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Quantization is discussed for molecular systems having a zeroth order pair of doubly degenerate
normal modes. Algebraic quantization is employed using quantum operators appropriate to the
shape of the classical trajectories or wave functions, together with Birkhoff~-Gustavson
perturbation theory and the Weyl correspondence for operators. The results are compared with a
previous algebraic quantization made with operators not appropriate to the trajectory shape.
Analogous results are given for a uniform semiclassical quantization based on Mathieu functions
of fractional order. The relative sensitivities of these two methods (AQ and US] to the use of
operators and coordinates related to and not related to the trajectory shape is discussed. The -
arguments are illustrated using principally a Hamiltonian for which many previous results are

available.

1. INTRODUCTION

Many semiclassical quantization schemes have been de-
signed for systems (or subsystems) of few coordinates in re-
cent years, having or not having internal resonances. Reson-
ances tend to distort the shape of the classical trajectories
and the wave functions; and so create problems for some
quantization methods, over and above those present for non-
_resonant systems. In the present article, several quantization
schemes are considered for a system which has a 1:1 resonant
Hamiltonian in its quadratic terms and where this degener-
acy is removed by anharmonic couplings. The Hamiltonian
and the classical operators are summarized in Sec. II, togeth-
er with a classical Birkhoff-Gustavson perturbation expres-
sion. The desirability of using as quantum mechanical opera-
tors those which are particularly appropriate to the “shape”
of the wave functions or of the corresponding classical tra-
jectories is illustrated. An analogous conclusion was drawn
in our semiclassical quantization,? where the classical ac-
tions or quantization paths chosen were appropriate to the
shape of the classical trajectories.

In Sec. III, the “algebraic” quantization methed
(AQ),>* which is based on the use of Birkhoff-Gustavson
perturbation method® (or on the classical “averaging” meth-
0d®), is considered instead of the semiclassical method. Suit-
‘able Hamiltonian operators are introduced via the Weyl cor-
respondence,*’ based on quanturh operators used by Louck
and Shaffer® in their quantum mechanical treatment of the
doubly degenerate harmonic oscillator problem. These oper-
ators are appropriate to the shape of the classical “precess-
ing” trajectories' in this 1:1 resonant system. The results of
this calculation are then contrasted with those obtained* us-
ing instead “Cartesian operators”. The former prove to yield
the final results more straightforwardly, including various
splittings of degeneracies. A related behavior has been noted
previously in'the spectroscopy literature.®

*'Present address: Department of Chemistry, University of Colorado,
Boulder, Colorado 80309.
% Contribution No. 7049.
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The utility of the present AQ treatmént is illustrated
using the Henon-Heiles Hamiltonian, since many previous
results are available for it for comparison. Section II con-
tains a summary of the previous work on that system''%!!
relevant to the present study.

For comparison with the AQ results, the uniform semi-
classical (US) quantization'? of the same system is given in
Sec. 1V, using Birkhoff~Gustavson perturbation theory® as
before but introducing a quantization procedure which in-
volves Mathieu functions'? of fractional order. The latter is
performed with action variables™!! (““polar actions”) appro-
priate to, and actions'® (Cartesian actions) not appropriate to
the shape of the precessing trajectories. The superiority of
the former is once again evident in the results. Indeed, in one
previous semiclassical study where Cartesian actions were
used,'® the quantization was effected using mtegratxon paths
appropriate to the trajectory shapes.

The various results are discussed in Sec. V. The equiv-
alence, not previously noted, between the Henon-Heiles Ha-

miltonian and Hamiltonians of molecular spectroscopic in-

terest is also discussed in Sec. V. The anbarmonicities in this
potential split the overtones of the normal modes, but not the
fundamentals.'* Results of the present paper are summar-
ized in.Sec. VI.

II. MODEL SYSTEM

The model system chosen for the present calculations is

‘the Henon-Heiles Hamiltonian-

H=(pl+q +p +@)2+Aqles — 4 /3). - (1)

Semiclassical quantization of this system was introduced by
Noid and Marcus.' They used as quantum numbers the prin-
cipal quantum number # (related to the total action) and the
vibrational angular momentum quantum number /. They
also observed that whereas some (n, - /) pairs were degener-

“ate, those having the same n and / = 4 3k should show a

splitting when k is an integer. Their “pmmtwe" semiclassi-

cal calculation led to such + 3k pairs being apparently de- -

generate and they noted the need for a uniform connection
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formula to account for the missing splittings. Variational
quantum mechanical results for the energy levels were given
there and by Nordholm and Rice.!*

The Birkhoff-Gustavson perturbation theory® (BGPT),
which consists of a series of canonical transformations that
converts the classical Hamiltonian to a “‘normal” form, was
first applied to the same system by Swimm and Delos."’
Their treatment gave most of the energy levels accurately. It
was not uniform and so did not treat certain splittings. A
uniform treatment using BGPT was subsequently given by
Jaffe and Reinhardt.! Both sets of authors used curvilinear
properties analogous to those used in Ref. 1.

The (BGPT) normal form of the Hamiltonian (2.1) is
expressed as®'%!!

H=H,+AH,+A*H,+A%H;+ 0(8), (2.2)
where H, and H, are
Hy=(p} + 4t +p} +@3)/2, (2.3)

—3 [+ @2 =5 [P +&)2]
+ (0} + @l p; +a3)/12

= (P p2 + 010 — (Prg2 — P201)'1/24 . (2.4)
One may express H in terms of the four functions defined in
Ref. 11: ‘

No=(p} +at +7} +03)/2,
Ny=(pt +@)/2—(p3 +43)/2, (2.5)
N=p\g,—p4,, Ns=p1p2+99.

H,

In the present article, N, and N, will be referred to as the

“Cartesian” operators or actions and N, and ¥, as the “po-

lar” operators or actions, N, being a vibrational angular mo-

mentum. ‘
Equations {2.3) and (2.4) become

Ho=No' : (2,6)
Hy= — [3N2 +7(N} + N3 —N})]/24. (27)

H, can be converted to a form which is diagonal in an |1,/ )
basis given later, if one introduces the classical relation

N}=N}+Ni+N3i. (2.8)
H, can then be rewritten as '
H,=(IN? -5N}y12. 2.9)

Similarly, the higher order terms are given as''
H,= — (67N} + 21N,N3)/432
+7[4N} + 3NE — N3N, ]/18,
Hy=2093[4N} + 3(N3 — N3N, No/2160
— 35N,N,N2/648 + 3SN3(2N? + N2 — N2)/1458
—(42229N'¢ + 458 682N2N4
— 575 855N 4)/155 520,

(2.10)

(2.11)

when Eq. (2.8) is used. These classical equations for the nor-
mal form of the Hamiltonian are used in the following sec-
tions.

