-
pendix A)

Nie)=(e+ aE,, — |l |hvy~'/2(s — I)hvIL;hv,, (3a)
where

e=E—E_ (3b)

and E, , is the zero-point energy of the set of s oscillators; a is
a factor given by Whitten and Rabinovitch, which we calcu—I
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" late at a reduced® energy (E — |/ |hv)/E,, and for the givens

frequencies.
The density of states by angular momentum is found by
differentiating Eq. (3):
(6 + aEz.: - Il IhV)’ -,2
2(s — 2MhvIL Ay,

When + /and — [ states are grouped together, to form the
ILA,... states,” we have as their number

NI =2N! (1 #0)
=N : =0,
where N/ is given by Eq. (3). Similar remarks are applicable
in obtaining p! '(¢) from the p}(¢) in Eq. (4).

plie) = [1+ 26,

(5)

B. Two degenerate pairs of modes

The derivation for this case parallels the previous one,
but involves more complicated limits. If v, and v, are the
vibration frequencies of the two degenerate pairs of modes
(f = 1-4),the classical expression for the number of states
with a specified {signed) / and with an energy less than or
equal to E is shown in Appendix B to be

hvoE — |l |hv,F = — hvy(E — |l |hv,) "' (E /hv, — {|) (6)

NiE)=

(s = 1)12hv v, { (v, — (hv,\ 111, Ay,
when v,>v,. Here, the product IT; is from / = 5 to s throughout this section and @ (x) is 0 if x <0 and 1 if x> 0. Integration of
Eq. (6) over all / from — E /hv, to E /hv, yields the conventional classical expression for the number of states, namely, E° /

s!(hvl)z(hyz)znlhvl . '

Once again, a Whitten-Rabinovitch® type of modification is introduced to convert the expression in Eq. (6) to one which

better approximates the quantum results, namely,

Nie=

hvyle + @,E,, — |11hv\F " — hvile + @.E,, — |1 |hv,) ~'0(E /hvy) — ) | ™
2s — v v, [(v,y)? — (hv, 1T Ay, o

where ¢ is again given by Eq. (3b), a, is computed at a reduced energy (€ — |/ |Av\)/E,, and a, at a reduced energy of

(e = |! |hv,)/E, . and in each case for s oscillators.

The density of states, obtained by differentiating Eq. (7) is
hvyl€ — a\E,, — |l |hv\} (1 + §)) — hvile — @B, — | |Avaf ~2(1 + §2)0 (E /hv, — |11)

(8)

plle) =

where {; = (da;/de)E, ;.

Once again, when -+ /and — I states are grouped to-
gether to represent the symmetry species we have

NVt =2N (I #0) (9a)
=N!{I=0), (9b)
where N! is given by Eq. (7) and with analogous remarks for
i
ps '(€).

Ill. RESULTS FOR LINEAR MOLECULES

In this section we give the quantum count N (I"') of har- ‘

monic vibrational states by symmetry species I” with energy
less than or equal to €. Standard tables were used for comput-
ing the symmetry of overtone and combination.states.®
The 3 states are those for which |/ | = 0, the E, states (or
IT states) are those for which |/ | = 1, etc.” When two degen-
erate pairs of modes are present both 2 * and 2 ~ states oc-
cur. In applying Egs. (7) and (9) we assume a randomness

2(s — 2)thv v, [(hvy)? — (Av 1L Ay,

r

among these states and so to count each of the symmetry
species 2 * and S ~ wedivide Eq. (7)for/ = Obyafactorof2.
In examples of molecules with an inversion center, g and #
states occur, but Egs. (3), (), (7), and (9) refer to the sum of
the (g,u) pairs. We assume a randomness among this type of
pair and so also divide these equations by a factor of 2. Thus,
whenonehas > -, 25,3 7, and 2 [ states, the equations
for / = 0 are divided by a factor of 4. ,

