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Unimolecular rate theory for various types of reactions is implemented for any looseness of transition
state. Quantum states are counted for all but the ‘‘transitional’’ modes, their phase space being counted
via Monte Carlo sampling. The rate constant kEJ is then weighted with the initial E and J distributions.
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1. Introduction

In the transition-state theory of chemical reactions the position
of the transition state along the reaction coordinate is frequently
readily identifiable, for example when the potential-energy surface
for the reaction has a pronounced saddle point. In this case the
transition state is often chosen to be a hypersurface passing
through the saddle point so as to separate the reactant and product
valleys.3

In reactions such as bond fissions, the reverse reaction of free-
radical recombination, or some ion–molecule reactions, there is lit-
tle or no potential-energy barrier along the reaction coordinate.
However, one may define a dividing surface such that the available
phase space on it, restricted by any constants of the motion, is a
minimum [2]. This dividing surface is then the transition state
[2] and it depends on any constants of the motion, such as, for
an isolated molecule or pair of molecules in the gas phase, the total
energy E, the total angular momentum J and its component JZ along
a space-fixed axis. In practical applications of this criterion (or in a
quantum treatment) it is common to choose as a dividing surface a
hyper-surface in coordinate space such that the number of avail-
able classical (or quantum) states NEJ for motion on the hypersur-
face, is a minimum when plotted versus the reaction coordinate
[3–5]. (This criterion was noted in Ref. [5], which mistakenly
attributed it to Bunker. However. Bunker and Pattengill [6] mini-
mized a density of states for RRKM theory rather than NEJ, which
is not quite correct but gives essentially the same result.)
For bond-fission reactions the main difficulty in calculating NEJ

lies in the ‘‘transitional’’ degrees of freedom, namely those vibra-
tions, rotations, and hindered rotations in the dissociating reactant
which become free rotations and orbital motions of the separating
products. In the transition-state region these modes may display
large-amplitude anharmonic motion and may be strongly coupled
to each other. The calculation of their quantum energy levels and
the associated sum of states becomes very complicated indeed.
In this Letter we treat the transitional modes in a way which af-
fords computational tractability and which makes use of coordi-
nates designed to facilitate the analysis. Namely, action–angle
coordinates related to those used for bimolecular collisions [7]
are introduced for these modes. Next, a classical Monte Carlo cal-
culation of the available phase space is made, including quantum
corrections if needed. The remaining coordinates are treated via
the usual quantum count [8].

The procedure, choice of variables, and some results are given
below. The present work extends in a practical way that which
we have given earlier [9,10] in which the transition states were as-
sumed to be ‘‘tight’’ or ‘‘loose’’ in actual applications. Monte Carlo
calculations of phase-space volumes have been used in completely
classical calculations of numbers of states, densities of states, or
unimolecular reaction rate theory [11–14]. Both rotating [11] and
non-rotating [12–14] systems have been so studied, although for
the rotating systems [11] the ensembles used were not J-fixed. A
comparison between classical and quantal counts for separable
[12] and non-separable [13] systems has also been given.

2. Theory

The rate constant kEJ for the unimolecular decomposition or
isomerization of a molecule with total energy in the center-of-
masss frame E and specified J is given in RRKM theory [9] by

kEJ ¼ NEJ=hqEJ; ð1Þ

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cplett.2013.08.061&domain=pdf
http://dx.doi.org/10.1016/j.cplett.2013.08.061
http://dx.doi.org/10.1016/j.cplett.2013.08.061
http://www.sciencedirect.com/science/journal/00092614
http://www.elsevier.com/locate/cplett


O

H H

O
O

H(a)

(b)

H

r2

J

JH
r1

r1 r2

r1 rO-O

2θ

1θ τ

24 D.M. Wardlaw, R.A. Marcus / Chemical Physics Letters 589 (2013) 23–25
where NEJ is the number of quantum states of the transition state
having an energy less than or equal to E in the degrees of freedom
orthogonal to the reaction coordinate and at the given J;qEJ is the
density of states of the dissociating or isomerizing molecule. Tun-
neling corrections along the reaction coordinate [5,15,16] (Eq. (4)
of Ref. [16]) and reaction path degeneracy [5,10,16,17] can be
introduced into NEJ if needed. A unimolecular rate constant at any
pressure is obtained from Eq. (1) in the standard way by suitably
weighting the Es and Js (Eq. (4) of Ref. [10]). In the center-of-mass
system the modes are subdivided into ‘‘transitional’’ modes and
the remaining coordinates, thereby yielding the following expres-
sion for NEJ:
 O OR 2

J1

H

r2

NEJ ¼

Z E0

0
NvðE0 � �ÞXJð�Þd�; ð2Þ
Fig. 1. (a) The O–O and O–H bond lengths (rO–O,r1,r2); bonding angles (h1,h2). and
the torsional angle for H2O2. (b) Angular momenta for fragment rotations and
relative motion of HO. OH, and distance between the centers of mass, R.
where XJ(�) d� is the number of states of the transitional modes for
the given J when their total energy lies in (�, � + d�). NV(E0 � �) is the
number of quantum states in the remaining coordinates having an
energy less than or equal to E0 � �, E0 being the available energy, i.e.
E minus the potential-energy minimum at the given value of the
reaction coordinate and minus the zero-point energy of the modes
included in NV. The two types of coordinates are taken to be uncou-
pled from each other in Eq. (2), apart from an indirect coupling via
the dependence of the molecular constants on the reaction
coordinate.