IIl. ALGEBRAIC QUANTIZATION (AQ) OF THE NORMAL
FORM

The AQ method, which combines classical and quan-
tum mechanical techniques to find the discrete spectrum of a
Hamiltonian, was introduced by Sanders® and Robnik.*
First, BGPT (or in Ref. 3 an equivalent “‘averaging” meth-
0d®) was used to find the normal form of the classical Hamil-

_ tonian as above.* The various perturbation terms, which are

given in terms of coordinates and momenta, were then con-
verted to quantum mechanical operators using ladder opera-
tors. The transition from commuting classical quantities to
noncommuting operators was effected by the Weyl transfor-
mation’ which states, for instance, that the quantum me-
chanical operator corresponding to a classical expression is

. . n!
e »<—»2 Igo Nn =1
where capital letters on the right denote operators. The
quantization was then completed within the framework of
second quantization. The correspondence in Eq. (3.1) is not
unique. Questions concerning it are noted in Ref. 4.

The operator expressions that result from combining
classical perturbation expressions, such as Eqgs. (2.9) to
(2.11), with formulas similar to Eq. (3.1) can be complicated
and their evaluation tedious. Moreover, the diagonalization
that is required by the second quantization involves progres-
sively larger matrices as the principal quantum number n
increases, thereby adding to the effort involved. Fortunately,
rather good results have been obtained for low lying states at
even low orders, as was demonstrated by Sanders® for the
Fermi resonance and by Robnik* for the Henon-Heiles sys-
tem.

plgmpr-t, (3.1

The aim in the present paper is not to give the most
accurate solution of the present problem using AQ, by pro-
ceeding to high perturbations, for example, but rather to
compare and contrast some features of the present AQ solu-
tion using polar operators with that* given previously and
based on Cartesian operators, and to compare both with var-

“ious semiclassical"!'®!! and, hence, non-AQ quantizations.

AQquantization with polar operators is treated in Sec. III A
below. For comparison, the Cartesian harmonic oscillator
operators used by Sanders,? Robnik,* and in several calcula-
tions below are given in Sec. III B.

A. Algebraic quantization of the normal form using
polar operators’ basis

To express the various operators in the normal form in
terms of the ladder operators in the present basis, we utilize
operators £ and 7, used by Louck and Shaffer® for a twofold
degenerate harmonic oscillator:

§=p,+iq,, ngP— —ig_,
(3.2)

n=—p_—ig_, N'=—p.+ig.,
where £t and 77" are adjoints of £ and 7 and where
9. =q,+ig, P =p,+ip;. 3.3)

One choice of phase factors for the polar operators’ basis, the
eigenfunctions |n,/ ), is expressed by®
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Elndy= —il2n+1+2)]"?n+ 1,1+ 1),
plnd) = —i(2in =1+ 2)]"3|n+ 1,1 -1},

_ (3.4)
Eflnl) =i[2(n - 1)) n—11—1),
nd) =i[2(n = 1)} 3n =114 1).
The commutation relations of these operators are
[gf’§]=4’ [gt'771=0’ [5*5,17'17]=0, .
(3.5)
[77':7]] =4, [&7]=0.
In terms of these operators, the coordinate and momentum
operators are given as
p=E—n+ET—nV4, g =i —7' -5+ /4,

(3.6)
p=lEt+ ' —E—n/4, qa= —E+n+ET+7')4.
Using these relations the various operators &, in Eq. (2.5)
can be found in terms of these ladder operators:

No=(E%+n'p—4)/4, Ny = —En' +9EMV4,

(3.7)
Ny=(q'n—£% V4, Ny=iln'—nE"V/4.
With Eq. (3.7) the H, in Egs. (2.6) to (2.11) can also be ex-
pressed in terms of the ladder operators.
The effect of the operators N, on a basis set state |n,/ ) is
given by

Nolnl) = (n 4 1)jnl),
Ninty = =3[V =1 + 7+ 2} |md +2)
4N+ N =T+ 2)jnl - 2)],
Nyjn )= —1|nl},
Nyl = 4[Vin = T)in + T+ 2) |nd + 2)
—Jr+Din=1+2)|n1—=2)].
One sees from Eq. (3.8) that in the |,/ ) basis only Nyand N,

(3.8)

are diagonal. The effect of the H, is similarly obtained. For

example, Eqs. (2.7) and (3.8) yield
Hynl) ={n+1+(1%/24)

X [181% — 10(n + 12+ T1}in 0y,  (3.9)

5015

TABLEI1. Splitting of / = + 3k levels of Henon-Heiles system using the
AQ method.

Splitting

3, +3) (6, & 6)
Exact® 0.0034 0.0006
|n,0'}) basis, second order* 0 0
|n ) basis, fourth order® ' _0.0029 0.0003
|n,0 ) basis, sixth order” 0.0033 0.0005
|»,,n,) basis, second order* 0 0
|m,,n,) basis, fourth order® 0.0029 .0.0003
US with vibrational 0.0039 0.0008
angular momentum -
(Table IV)
*That is, H, and H, terms.
*Hy, H,, and H, terms.
*H,, H,, H,, and H terms.
9Reference 1.

i.e., H,is diagonal in the |,/ ) representation. Equation (3.9)
is used to calculate the states for n<2, and yields the AQ°
results given in Table 1. Also given, to explain some aspects,
are AQ® results obtained using the approximation for the
quantum operators contained in Eq. (2.8). Thereby, Egs.
(2.9) and (3.8) are used, leading again to Eq. (3.9) but with the
7 missing. Exact and semiclassical results are also given in
Table I for comparison.

The splitting of the / = + 3k terms obtained with AQ
and the |n,] ) basis is treated in Appendix A and results are
given in Table II. A leading term in determining the splitting
using the |n,] ) basis is identified in Appendix A, namely N,
defined by

It constitutes the off-diagonal part of H, in Eq. (2.10) and
also occurs in Hy,

(3.10)

B. Quantization of the normal form using Carteslan
operators’ basis .

For this basis the usual harmonic oscillator raising and
lowering operators are introcduced: :

TABLE 1. Comparison of quantum, AQ [without and with Eq. (2.8)] and semiclassical results for the Henon-

Heiles system.

AQ®
nh QM* (Cartesian) - AQ° AQ? sct us”
{0,0) 0.9986 0.9986 0.9984 0.9948 0.9947 0.9966
L+ 1.9901 1.9901 1.9901 1.9863 1.9863 1.9868
20 2.9562 2.9562 2.9568 2.9532 2.9506 2.9558
2, £ 2) 2.9853 2.9853 2.9859 2.9823 2.9815 2.9812

s Exact results from a large basis set quantum mechanical variaticnal calculation in Ref. 1.
b Reference 4. Equation (3.17) is used, but not Eq. (2.8). These results differ slightly from those in Ref. 4, even
though the equations there agree with ours. We believe some slight error occurred in the numerical calcula-

tions there. .
< Equation (3.9) is used, but not Eq. (2.8).
4 Equations (2.8), (2.9), and (3.8) are used.