Results for four representative linear molecules are giv-
enin Tables I to IV. Results for HCN,? a C_, molecule with
one degenerate pair of normal modes, are given in Table I. R
is the ratio of the exact N (I") to the approximate number
given by Eq. (3) and (5). In the last row (“total”) the item
labeled N (I")is really the total number of states [i.e., ZN (I"),
summed over all I", even those that are not listed]. The “R ”
in thisrow is the ratio of this SN (I" ) to the standard Whitten—
Rabinovitch expression® for the total number of states. We
also note that 3 — states are not allowed for a molecule with
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TABLE I. Number of vibrational states of HCN by Symmetry type at var-_
ious excess energies and ratio R of exact number to approximate formulas.*

€=10250cm~' €=20250cm~' €=40250cm™’

r N(IN) R N(T) R N(I) R
I 41 0.98 221 1.00 1404 1.00°
ES 70 0.99 404 1.00 2672 1.00
E, 60 1.01 368 1.00 2544 1.00
E, 50 1.01 332 1.00 2416 1.00
E, 40 0.99 300 1.00 2294 1.00
E, 34 1.04 270 1.00 2176 1.00
E, 26 1.00 242 100 2062 100
E, 20 0.98 216 1.00 1952 1.00
E, 16 1.04 192 1.00 1846 1.00
E, 12 1.05 170 1.00 1744 1.00
E 8 099 150 100 1646 100
E, 6 110 130 100 1550  1.00
E, 4 L6 114 100 1460  1.00

13 2 0.94 98 1.00 1372 1.00

14 2 2.35 84 1.00 1288 1.00
E 70 0.98 1208 1.00
E, 60 1.00 1132 1.00
E, 50 .00 1058 100
Ey 40 0.98 988  1.00
E,, 34 1.03 922 100
Ey 26 0.99 356 1.0
E, 20 0.97 79  1.00
E 16 1.02 738 1.00
Total 391 0.99 3 641 0.99 42952 1.0

°Zero-point energy is 3412.5cm™".

®Asin Ref. 7, E, is a /7 state, E, is a 4 state, etc.

“In this and other tables the formulas in Ref. 4 were used in some cases
outside the suggested range of accuracy, but we still, as the results show,
found the formula of Ref. 4 to be quite accurate.

only one pair of degenerate modes'® and hence we did not
divide Eq. (7) for / = 0 by the factor of 2 mentioned in the
preceding paragraph.

Results for CO,,'' a D, molecule with one degenerate
pair of modes, are given in Table II. Here, there are g and u

statesduetotheinversioncenterand N, (I" )and NV, (I" ) repre-

sent the exact quantum number of states with g and « sym-
metry, respectively, with the cited value of |/ |. Thus, R, and
R, denote the ratios of exact counts to those based on the
right-hand side of Eq. (5) divided by 2, as discussed above. R
in the last column represents the ratio of N, (I") + N, (I") to
the number of states given by Eqgs. (3) and (5).

Table 111 contains results for C,BrCl,'>a C_, molecule
with two degenerate pairs of modes. R is the ratio of exact
countV (I" )to thenumber given by Eq. (9a) when/ 0. When
{=0(i.e., ’=X), Ristheratioof thesumof N (I"’sfor 3 *
and 2 ~ to the number given by Eq. (9b).

Table IV contains results for C,H,,'> a D_, molecule
with two degenerate modes. Here, there are both g and u
states and £ * and X ~ states occur. Thus, for / #0, one di-
vides the right-hand side of Eq. (9a) by a factor of 2 to calcu-
late R, and R, . When computing R, and R,, for the four £
states one divides the right-hand side of Eq. (9b) by a factor of
4, as already noted. When / = 0, R is the ratio of the sum of
N({for2 },2 7,2 },and T 7, tothe numbergivenby Eq.
{9b).