<Reference 1, classical trajectory data are used, with primitive semiclassical quantization. The latter quantiza-

tion was crudest for the / = O states. .

fReference 11. These uniform semiclassical results were obtained using terms in H up to and including H.
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) =n, ¥ 1|n, + 1),
Zlm) = nyln, — 1) .

They are related to the original coordinate and momentum
operators by

(3.11)

gG=@+2)VZ, p =iz —z)V2. (3.12)
In this basis, one finds the operators

No=zlz, + 28z, + 1 (3.13)
and

N, =212, -2z, (3.14)
to be diagonal, whereas

N, =i{z)2} — 2]z, (3.15)
and

Ny =2}z, + 2,2} (3.16)
are nondiagonal.

The normal form through second order is, from Eq.
(3.5),

H,+A%H, _
=z{z, + 2}z, + 1 — A*[S[lelz, + 1* + &z + )]

—20elzy + iz, + ) + T[(2i2d) + el zaS"]} /12
) (3.17)
. The z,z}{i#j) terms in Eq. (3.17) couple states of the form
|nysn2) with |y 4 2,n, T 2). One sees that while H, is diag-
onal in the |,/ ) basis for the polar actions [i.e., as in Eq.
(3.9)}, it is not diagonal for the Cartesian actions (i.e., for the
|n4,n5) basis). o
Results? are given in Table I for the eigenvalues of the
Cartesian-based (3.17) for n<2. Several results for the
(3, + 3)and (6, + 6)states using this |n,,n,) basis are given in
Table II. To illustrate further the difference between the use
of the Cartesian and polar operators’ basis sets (see Sec.
111 A), we consider in Table III the states having n =3,
states not examined in Ref. 4: A 4X4 matrix for H, was
constructed, and was found to consist of two block-diagonal
matrices, indicating that these states split into two sets of
doubly degenerate states. The corresponding eigenvalues are
given in Table III

IV.UNIFORM SEMICLASSICAL QUANTIZATION (US) OF
THE NORMAL FORM

In the semiclassical treatment of Eq. (2.2) it is well
known that the total action, N, in Eq. (2.5), is a constant of

TABLE I1I. Cartesian AQ eigenvalues of Henon-Heiles system compared '

with exact eigenvalues for n = 3.

Eigenvalue
E Qm* from AQ®
Ey ., 3.9260 3.9276
3.9824
B, 11 3.9858 3.9859
WEsvs+ By _3)—Es.z: 0.0581 0.0583
* Exact results (Ref. 1). ®Using H, and a Cartesian basis.
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the motion. The second action variable can either be chosen
as N,, as in Ref. 10, or NV,, as in Ref. 11. In both cases, Eq.
(2.1) provides a functional relationship

E=f(A.Nol,,a) (4.1)

between the second action N, or N,, written now as I, and
its conjugate angle a. This relation can then be inverted (nu-
merically when a perturbation theory of higher order is used)
and used to quantize the integral ¢ I, da and to yield the
energy levels E.

In comparing the choices for the second (variable) ac-
tion, it should be noted that for the set (N,,N)), the time
variation of the action N, is (by Hamilton’s equations) pro-
portional to A 2 [cf. Eqs. (B3) and (B4)], whereas the same
variation for N, is proportional to A 4 [cf. Eq. (4.5) below].
Consequently, N, is a “better” action variable than V,. N, is
a good action variable for both choices.

In formulating a uniform semiclassical treatment (US)
the ideas we employed in a uniform semiclassical theory of
avoided crossings'? are utilized. There, the resulting model
Hamiltonian in action-angle variables contained a cosine
barrier and was quantized using Mathieu functions'® of frac-
tional order. (Alternatively, phase integral quantization has
also been used to obtain a US approximation for cosine bar-
rier problems,'®'” but for a simple cosine potential the pres-
ent method is as simple and can be more accurate, as in Ref.
17 and in Table IV later.) In the following sections, the meth-
od of Ref. 12 is used to quantize the part of Eq. (2.2) obtained
by truncating that series as soon as a trigonometric term in
the “slow variable” arises in the perturbation series. A pro-
cedure identical to that used in Ref. 12 again results in Math-
ieu functions of fractional order. The quantization was pet-
formed with the two sets of actions discussed above, for
purposes of comparison. The quantization with the polar
actions (Ny,NN,) is described first, the quantization using the
Cartesian actions (V,,/V,) being given in Appendix B.

When quantizing with N, N, and the angle @ conjugate
to N,, the variables N, can be expressed as

No=1I, Ny=(I*—1I%)"cos2p,
Ny=1I,, Ny=(*—I2)"sin2p.

When these transformations are introduced into Egs. (2.9) to
(2.11), H, is the first term that contains a trigonometric term
in . If H is truncated after terms that are proportional to 4 4
the resulting approximate Hamiltonian is

(4.2)

H=H,(I)+ Hpll,.@l), (4.3)
where
H,(I)=1-514%/12—-611°I°/432 (4.4)
and
Hp(l,@J)=TA1%/12 —TAEI/144
+HAYE—T2) *cos bp. (4.5)

Tisexactlyand I ,P' is approximately a constant of the motion.
The (12 — I2)*'* factor in Eq. (4.5) can, in one approxima-
tion, be replaced by a suitable average value (denoted by ( )).

+ To obtain later the Mathieu equation in a standard form, we

then define
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g=A%(I*—12p"%/27(1 = 1%1/12)
and replace H by E. One then obtains
E=H,(I)+TA%1 —AY/12)[}
_ +3 A%(1 — A1 /12)cos 6¢ .
Upon rearranging, I, is expressed as a function of ¢:
I+ [HM)=E][AH1 =22 /12)/12] 7!
+ 18gcos 6p =0. (4.8)
To introduce a uniform semiclassical quantization by
converting Eq. (4.8) to a differential equation, one replaces
the actions by differential operators.'? The resulting equa-
tion is one-dimensional because J is now a constant of the

motion and can be replaced by its constant value. The re-
placement

I,— —id/dp 4.9)
gives the Schrédinger equation for the g wave function Fg ):

(4.6)

4.7)

d*Fip)/dp? + (9a — 18g cos 6p)F (@) =0  (4.10)
with
a=4[E— H,I)][21A%(1 - A%1/12)] 7. (4.11)
A change of variables:
a=3p, Wa)=Fip),
(4.12)
I,=1,/3, d/da=(1/3)d/dp

transforms Eq. (4.10) into a standard Mathieu equatxon"

d*Y{a)/da’ + (@ — 2q cos 2a)f(a) =0 4.13)
with the boundary condition’®
Ha + 7) = " Ya) . (4.14)

Here, / is an integer and, when ¢ = 0, equals /¥, the unper-
turbed vibrational angular momentum.'® 7)) and hence 19
is an approximate constant of the motion, which would be

constant if ¢ in Eq. {4.13) vanished.
The general solution of Egs. (4.13) and (4 14) can be

written in the Floquet form'®

Y.la)=e"Pla), (4.15)
with P (a) being periodic in a with period 7. From Eq. (4.15)
one has

dla+m=e"Y,la),. (4.16)
comparison with Eq. (4.14) shows that the Floquet exponent
v (the order of the Mathieu function) is given by

v=1/3. 4.17)

This order is fractional in general. The eigenvalues of the
Mathieu equation corresponding to orders + |v| are dlﬁ‘er-
ent when vis an integer and are degenerate for fractional v.'
This result shows directly that states with / = + 3k (with k
an integer) are split, whereas others remain degenerate.

If the eigenvaluea in Eq. (4.13) corresponding to order v
is denoted by a,, then the quantized energy levels are ob-
tained from

E,=H,(I)+21AY1 -1 /12)a,/4, (4.18)
where Eq. (4.11) has been used. The eigenvalues a, are readi-
ly calculated.?®

5017

TABLE IV. The low-lying bound states of the Henon-Heiles system ob-
tained from various calculations.

Quantum  Symmetry us® Us®
numbers quantum QM* AE AE
state
n [
0 o A 0.9986 -0.9948 0.9966
141 E 1.9901 1.9863 1.9868
2-0 A4 2.9562 2.9525 2.9558
242 E 2.9853 2.9816 2.9812
341 E 3.9260 3.9233 3.9241
: 3.9824 3.9785 3972
343 4 3.9858 3.9824 3.9827
4 0 A 4.8702 4.8667 4.8731
442 E 4.8987 4.8956 48942
444 E 4.9863 4.9830 4.9821
541 E 5.8170 5.8142 5.8202
5.8670 5.8659 5.8608
5+3 4 5.8815 5.8790 5.8778
5+5 E 5.9913 5.9893 5.9871
6 0 4 6.7379 6.7357 6.7440
6+2 E 6.7649 6.7639 6.7636
614 E 6.8354 6.8533 6.8493
6.9989 6.9968 6.9954
6+6 A4 6.9994 6.9977 6.9954
741 E 7.6595 7.6584 1.6674
7.6977 7.7034 7.6953
7+3 A 7.7369 1.7345 7.7329
145 E 7.8327 7.8361 7.8293
T+7 E 8.0094 8.0090 8.0059
8 0 A 8.5541 8.5568 8.5638
8+2 E 8.5764 8.5830 8.5881
8+4 E 8.6779 8.6806 8.6730
8.8113 8.8199 8.8088
846 4 8.8152 8.8236 8.8132
8$+8 E 9.0217 9.0234 9.0193

*Exact results (Ref, 1).

®Uniform semiclassical calculation using terms up and including A * and the
approximation embodied in Eqs.(4.18) and (4.19).

¢ Uniform semiclassical calculation (Ref. 11) using terms up to and includ-
ingA®.

The simplest approximation tog in Eq. (4.6)is to replace
the I, on the average by zero, thus obtaining

g=A3/211-1%/12). (4.19)
Other approximations can be devised. The energy levels ob-
tained using the g from Eq. (4.19) are given in Table IV. In
Table 'V, the splittings of the / = 4 3k states, calculated
from Egs. (4.18) and (4.19), are compared with the exact re-
sults in Ref. 1. They are also compared with the results of
Ref. 11, which employed a higher order perturbation theory
for the Hamiltonian plus phase integral (rather than Math-
ieu function) uniform semiclassical quantization.

For comparison with these results an analogous formu-
lation based on Cartesian actions {¥,,,) instead of the angu-
lar momentum ones (N,,N,) is given in Appendix B. Calcula-
tions up to and including order H, are reported in Table VI.
The latter contains under US, the results of solving a Math-
ieu equation of fractional order, Eq. (B7)in Appendix B, and
under SD the results of diagonalizing the same semiclassical-
ly based equation in a subspace of the n =2 states. Also
shown in Table VI are results for n = 3, treated similarly.
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:l' ABLE V. Splittings of the / = £ 3k levels of Henon—Heiles system, k an
integer.

TABLE VII. Fermi resonance system for n = 3 states.

. State (n,] M> - A sD¢ LI
prom— ) Q @ scf ‘
numbers QM AQ® uUs® Us? 3.+ 3.100 3.101 3.099 3.140 3.099
ntl AE AE AE AE 3,1} 3.184 3.184 3.185 3.177. 3.185
343 0.0034 0.0033 0.0039 0.0055 *Hamiltonian in Eq. (C1), with A = — = —0.04 and » = 1.4; nis 2n,
543 0.0145 0.0138 0.0131 0.0170 +n.: s defined in Ref, 2.
] i 3 00952 g-g;g‘ 0.0311 0.0376 ® Exact results in Table I of Ref. 2
I3 016 o0 405 g:‘l’g-" g-‘l’;’gs * Algebraic quantization (Ref. 3) for the Hamilionian in Eq. (C1), as in Ap-
13%3 0.294 0235 0.161 0' 234 pendix C, calculated by D. Wardlaw (private communication).  ~
: - 92 % 2 matrix diagonalization of Cartesian actions’ semiclassical equation
{C16).
¢ Uniform semiclassical result using Eq. (C18).
6+6 0.0006 ! o C sk using
8 i 6 0.0039 gggg: gm ‘il:_mltwe semiclassical result in Table I of Ref. 2, using classical trajector-
10+ 6 0.017 0.0121 0.0190 .
1246 0.157 0.0294 0.158
1,1) = exp(3ia) and |0,3) = explia). Calculation of the ma-
949 0.001 : i P i
M e g~% g-g; trix elements of 2¢ cos 2a in Eq. (C16) [e.g., as in Eq. (B13]]
1319 o 0.0087 0;00.,7 yields upon diagonalization the SD® values in Table VII.
2+12 00l 0.0001 0.0001 V. DISCUSSION
A. AQresults

*Exact results (Ref. 1). )

®Matrix 2 X 2 diagonalization with polar operators’ basis, using terms up to
and including A * [Eqs. (A4) and [AS)) for /= + 3.

© Present results using terms up to and including A ¢ (Eqs. (4.18) and (4.19)).

a pniio:m semiclassical calculation of Ref. 11, using terms up to and includ-
ing A

The Fermi resonance system? provides another exam-
ple of a use of the AQ method and is useful fora comparison
with the uniform semiclassical method. The uniform semi-
classical treatment given in Appendix C is based on Carte-
sian actions. It yields the results listed under US in Table
VII. They are compared there with the exact results, with
AQ results, and with the “primitive” semiclassical results,
the latter obtained from phase integrals calculated over ap-
propriate curvilinear paths using classical trajectory data.?
In the SC? column in Table VII we have used a 2 X 2 matrix
diagonalization of the same Hamiltonian as that used for the
US results, namely the differential equation (C16). In this
(diagonalization the two states |n,,n,) =|1,1) and |0,3)
served as a basis set, the (unnormalized) states being

TABLEVIL. Mpaﬁwn of various quantization schemes for the i, Hamil-
tonian for the Henon-Heiles system.