TABLE I1. Number of vibrational s.tates for CO, by symmetry typeat (A)
€=20250cm "' and (B} € = 40 250 cm ' and ratio of exact number to

approximate formula.*

r NJA) R, N} R, R
(A)

z+ 276 1.18 194 0.83 101
E, 346 0.1 500 1.17 0.99
E, 466 1.20 320 0.82 1.0t
E, 282 0.80 418 1.18 0.99
E, 388 1.21 260 0.81 1.01
E, 26 078 346 1.20 0.99
E, 320 1.23 208 0.80 1.01
E, 178 0.76 282 121 0.99
E, 260 1.25 164 0.79 1.02
A 133 0.75 226 1.22 0.98
Ey 208 1.27 126 oM 1.02
E,, 106 072 178 1.23 0.98
Ep 164 1.30 9% 0.75 1.02
E, 7% 0.69 138 1.26 0.98
E. 126 1.33 68 0.72 1.03
Eis s4& 067 104 1.28 0.97
E 94 1.37 48 0.70 1.03
Ey, 36 062 76 1.3 0.97
Ey 68 1.41 2 0.66 1.04
E 2 056 54 1.36 0.96
Ex 48 1.49 20 0.62 1.06
E,, 12 047 6 L4l 0.94
Ey, 32 1.60 12 0.60 1.10
Total 7926 1.00
(B) -

I+ 1706 110 1417 091 101
E, 2684 091 3250 1.10 1.00
E, 3114 LI0 2568 091 1.01
E, 2428 090 2958 1.10 1.00
E, 2832 L1 2320 0.91 1.01
Es 2188 090 2684 110 1.00
E, 2568 111 2088 0.50 1.01
E, 1964  0.89 2428 111 1.00
E, 2320 LI 1872 0.90 1.01
E, 1756  0.89 2188 L1l 1.00
Epw 2088  LI2 1672 0.90 1.01
E, 1564  0.89 1964 111 1.00
E, 1872 112 1486 0.89 1.0
E,. 1386 088 1756 1.12 1.00
E. 1672 113 1314 0.89 1.01
Ey 1222 0388 1564 L12 1.00
E 1486 113 1156 ° 088 1.01
Ep 102 087 1386 1.13 1.00
E, 1314 114 1012° 0.8 1.0t
Eyo 934 0.6 1222 1.13 1.00
Es 1156  L14 880 0.87 1.01
E,, 808 0.6 1072 1.14 1.00
Eay 1012 115 760 0.87 1.01
Total 99 757 1.00

* Zero-point energy is 2510 cm ™.

IV. DENSITY OF ROVIBRATIONAL STATES FOR
NONLINEAR MOLECULES

Just as the vibrational states in Ref. 1 were character-
ized by symmetry species, the rotational and the rovibra-
tional states are similarly characterized. It is shown in Ap-
pendix C that the fraction of rovibrational states of a given
symmetry species is the same as that of vibrational states
alone and is therefore equal to the f- given by Eq. (1b).
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TABLE III. Number of vibrational states for C,BrCl by symmetry type at
various excess energies and ratio of exact number to approximate formula.*

TABLE IV. Number of vibrational states for C;H, by symmetry typeat (A)
€ = 9900 cm~! and (B) ¢ = 19 900 cm ™" and ratio of exact number to ap-
proximate formulas.®

€=3050cm™" €=6050cm™" €=9050cm™!
r N(I) R N({I) R N(T) R

z+ 393 1.07 6317y 1.03 40594, 1.01
P 216 1.06 44057 1.02 313134 1.01
E, 1170 21110 142760
E, 1096 1.07 20564 1.03 140632 1.01
E, 962 1.06 19562 1.02 136936 1.01
E, 848 1.08 18512 1.03 132642 1.01
E; 702 1.07 17156 1.02 127216 1.01
Eg 586 1.09 15886 1.03 121580 1.0t
E, 460 1.08 14414 1.02 115148 1.01
Eg 368 111 13100 1.03 108804 1.01
E, 274 1.09 11668 1.02 101928 1.01
E, 210 1.13 10436 1.03 95364 1.01
E, 148 110 9132 1.03 88464 101
E,y 108 1.14 8054 1.04 82040 1.01
E, 7 L2 6932 103 75416 101
E,., 50 117 6034 1.04 69374 1.01
E, 0 L2 5110 1.03 63236 1.01
Es 0 126 4396 1.0 $7734 102
E, 10 115 3662 1.04 52202 1.01
E,, 6 1.43 3118 1.06 47322 102
Ey 2 124 255¢  1.04 42458 1.02
E, 2 4.19 2152 1.06 38232 1.02
E, 1734 105 34038 1.02
Epn 1446 1.08 30464 1.02
Total 7733 0.99 232508 1.00 2177519 1.00
*Zero-point energy is 2245.5 cm ™',