Quantum N
numbers
(md) QMm* Us® . sDe

2,0) 2.9562 2.9576 2.9550
2+2) 2.9853 {2.9898 2.9859
2.9921 2.9878
13. + 1‘ 3.9260 3.9337 3.9258
3,13 3.9939 3.9878

3.9858
3.9824
* Exact results (Ref. 1).
b Uniform semiclassical treatment with Cartesian actions, asin Appendix B.
©Matrix diagonalization of Cartesian actions’ case, semiclassical equation
(B7), as in Appendix B.

The AQ results for n<2 in Table I, obtained with the
|,1) basis and Eq. (3.9) for H,, agree with those calculated*
using Eq. (3.17) and a Cartesian basis |n;,n,). Both agree
quite well with the exact results' (QM) and, as one sees from
Table I, they agree better with QM results than do earlier
semiclassical ones''®!! calculated to higher order. This dif-
ference occurs even though the perturbation form of H, and
the corresponding operator are obtained from the same nor-
mal form as that used for the semiclassical result. The error
appears to lie in the use of these semiclassical theories at low
energies: In particular the effect of introducing into AQ the
classical identity (2.8) was examined. This identity is not ex-
act for quantum operators. From the AQ results obtained
using and not using Eq. (2.8) in Table I, it is seen that when
Eq. (2.8) is used the AQ results are no longer an improve-
ment over the semiclassical ones (cf. column AQ? in Table1).
The off-diagonal elements of both sides of Eq. (2.8) are equal
but the diagonal elements differ.?!

B. AQ splittings for /= 4 3k states

The splittings for / = + 3k states are given in Table I1.
One feature not obtained in a primitive semiclassical’ trajec-
tory calculation, but obtained in a uniform semiclassical cal-
culation, ! were these splittings. To see how the AQ method
treats them, the simplest example, namely the 2X 2 diagona-
lization of the Hamiltonian in the subspace of the
|nl) = |n, & 1) states, was considered:

The operator H, in Eq.(3.9) is not able to resolve the
/= + 3k degeneracy because this H, isdiagonal in the |,/ )
basis. The use* of Cartesian operators and terms in H only up
to H,, which served so well in Ref. 4 for n<2 (see also the
present Table I) also does not yield the splittings of the
|n,d ) = |3, £ 3) states (Table II). It does yield, however, an
excellent value for the energy difference between the mean of

, the eigenvalues for the |3, + 3) and |3, £ 1) states (Table

I1I).
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When the AQ method is used and A, terms are included
in the matrix diagonalization a reasonable value is then ob-
tained forthe/ = + 3 splitting, usingthe |n,! ) or the |n,,n,)
basis (Table IJ). The latter agree exactly with each other.
However, the calculation using H, in the |n,,n,). basis is
lengthy, because none of the operators in H, can be identified
with an operator that brings about the splitting. The splitting
in the case of the |n,,n,) basis arises because the two 22
block matrices from before are slightly different due to H,,
and one has to calculate all four eigenvalues to find the split-
ting. In Sec. III A where AQ was performed using the |n,/)
basis the same result was obtained at this order, but the oper-
ators that lead to this splitting were identifiable. Relatively
little effort (cf. Appendix A), was needed to continue to the
next order and we found that the remaining discrepancy can
almost totally be removed by H, as in Table II. The same
procedure in the |n,,n,) basis would be a very lengthy task,
indeed. For example, the calculation of the /= 4 6 split-
tings in the n = 6 subspace requires, in the Cartesian basis,
the complete (through H) diagonalization of a 7 X 7 matrix,
all elements of which must be calculated accurately. The
advantages of a basis that conforms to the approximately
“good” quantum numbers is once again evident. In sum-
mary, the |,/ ) basis is computationally much more conven-

“ient than the |n,,n,) one. Interestingly enough, the 2 X 2 dia-
gonalization for AQ leads (Table V) to splittings for the
(n, + 3) states which are as good as or better than those ob-
tained by a uniform semiclassical method in Ref. 11 which
involves higher order (cf. below).

C. Uniform semiclassical resuits with polar actions’
basis ’

The uniform semiclassical results (US) with the |n,/)
basis are given in Tables IV and V. One sees that for the levels
in Table IV (i.e., n<8), with an energy up to more than half
the dissociation energy, the uniform semiclassical results
based on Eqs. (4.18) and (4.19) are quite accurate, both for
the levels and the splittings, considering the approximations
made to obtain the Mathieu equation. Indeed, the results are
on the average comparable (somewhat more accurate in Ta-
ble IV and somewhat less accurate in Table V) than those in
Ref. 11, which employed terms up to and including Hj in-
stead of H, and which solved a higher order polynomial for
I,. The results calculated from Eqgs. (4.18) and {(4.19)in Table
V for the splitting of the / = 4 3k levels also compare well
with the exact results (QM), and with the results obtained in
Ref. 11, which used the higher order Hamiltonian. The
agreement obtained with H, and Egs. (4.18) and {4.19) be-
comes somewhat worse in each sequence as n increases, as in
Table V. Presumably the higher order terms are needed at
higher n’s. :

D. Semiclassical results with Cartesian actions’ basis
and US or a curvilinear path

The uniform semiclassical results in Table VIforn =3
show that the semiclassical results obtained with A, and
Cartesian actions, either using a uniform treatment or the
diagonalization of H, discussed at the end of Appendix B, do
not agree well with the exact values (QM). Both lead to qual-

itatively and quantitatively incorrect results. As was men-
tioned earlier, Swimm and Delos'® quantized the normal
form of Hamiltonian (2.1) including H; terms using Carte-
sian actions. Their results are appreciably better than the
Cartesian uniform values given in Table VI. Part of the im-
provement may be due to the use of a high order perturba-
tion theory, and as a result, avoiding the use of averaged
actions in the couplings at low order. However, the main
reason is to be sought in the special integration paths they
employed to quantize their actions described below. As a test
of this idea we used the Cartesian actions of Ref. 10 along a
Cartesian instead of an appropriate curvilinear integration
path. The results (not given here) were in poorer agreement
with the exact quantum results and, indeed, were close to
those obtained in Table VI with Cartesian actions plus uni-
form semiclassical theory.

We recall briefly the nature of the curvilinear paths
used in Refs. 1 and 10 to make the semiclassical quantiza-_
tion: The normal form in Ref. 10 provided the authors with
an implicit relation between J, J ' (corresponding to the pres-
ent N, and N,) and conjugate angles w and ', in the form

E=fA,J;J"w), (5.1)

namely, their Eqgs. (33a}{33d). They quantized J and J*
through the relations '

ildw:fi;pk dg , il'dw’=£ gp,‘ dg, , (5.2)

where for path C one lets w increase by one unit, keeping w'
fixed, and for path C'w’ increases by one unit, keeping w
fixed. They then transformed the paths Cand C' to Cartesian
phase space using equations similar to the present Eq. (B1).
They were then able to deform these paths such that the path
integrals over them were expressible in terms of the quanti-

‘zation paths of Noid and Marcus,' namely Egs. (5.3}-5.5)

for precessing trajectories

§de=21r(n+ 1), (5.3)
C

3§J'dw’=2n(n, +172)=mn—1+1), (5.4)
C

n being the principal quantum number, and Eq. (5.5) instead
of Eq. (5.4) for librating trajectories™'°

J'dw' =2ml/3. (5.5)
-
These equations immediately related the quantization inte-
grals (5.2) to the good quantum numbers n,! of the system.
One sees that although quantization is best performed
in coordinates appropriate to the shape of the trajectories,
the disadvantages of using other schemes can be offset by
using path integrals which are expressible in terms of the
good quantum numbers of the system. This latter point is
noteworthy, since it is usually difficult to find a simple sys-
tem of (nonnumerically determined) coordinates and opera-
tors that reflect trajectory shapes, except in special cases.

E. Uniform and AQ results for Fermi resonance system

+  Uniform semiclassical results for the Fermi resonance
system, given in Table VII and obtained with Cartesian ac-
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tions in Appendix C, are in poorer agreement with the exact
results (QM) than are the results® obtained there with the AQ
method. A reason for this behavior is evident from the analy-
sis in Appendix C: The perturbation expression obtained in
terms of the Cartesian actions now has a singularity in the
“barrier height” gatA = 0, asin Eqgs. (C12) and (C13), where
A is a perturbation parameter. [If one introduced instead of
1, and @ in Eq. (C9) I, = AI, and ¥ = a/A to remove the
singularity in g, the problem would be shifted from one in the
differential equation to one in the boundary conditions.] Be-
cause of this singularity, the problem appears to have a very
large perturbation.

For a better uniform solution, it would be desirable if
Eq. (C12) were such that the coefficient 2¢ of cos 2 is of a
lower order in A, rather than being of the same or higher
order, as compared with the first two terms. This result
could presumably be achieved by choosing better action-an-
gle variables. For example, based on results of Noid et a.
who used a curvilinear (parabolic) path,? one might use ac-
tions in parabolic coordinates, in which the unperturbed
problem is separable and which are appropriate to the ob-
served? shapes of the trajectories. However, the perturbation
terms then become more complicated.

The algebraic quantization method involves a matrix
diagonalization and so forces the wave function atsmall A to
resemble more closely the unperturbed ones, even for this
system, However, the Mathieu functions, which appear as
- the solution to Egs. (C12) and (C16) do not resemble the
unperturbed ones when A is small, because of the singularity
ingatA = 0just mentioned. The problem is the same when a
uniform semiclassical solution is introduced through a phase
integral method.'® Results obtained with the latter method
and by the Mathieu function method have been shown to be,
typically, quite similar.'” Use of a suitably chosen path such
as that in Ref. 2 can be expected to remove this difficulty. In
the spectroscopy literature there are analogous examples of
how different approximate results can be obtained merely by
using different coordinates.® For example, a second order
perturbation treatment gave different results using polar and
rectangular coordinates, when certain off-diagonal matrix
elements in the Cartesian description were omitted, but the
results became identical of course when all such elements
were included.®

F. Molecular aspects of the Hamiltonian

The Henon-Heiles Hamiltonian (2.1), which originated
in the astronomy literature?®? in a search of extra constants
(hidden constants) of the motion, has since been in wide-
spread use. However, its relation to an actual molecular Ha-

miltonian does not seem to have been pointed out before and

we do so in the present section.

There are many examples of molecules which have two
degenerate normal modes. In such cases, the overtones of
these modes can be split by perturbations. These perturba-
tions may either contain solely the pair of degenerate normal
mode coordinates?® or incorporate other normal mode co-
ordinates.?* The relevant anharmonicity constants of the
molecule can thereby be determined from the positions of
the experimental spectral lines.

In order to see the close connection between the present
model problem (a Hamiltonian with C, symmetry') and
some molecular problems, we examine the Hamiitonian of a
molecule with C;, symmetry and hence with a pair of degen-
erate’ normal modes. Denoting the coordinates of those
modes by g, and g, one finds that two principal perturba-
tions to its energy levels have the form??

"V, =ap cos 3p + Bp*, (6.1)
where
PP=q+4q;, @=arctan(g,/q,), (6.2)

and a, B are perturbation parameters related to the force
constants of the molecule. The first term in ¥, is the same as
the anharmonic potential in the Henon-Heiles Hamilton-
ian.’ This term splits overtones of 4, and £ symmetry with
the same principal quantum number n. However, it has been

- pointed out® that ¥, does not, in second order, split the 4,

and 4, levels belonging to the same # manifold. That split-
ting corresponds to the splitting between I = 4 3k levelsin
our treatment, and we have seen earlier that ¥, causes a
splitting in fourth and higher order perturbation theory (Ta-

- ble V). The authors in Ref. 26 added, instead, an additional

potential

V; = yp°cos 6g . (6.3)
It has also been shown?® that in order to obtain the complete
splittings predicted by group theory for the point group D,
one needs Eq. (6.3) and ap"? cos 12¢ term in a Hamiltonian.
When perturbations of such high order are involved, the
highly automated procedures (using algebraic computer lan-
guage} of BGPT, complemented by uniform approximations
when necessary, might provide a viable alternative to
straightforward applications of quantum perturbation the-
ory. .

The BGPT plus AQ method resembles a quantum me-
chanical method used by spectroscopists for treating anhar-
monicities, namely the Van Vleck contact transformation
procedure.?”?® The latter employs commutators with low-
order Hamiltonians to find the necessary generating func-
tions and to successively cause off-diagonal terms to occur
only in increasingly higher order.

For systems having degenerate local mode frequencies,
such as H,O, the polar operators’ AQ method is not applica-
ble, since the resulting normal modes are not exactly degen-
erate. (To be sure, the splitting is usnally quite small, depend-
ing on the mass relations in the molecule.) In the uniform
treatment of such systems,® a different perturbation scheme
was used instead, utilizing the 1:1 resonance of the local
modes.

VI. SUMMARY

We have seen that in the algebraic quantization meth-
od, the choice of coordinate system facilitates the calcula-
tion. The choice is more a matter of computational conve-
nience. The results appear to be better that perturbative
semiclassical procedures to the same order; the algebraic
quantization accounts better for the quantum mechanics
than do semiclassical methods. Of course, semiclassical
quantization is readily adapted to the shapes of the trajector-
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ies, either as in Refs. 1 and 2 or, in conjunction with pertur-
bation theory, as in Ref. 10 (cf. present Sec. V D).