In the exact counts of rovibrational states listed in Ta-
bles V to VIII each harmonic vibrational state was coupled
to each of the 2J + 1 rotational states, where J was assigned
various values. The coupling was assumed weak and the new
states were assumed to have the sum of the energies of the
separated states. The symmetry of the rotational states was
found within the full molecular point group using the meth-
od given by Hougen.'* The tables of the symmetry of rota-
tional states for the molecular groups D,4, D,;, C,,, and
C., by Weber'® were useful, as were the symmetries for
methane.'¢ .

Results for benzene,'” a symmetric top, are given in
Table V. Ny (") denotes the exact quantum number of rovi-
brational states of energy less than or equal to € for symme-
try species I', e being the total rovibrational energy above the
zero-pointenergyand Y{I" }istheratio N yg (I"V/fr 2N, ("),
where N, (I" ) is the exact number of vibrational states of sym-
metry I'. The results are given for several values of J, where
J = 30 s close to the room temperature value. One sees that
for the rovibrational states the ratio of any nondegenerate
symmetry species to any double degenerate symmetry spe-
cies is 1:4, just as it was for the vibrational states.

We explore three approximations for the number of ro-
vibrational states from a knowledge of the number of vibra-
tional states:

(i) In this first approximation the rotational energy is
neglected in the approximate formula for the number of
states, i.e., we assume in this approximation that

N v (€)= (2J + 1N, (e), (10)

r N,(T) R N, R, R
(A)
z* 223 149 mn 1.14 1.04
z- 97 0.65 131 0.88 1.05
E, 608 1.0 608 1.0
E, 578 1.07 544 1.01 1.04
E, 508 1.05 506 104 . 105
E, 448 1.07 424 1.01 1.04
E, 372 1.05 368 1.04 1.05
E, 308 1.07 294 1.02 1.0
E, 244 1.07 242 1.07 1.07
Ey 188 1.08 178 1.02 1.05
E, 144 112 138 1.07 1.10
E, 98 1.07 92 1.01 1.04
» 70 1.14 64 1.04 1.09
E, 44 1.13 40 1.03 1.08
3 28 1.12 26 1.04 1.08
E,, 14 1.17 12 1.00 1.09
E, 8 1.68 6 1.26 1.48
E. 2 1.70 0 0.00 0.85
Total 7826 1.00
{B)
z* 3979 1.23 3 600 1.12 1.02
z- 2612 0.90 2895 0.90 1.01
E, 12 922 1.01 12 964 1.02
E, 12 678 1.02 12 510 1.01 1.01
E, 12 042 1.01 12078 1.01 1.01
_E, 11488 1.02 11342 1.00 1.01
Es 10 644 1.01 10678 1.01 1.01
Es . 9928 1.02 9798 1.01 1.01
E, 9 006 101 9034 1.02 1.01
Eg 8228 1.02 8120 1.01 1.01
E, 7314 1.01 7340 1.02 1.01
E\ : 6562 1.02 6 468 1.01 1.01
E, 5710 1.01 5736 1.02 1.02
E, 5032 1.02 4952 1.01 1.01
E, 4282 1.01 4310 102 102
E,, 3700 1.03 3636 1.01 1.02
E, 3078 1.01 3098 1.02 1.02
E, 2602 1.03 2556 101 1.02
E, 2112 1.02 2124 1.02 1.02
Ey 1740 1.04 1706 1.02 1.03
E, 1370 1.02 1376 1.03 1.02
E,, 1092 1.04 1074 10.2 1.03
E;, 830 1.03° 832 103 - 103
E), ' 638 1.05 " 628 1.03 1.04
Total 281 302 1.00
*Zero-point energy is 5860.5 cm ™.