In semiclassical quantization, the results can depend on
the coordinate system or quantization path chosen. A bad
choice, which ignores the shape of the trajectories, by using,
e.g., Cartesian actions or any constant linear combination of
Cartesian actions for precessing trajectories in the Henon-~
Heiles system, appears to give poorer results. In the case of
the US method, perhaps if one went to higher order (i.e.,
higher cosine terms) and if the series did not diverge this
sensitivity would be less. The adverse consequences of using
inappropriate coordinates can be removed when one uses
phase integral paths that take into account the good quan-
tum numbers of the system. '

One can also expect that when the curved shape of the
trajectories is not too distorted from the shape of a rectangle,
Cartesian actions may be quite useful. An example might be
some 2:1 Fermi resonance system whose trajectories un-
dergo only a relatively weak libration of their figure-eight-
like motion instead of the precessing type motion of the el-
lipse-like trajectories of 1:1 resonance systems.

These remarks concerning the AQ and US methods,
Cartesian actions, and calculations based on the shape of the
trajectories or (cf. Figs. 8 and 13 of Ref. 2) wave functions are
expected to apply also to other methods for approximate
quantization, such as the adiabatic separation method.*
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APPENDIX A. AQ CALCULATED SPLITTINGS OF
/= + 3k LEVELS USING POLAR OPERATORS’ BASIS

We first use the off-diagonal part N of H,, given by Eq.
(3.10), to calculate the splittings of the / = + 3k states. One
first notes that

Nijnl) = —}A,|nl+ 6) — | Ay|n,] — 6) — 3 As|nl),
(A1)

where
Ay ={(n =1+ 1+ 6)[n* — (1 + 421 [n* — (I + 271},
Ay={(n+Dn— 1+ 6)[n* — (1 — 410" — (1 = 2P},
Ay=Jin=DNn+ 1+ 2) [ —1*+2(n—1)]

+In+ Nn=1+2[*=1*+2n+1)].

N,and N, in Eq. (3.10) commute, but N 3 and N, donot. One
then takes the Weyl transform of N N, in the version

" NIN,o(N2N, + 2NN\ N, + NN 3V/4 . (A7)

Using Eqgs. (3.8), (A1), and (A2) the effect of the N in Eq. .

(3.10) on |n,l ) is then found to be

N0y = —i4,|nl + 6) — 34,|nf — 6), (A3)
where the first term on the right-hand side is replaced by
zero when n < |/ + 6|, and the second term is replaced by
zero when n < |/ — 6|.

All operators except N; in H, are diagonal, so that in
contrast to the situation for Cartesian operators one can

identify an operator that causes the splitting, and can pro-
ceed directly to evalute it by degenerate perturbation theory.
For instance, in the case of # = 3, only a 2 X2 diagonaliza-
tion of the off-diagonal operator [cf. Eqgs. (2.10) and (3.10}]

H{P=TN,/18 (Ad)

in the subspace |n,/ ) = |3, & 3) is required. Using the AQ
method the splitting is then given as 0.0029, as in Table II.
The same calculation requires a lengthier 4 X 4 diagonaliza-
tion in the Cartesian basis set. If one takes into account only
the N that occurs in Hg in Eq. (2.11), the off-diagonal ele-
ment in H, becomes

H 9P=2093 N,N,/2160 . (AS)

[The remaining two off-diagonal terms in Eq. (2.11) are mul-
tiplied by small coefficients and are omitted here for simpli-
city.] With this addition to Eq. (A4) the splitting of the
|3, 4 3) state is the 0.0033 in Table II.

The operator (AS) can also be used to obtain an estimate
for the I = 4 6 splitting by diagonalizing it using the / =0
and I = + 6 states. The result of this 3 X3 diagonalization
for n = 6 is the 0.0005 in Table II. This is only an estimate
because Hj contains other nondiagonal operators that cou-
plel = + 3or/= + 6statesindirectly (in A/units of 2 6r 4),
and a more elaborate diagonalization would include them.
However, the results using Eqgs. (A4) and (A5) ina 2X 2 dia-
gonalization for / = 4 3 states are quite acceptable even for
high n [error for n = 3 to 9 is about 10%, better than the
corresponding uniform semiclassical result'’ that also wasto
the same order than the result based on Egs. (4.18) and
(4.19)]. The error in splitting of the (6, - 6) states in Table V
using the 3 X3 diagonalization (~ 17%) was also less by a
factor of 2 than that obtained in the US result in Ref. 11 [cf.
the present Tables II and V for the (6, 3 6) pair].

APPENDIX B. UNIFORM SEMICLASSICAL
QUANTIZATION USING CARTESIAN ACTIONS

When the transformation
g: =) *sing,, p,=2I)*cosg,, i=12, (B

where I,, @, are Cartesian actions and their conjugate an-
gles, is substituted into the Hamiltonian formed by H, and
H, in Egs. (2.6) and {2.9), one obtains :

H(lp)=I+L—A*[5It +13)/2 2.1,
+ 71,1, cos 2(p, — @3)] . (B2)
With the canonical transformation (in analogy with Ref. 10}

o =0—a)2, L=I—I,,
(B3)
¢2=(0 +a)/2, 12=I+Ia,
one obtains
2
H=21-——'%—[312+713,+7I,120052a]. (B4)

In the coefficient of the cos 2 term, average actions I, I,
will be used, obtained as arithmetic averages of the actions J;
between the states that are coupled by the cos 2a term. This
procedure has been discussed elsewhere. 12 Rearrarniging Eq.
(B4),
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I? +I)Tycos2a + A31%/2+§(E—2[)/A*=0, (BS)
and making the replacement

I~ —id/da, (B6)
one obtains a differential equation for the wave function
Ya):
d*Yla)/da?

+ [§27 -4 21272 — EV/A*—T1,I, cos 2a]:/:(a) =

(B7)
The parameters of the Mathieu equation (4.13) are thus
g=11,/2, a=$§2—A1%/2—-E)/A?, (B8)
giving the energy as
E=2-2%1%*/2+7a,/6), . (B9)

using Eq. (B8). The boundary conditions on Eq. (B7) are ob-
tained from those in the product of wave functions of ¢, and
@,. Using Eq. (B3) one then finds

¥ia + 7) = explintn, — ,)/21¥a), (B10)
where n,,n, are the Cartesian quantum numbers in the state

considered. By Floquet’s theorem'® [Egs. (4.15) and (4.16)],

the order of relevant solutions is therefore

v=(ny,—n)/2. (B11)

The energy levels calculated using Eq. (B9) are not as
accurate as the ones calculated to order H, using the uniform
. semiclassical quantization and the [n,/ ) basis (Sec. IV). The
reasons for this discrepancy are to be sought in the nature of
the approximations made to put the perturbation Hamilton-
ian (B2) in the form of a Mathieu equation (cf. the text for the
“order” of goodness of N, and N,).

One expects that Eq. (B9) will be most useful when the

effects of the perturbation in Eq; (4.13) are such that thea is -

dominated by the +* {in a,) rather than by the barrier ¢. In

Ref. 12, for example, the g was proportional to A, and hence

was relatively small. However, the g in the present Cartesian
action problem is of the same order in A in Eq. (B5) as the I
term, due to the choice of the zero order variables, and so Eq.