where Nyg (7€) denotes the number of rovibrational states
of symmetry I" with total energy less than or equal to € and
N, (€) is the number of vibrational states for this ¢, regardless
of symmetry. € is the total energy in excess of the zero-point
energy, as before. To test the approximation given by Eq. (10)
we calculate a quantity (") defined by

a(l")= N vr(F€)/ (2T + 1)frN,(€) (11)

(ii) In this second approximation the rotational energy
E,,, of the molecule (as a symmetric top) is averaged over the
K quantum number assuming » uniform distribution in X.
Instead of Eq. (10) we now use

N yg(Tie) = (2 + 1)fr N (€ — (Eo0))- (12)
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TABLE V. Number and ratio of rotational-vibrational states Ny (I") for
benzene at € = 3004.8 cm ™' for various J's.*

TABLE VILI. Ratio of exact to two approximate results for formaldehyde at
various excess energies.” '

J=1 J=20 J=230 €= 5640cm™"' €=11280em~" €=22572cm™!
r - Nw(l) AN Nw{l) A) Nwll) Ar) r Ar) Ay BWr) ar) BIr) A
ay, 300 1.00 36545 1.00 44682 1.00 a, 1.03 '1.00 1.02 1.01 1.01 1.01
Gy, 3024 097 36430 1.00 44582 1.00 a, 1.05 1.01 1.00 0.99 1.00 1.00
by, 3100 1.00 36334 1.00 44562 1.00 b, 1.03 1.00 1.0t 1.00 1.00 1.00
2 3200 1.03 36431 1.00 44648 1.00 b, 1.04 1.00 1.02 1.01 1.01 1.00
G1 3066 099 36464 100 4454 100 FNMI=13 SNN)=9%  TN(I)=2239
[ 3108 1.00 36506 1.00 44584 1.00
b, 3150 101 36424 1.00 44 557 1.00
by 3ng 100 36387 1.00 44531 1.00 *J =15, (E,o,) = 946.72 em™", zero-point energy is 5644 cm=".
e, 12586 1.01 145538 1.00 178402 1.00 .
ey 12262 0.98 145958 1.00 178 544 1.00
€. 12528 1.01 145654 1.00 178148 1.00 where
€ 12356 1.00 145918 1.00 178278 1.00
J
*Zero-point energy is 20034 cm ~ . Note that {I") is defined differently than Ny= 3 Nile—E,UK)AJ+1) (18)
in paper I to include the degeneracy. : . K= —J .
To test this approximation we define a ratio 4 (I'):
The rotational energy E,, of a symmetric top having mo- A({ly= Ny (/2 + 1N (19)

ments of inertia Iy and I, = I is
E(K)=BJJ+1)+K*C—B), (13)
where the rotational constant C> B for an oblate and C < B

for a prolate, symmetric top. Thus, {E,, ) depends on the
(K ?). For a given J, we have

(K*) = i KY 2+ 1)=4J(J+1) (14)
. K= —-J
Thereby,

(Et) =BJ(J + 1)+ }J(J + 1)(C—B). (15)

The expression for a spherical top is obtained by setting
C = Bin Egs. (13) and (15). To test Eq. (12) we define a ratio
B(r):
B(I') =Ny (Fe)/ (2 + 1N, (€ — (Eo)). (16)
(iii) In this third approximation we calculatean N, (") at
€ — E_,(/,K) and then average this over K. Thus, now

Kvr(le) =T + 1N, (17)

TABLE VL. Ratio of exact to three approximate resuits for benzene at var-
ious J's* and € = 3004.8 cm~".

J=1 J=20 J=130

r af) BIr) 4(N) all) B(N) AN all') B(I) 4A(T)

e, 100 100 100 08 100 100 071 101 1.00
a, 097 098 098 086 100 100 071 1.00 - 100
b, 100 100 100 086 100 100 071 100 100
b, 103 103 103 08 100 100 07f 100 100
g, 089 099 099 086 100 100 071 100 .1.00
e, 100 100 100 086 1.00 100 071 100 1.00
by, 101 102 102 08 100 100 071 100 1.00
b,, 100 101 101 086 1.00. 1.00° 071 100 1.00
e, 102 101 101 08 100 100 071 100 100
ey 099 099 099 08 100 100 071 100 1.00
e. 101 101 101 08 100 100 071 1.00 1.00.
& 099 100 100 086 100 100 071 100 1.00

*The total number of all vibrational states is 24 866. When J=1,
(E.;) =03 ecm™"; when J=20, (E,,)=63.5 cm™'; when J=30,
(E.) =140.6cm™,

Equations (10), (12), and (17) are tested for benzene, by
calculatingthea(I"),8 (" ),and 4 (I" )using Eqs.(11),(16),and
(19), respectively. The results are given in Table VI for sever-
al J’s. Equations (12) and (16) are tested for formaldehyde,'®
a near symmetric top, in Table VII and for methane,'” a
spherical top, in Table VIIL The closer the values of @, 5, or
4 to unity the better, of course, the approximation.

V. DISCUSSION

Examination of Table I for linear molecules shows that
the approximate formula {Eqs. (3) and (5)] for linear mole-
cules agrees well with the exact results at the given energies.
The deviations at very high |/ | at the lowest energy are due to
poor statistics. Comparison of the R ’s calculated at each /
with the R in the last line shows that our Whitten—Rabino-
vitch type expression by angular momentum [Eq. (3)] is vir-
tually as accurate as the standard total Whitten—-Rabino-
vitch expression (except at large enough |/|'s). Similar
remarks apply to its use for the sum of g and u states in Table
II, but even for the counting of g states or u states alone it is
seen to agree quite well. The remarks about Table I apply
also to Table I11, though there is less randomization between
the 2 * and Z ~ than between g and u states. Equations (7)
and (9) are seen to agree well with the exact count. A similar
remark applies to Table I'V.

TABLE VIII. Ratio of exact to two approximate results for methane.*

€=4940cm™' ¢€=9880cm™' €=19760cm™"'
r Arya(r) Br)a(r) B(r)a(r)
a, 0.88 0.95 099
a 1.05 1.03 1.0
e 0.98 0.99 1.00
1 1.03 1.02 1.00
4 0.99 0.99 1.00

;N,,(l‘] =79 FNAM)=1308 ;N,(l") =66 877

*J=35,(E,,) = 157.56 cm™', zero-point energy is 9883 cm™~".

i J. Chem. Phys., Vol. 81, No. 12, Pt. [, 15 December 1984
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In Table V for rovibrational states, ¥{I" ) for benzene is
even closer to unity than it was in Ref. 1 at the same number
of states, perhaps due to the extra number of degrees of free-
dom. The three approximations for counting rovibrational
states of nonlinear molecules of any symmetry species are
embodied in Egs. (10), (12), and (17). The results in Table VI
for benzene show that even Eq. (10} is a good approximation
except at high J. Equation (12) is seen to be even better than
Eq. (10) and it agrees so closely with the exact results as not
to make the use of Eq. (17) worthwhile for the present results.
The tests in Table VII of Eqgs. (12) and (17) for formaldehyde
shows them to be satisfactory for the energy and J tested.
Once again Eq. (17) contributes a negligible improvement
over Eq. (12). Since methane is a spherical top, E, is inde-
pendent of X and Eqgs. (12) and (17) give identical results in
Table VIII.
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APPENDIX A: DERIVATION OF EQS. (2) AND (3)

We let v be the vibration frequency of each member of
the degenerate pair and let n° kv and n® hv be the amounts of
energy present in each member of the degenerate pair.
Thereby n°h and n® 4 are the values of the classical action.