(BS) no longer resembles a perturbation equation for 7,. A
more drastic example of such behavior is found in the Fermi
resonance problem discussed at the end of Sec. IV and in
Appendix C.

) The results of solving Eqs. (B7) and (B10) were glven in
Table V1. It is useful to compare these results with those
obtained by matrix diagonalization of Eq. (B4), since matrix
diagonalization was the method used in Refs. 3 and 4. We
consider the three states that arise from the three unper-
turbed states |n,,1,) = |2,0}, |1,1), and |0,2). They all have
n =2 and I = 3/2. Transcribing Eq. (B4) one obtains

H=2 -3+ 7I%)—A%gcos 2 . (B12)

The last term couples the |2,0) and |0,2) states, and the off-

diagonal matrix element of cos 2a is (using the unperturbed

semiclassical wave functions) given by

1

27
(2,0|cos 2a]0 2)=—1 /| é*cos2ada=1/2.
27 Jo

(B13)
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The approximate energy for the perturbed |1,1) state E,, ,, is
27 —A%%2 ie., 2.9859 when I=3/2 and A% =0.0125.
Similarly, E,q = Eyq, = 2.9714. The diagonalization of
the H appearing in Eq. (B2), in the subspace of the three
n = 2 states, leads to the results labeled D in Table VI.

APPENDIX C. UNIFORM SEMICLASSICAL
QUANTIZATION OF THE FERMI RESONANCE USING
CARTESIAN ACTIONS

An extreme case of how the choice of good action varia-
bles affects the simple uniform scheme outlined in'Sec. II is
given by the Hamiltonian

=P} + P} + 0} 0} + 03Q3)/2 +10\(Q] +70Q3)

C1
with @, = 20,. (That is, it shows a 2:1 or Fermi r(&so2
nance.??') The Birkhoff~Gustavson scheme and the nota-
tion is the same as in Appendix A of Ref. 12. The Hamilton-
ian is, with @, = @,

@’Q3
H= 5(P?+m’Q’+P2+ )+£Q,Q§+71Qi,
(€2)

and is transformed into the Hamiltonian (C3) by the trans-

formation P; = 0}p,, O, = ¢,/w}".
H=H(21 +H(3) , (C3)
where
H‘Z)——[(Pl +qz)+§(l’z +a)],
)= (24g,g + TAG 02 (C4)

The Birkhoﬂ‘~Gustavson scheme provides an algorithm to
obtain the generating functions #. With their help the new
Hamiltonian becomes

r=3ro. (C5)

By the processes outlined in Ref. 12, one obtains
IO =2 [2p,p9: — @l P} — G3)]0™ /2 (C6)

d
W® =4[ p\(3p3 +543) + 29, p24>

+ 47020} + 3p1g1)/3)0™3%/4. (C7)
From this generating function #* one obtains
rO=2[159%p} + @iV + A7} + &)
+4(6n + 1)( P} + 41 )P} + 42)]/160%, (C8)

thereby arriving at the same Hamiltonian as that found by
Sanders® by averaging. The procedure for going from Eqs.
(C5), (C6), and (C8) to the corresponding Mathieu equation
has been treated in Ref. 12. Using the canonical transforma-

tion
=@, — 2@, +7/2, I,=2,
9=¢2, 1=2[1+12t

one obtains, from Eq. (C5) through fourth order, with Eqgs.
(C6) and (C8),

H=ol/2+A113}/0%"* cos 22
+ A% — 159*12/16 — (69 + W, (I —
— 9 —1,)/4] .

(©9)

1,)/2
(C10)
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Rearranging one obtains
A=Y 159% — 489 4- 28)/2/16 + A 20~ *(3n — 4) T
+9I%°A%~%/4 + E — 0l /2

— AL I3 /o) 2 cos 2a =0, (C11)
The latter can be rewritten as

12 —28I, +2qcos2a+DE—C=0 (C12)
for A #0, with
BE—;-M — /G, ¢=-i-'\IT2/2/G, (C13)
C=[lv’/24* - 9I%*/4)/G, D=(A/0*)"*/G, (C14)
G=157%/16 -3n+1/4. ' (C15)

We have used average values for the 7, in Eq. (C13) for ¢ to
makeg a constant. Equation (C12) can then be converted to a
Mathieu equation

j;}:-{-(a, —2gcos 2a)F =0 (C16)
for the function F. Fis related to the wave function ¥{c) by

Fla) = exp[i(1 — B)]¢¥la) . (C17)
The g, in Eq. {C16) is related to the energy E via

a,=C—DE+B*. (C18)
The order v of the solutions is given by

v=2n,+1-4, (C19)

following the argument used to treat an avoided crossing
Hamiltonian in Ref. 12. With this v the corresponding char-
acteristic values are found and the quantized energies deter-
mined from them using Eqg. (C18).

In contrast to that equation or the other differential
equations appearing in this work, Eq. (C12) hasa singularity
at 4 =0. For 4 #0 and small, some of the coefficients be-
come very large. The results are discussed in the text. Using
Eqgs. (C13}-{C19), one can still calculate energy levels follow-
ing the procedure outlined in Ref. 12. In those calculations,
one typically has to contend with rather large ¢ (of order of
10) and can use the asymptotic form for the eigenvalues'

d,lg)~ — 24 + 22v + 1)g""

—[Rv+ 12+ 1)/8+0(g™"3). (C20)
To obtain the results in Table VII the parameters in Eqs.
(C12/HC15) had the values of g = 62.8200, 8= 5.3509,
D = 1471.6519, C = 4607.7766, and G = 1.6315 appropri-
ate for the relevant values of the original parameters in foot-
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Erratum: Quantization with operators appropriate to shapes of trajectories
and classical perturbation theory [J. Chem. Phys. 81, 5013 (1984)]
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R. A. Marcus

Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California
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The column labeled AQ® in Table I should contain the
same numbers as AQ° instead of those actually given. As a
consequence, the last two sentences in footnote b can be de-
leted, and the numerical results in Ref. 4 and those of our
article now agree. As already stated in Sec. V A, the two
second-order AQ expressions agree. There are several mis-
prints, none of which alter any results or conclusions: The
ket in the third line of Eq. (3.4) should be |n — 1,/ — 1), the
H, in Eq. (3.9) should be replaced by (H, + H,), the sec-

4724 J. Chem. Phys. 84 (8), 15 April 1986

0021-8606/86/084724-01$02.10

ond E, ., label in Table I1I should read E; , ,, the —2in
Eq. (3.17) should read — 4, the coefficient of 7} in Eq.
{4.7) should be divided by 12,and that of A 2in Eq. (B2) (the .
term in the brackets) by 6.

We are grateful to Professor F. Borondo, Universidad
Autonoma de Madrid, and to Professor M. K. Ali, Universi-
ty of Lethbridge, for calling some of the above corrections to
our attention.

© 1986 American Institute of Physics