.Classically, n° and n® are continuous variables with a mini-
mum value of zero. Quantum mechanically, »° and n® are
half-integers, 1/2,3/2,... . For any pair of values (n°,n") the
component of angular momentum |/ | along the molecular
axis is |n° — n®|.

We define a variable /’ equal to n° — n® and note that it
can be positive or negative. We also define a principal vibra-
tional “quantum number” # (the corresponding classical ac-
tion being nk ) for the degenerate pair

I'!'=n,—ny, n=n+n, (A1)

!’ is the quantum number for a signed angular momentum
component along the internuclear axis. The classical num-
ber of states N /(E ) with a particular value of / of /*, and with
energy less than or equal to E, is

E /hv E/hv — ny
N:(E)= f dn:J‘ dnl

ny =0 n =0
XN, _,(E — nhv — nhv)o(n, — ny — 1),
(A2)
where s is the total number of vibrations and N, _,(x) is the
number of vibrational states of s — 2 oscillators with energy
equal or less than x:

-2

_x (A3)
(s — 2L Ay,

Here, the product over / is from i = 3 toss, oscillators 1 and 2
being the pair of degenerate bending vibrations. Using the
transformation in Eq. (A1), the area element dn, dn, in Eq.
(A2) becomes ldndl’ and the delta function becomes
8(I' — ). Weconsider first the case of /> 0. Here, because of
the delta function, only the domain of /* > 0 need be consid-
ered. Equation (A2) then becomes

Nx—z(x) =

1 E /hv E /hv
NYE)= — dl'f dn N,_,(E — nhv)li’ —1).
(] 1

(Ad)

[The limits on » and !’ follows from those in Eq. (A2) and
from the transformation given by Eq. (A 1).] Integration over
n yields

N:(E)

E /hv
= [f dlI'(E = I'hv)y —'8{1' — 1)/2(s — 1)!hvr[,hv,] .
(1]
(A35)

Integrating over /' yields Eq. (2) of the text. A similar argu-
ment applies to the case / <0. One then uses in Eq. (A4) the
limits( — /',E /hv)fornand( — E /hv,0)for!’.Forl = 0, the
delta function occurs at an endpoint in Eq. (A5) and in a
corresponding expression for /<0. Integrals over the /' <0
and /' > 0 domains each yield 1/2 and so Eq. {2) of the text is
once again obtained.

In modifying Eq. (2) so as to yield Eq. (3) we have done
so in a way which permits the standard Whitten-Rabino-
vitch expression® to be recovered from Eq. (3) with only a
minor approximation. If we integrate the right-hand side of
Eq. (3) over all /, we first reexpress (€ + aE,, — lhvf'~'dl
forall/positiveas — d [(€ + aE,, — lhv)')/shv[l + E, .(da/
de)}. [We have used the fact that da/d ( — lhv)equals da/de].
An analogous change is made in the domain of / negative.
We then note that the dominant contribution of the original
integrand occurs at / = 0 and then replace the da/de by its
value at / =0, i.e., at the “reduced energy” of €/E,,. This
derivative is negligible at the E’s we have investigated (a is
close to unity there) and so the standard® Whitten-Rabino-
vitch expression is obtained after integration over /.

APPENDIX B: DERIVATION OF EQ. (6)

Let n,hv, and n,hv, denote the classical energies in the
two pairs of degenerate modes, and let n{Av, and nthv, de-
note the classical energies of each member of the first pair
and similarly for the second pair. We define

1 =ny —nll” 1; =n3 _ng'

n,=nt+nt, ny,=n5+n;. (B1)
As independent variables in the integration domain we use
ny, ny,14,and !’ (instead of 1§ and I ;), where ! equals/{/;.
The volume element dn$ dn} dns dnj becomes dlj
dn,dl’' dn,/4.

The equation analogous to Eq. (A2) is found to be

N(E) = %ffffdl'dl; dn, dn,

XN, _4(E—nihv, — nhv}8(l' 1)  (B2)
where N, _ 4 (x) is the number of states of the s — 4 oscillators
with energy equal to or less than x:

N,_ox) =x=%/(s — 41, hv,. (B3)

Here, i goes from 5 to s throughout, the oscillators i = 1-4
being the two pairs of degenerate bending vibrations. The/in

.the delta function is a particular value of /. The limits on the

variables are as follows: n, goes from |/ { | to (E — nyhv,)/hv,
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and n, from {/3] (i.e., |’ —11]) to (E — |I{|hv,\)/hv,. For
example, the lower limit just cited for the n, integral |/ || is
seen by noting that n, = 1] + 2n = 2n% — [ and observ-
ing that when /| > 0 the smallest value of n, is obtianed by
making 7% = Oand hencen, =/, and that when /| is nega-
tive, the smallest value of n, is obtained by making n{ =0
and hence making n, = — /{. That is, for both cases, we
have n,>|!1|. The limits on /{ and /' in Eq. (B2) are given
later:

N.(E)
f (E— 1"y, — I — 1] |hvyy=26(0" = 1)dl idl’
4(5 - z)lhvth2n[hV,-

(B4)

Thelimitson/, and /' are found by noting that the quantity in
parentheses in Eq. (B4) must be nonnegative. Because of the
absolute value signs, it is convenient to divide the integration
region into several subdomains, in each of which the integral
over /| can be easily evaluated. For example, we let v, > v,
and let the most negative and most positive values of / | for
which the quantity in parentheses in Eq. (B4) is nonnegative
bedenoted by / " and I ™™**. Then, for the domain with/* > 0,
the 1{ domains are found to be as follows:

When /' < E /hv,, there are three subdomains of /],
namely (/ 7" t0o0){0to/ ‘)and (/' to! 7**). Here, / 7" is given by
E—I'hv,—(I' = I7"™Av,=0; and /7" is given by
E—I'hv, — (IT** — I')hv, = 0. {(We have used the fact that
!} can exceed /' since /; can be negative.)

When!'’> E /hv,(itsmaximumvalueis E /hv,)onefinds
that the above /7™ is positive rather than negative and so
now there are only two subdomains of /{ namely (/" to /')
and (/' to/ 7**). Furthermore, when /s positive, we need only
use the positive /' integration domain, because of the delta
function. One thus finds, for /> 0, an expression identical
with Eq. (6}, but with |/ | replaced by /. Similar remarks apply
for the case when / is negative, with an obvious change in
limits, and once again obtains Eq. (6), but with |/ | replaced by

— 1. Equation (6) still applies when / = 0.

APPENDIX C: DERIVATION OF EQ. (1b) FOR
ROVIBRATIONAL STATES

In what follows, we use the notation and method of
paper . For group I molecules (defined there) we showed
that a vibrational state with several quanta in at least one
degenerate mode hasaratioof 1:1:3 for4 labelsto E labels to
T labels (“labels” defined there). This symmetry species of
the vibrational state was represented as equivalent to
A + E + 3T. If we couple this symmetry species for the vi-
brational state to a rotational state having a general symme-
try species /4 + mE + nT in the molecular point group,

where /, m, and n are zeros or integers, the overall symmetry
of the coupled state is

(A+ E+3T)l4d +~ mE + nT)
={l+2m + 3nM + (I + 2n + 3n)E
+ (3 +6m + T
=A+4+E+3T. (C1)

(The equivalent sign is defined in Ref. 1). Thus, the ratio of 4
labelsto E labelsto T labels of the coupled rovibrational state
is 1:1:3, as it was for the vibrational state alone. If we assume
a randomization of the labels among all of the symmetry
species as in Ref. 1, the analysis is identical to that given for
vibrational states alone there and yields the value of /- given
by Eq. (1b). It is of interest to note, though the results are
independent of this, that if one averages over the rotational
symmetry species given by Weber'® by averaging over all
K'’s, one obtains the same results as the averaged overtone
rules given in Table I of Ref. 1 for vibrational state alone.

Similar arguments are applicable to groups 2 and 3 in
Ref. 1, and so Eq. {1b) applies to rovibrational states of these
molecular point groups as well.
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