To obtain NEJ we define two sets of body-fixed coordinate axes
each fixed in a separating fragment [7,18]. The origin of each coor-
dinate system is located at the center of mass of that fragment. If
either fragment has some symmetry, its coordinate axes are chosen
to coincide with the symmetry axes. Using the action—angle coor-
dinates of polyatomic species [7,18] referred to earlier to represent
the phase space of the transitional modes, XJ and then NEJ is calcu-
lated as a function of R, the separation distance of the fragments
centers of mass. Our use of action–angle rather than Cartesian
coordinates is a matter of convenience rather than of necessity,
chosen so as to enhance the sampling in the Monte Carlo calcula-
tion of XJ and to minimize the dimensionality of the phase-space
integral. These coordinates are also suitable for a scattering
description of the process and, as such, are useful in describing
the separated-product properties as well as exit-channel effects.

In the case of a reaction such as H2O2 ? 2OH action variables,
written throughout in units of h as j1, j1z, j1z, j2z, l and lz, and their
conjugate angles can be used [7,18] to specify the relative orienta-
tions of all the atoms j1 and j2 are the individual rotational angular
momentum actions of fragments 1 and 2, j1z and j2z are their space-
fixed z components, and l and lz are the orbital angular momentum
action of the fragments and its z component, respectively. How-
ever, we choose to make a canonical transformation [18]4 to the ac-
tion variables J, JZ, j1, j2, l, k and their respective conjugate angles a, b,
a1, a2, a1, ak, where k is an intermediate angular momentum action
associated with a vector sum jj1 + j2j, and J corresponds to jk + lj. (J
now denotes an action variable rather than the angular momentum,
from which it differs by a factor or 2p.) The transformation between
action—angle and internal-type coordinates, in which the potential is
usually given, is similar to that described in Ref. [7] and is given else-
where [19]. (In the case of a dissociation of a polyatomic molecule
into non-linear fragments there are two additional action variables
involved in the description of the transitional modes namely the
component Ki of each ji along the body-fixed z axis of fragment i.
In such cases there are six transitional degrees of freedom, apart
from those associated with J and JZ.)
4 A different but related angular momentum coupling scheme is used in Ref. [7]
because of the different application involved.
For a system described by the above variables such as H2O2 ?
2OH, we have

XJð�Þ ¼ ð2J þ 1Þ �
Z
� � �
Z

dj1dj2dldkda1da2daldakdð�� HclÞ; ð3Þ

where Hcl is the classical Hamiltonian for the transitional modes,
and is given below. The factor 2J + 1 arises from the JZ multiplicity.
The limits on the angle variables are 0 to 1. The angular momentum
action variables are restricted by energy conservation and by the
triangle inequalities: jj1 � j2j 6 k 6 j1 + j2 and jk � lj 6 J 6 k + l. The
relative positions of all the particles are independent of the overall
orientation of the set of atoms and so the integrand cannot depend
on JZ, b and a [19]. Hcl is taken to be

Hcl ¼
j2
1

2l1r2
1

þ j2
2

2l2r2
2

þ l2

2lR2 þ VtðrO—O; h1; h2; sÞ; ð4Þ

where li is the reduced mass of fragment i, and l is the reduced
mass for the relative motion of the two fragments. Hcl is specified
by the variables (R, r1, r2, J, j1, j2, l, k, a1, a2, al, ak). The potential
Vt for the transitional modes is modeled in the example below for
H2O2 to be function of the Internal coordinates rO�O, hi and s, in
Fig. 1a. The two other coordinates there, r1 and r2, correspond to
OH vibrations and are therefore included in NV(E0 � �). The reaction
coordinate R and several angular momenta involved in the descrip-
tion of H2O2 are depicted in Fig. 1b. The functional form used for Vt,
together with numerical constants, are given elsewhere [19].

From Eqs. (2) and (3) one obtains

NEJ ¼ ð2J þ 1Þ �
Z
� � �
Z

NV ðE0 � HclÞdj1dj2dl dk da1 da2 dal dak;

ð5Þ

where NV, is zero unless E0 > Hcl. The Monte Carlo evaluation of this
integral involves random selection of the angles in the (0,1) interval
and random selection of the angular momenta subject to the con-
straints described above.

3. Results

In developing and assessing the present method three bond-fis-
sion reactions were examined using model potential-energy sur-
faces: NO2 ? NO + O, H2O2 ? 2OH, and C2H6? 2CH3, having 2,
4 and 6 transitional modes, respectively. For each system NEJ was
calculated over a range of Es and Js, and in each case the transi-
tion-state location RT defining the minimum in the NEJ versus R
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Fig. 2. Semilog plot of NEJ(RT)/(2J + 1) versus J (in units of h) for various values of E01 ,
the energy available to the system at R =1. The calculations are given for R = RT; the
value of RT varies with E and J and is in the range 3.0–3.75 Å.
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curve was readily identifiable. NEJ(RT) was obtained to within a var-
iance of �1% for NO2 and H2O2 and �3% for C2H6 with uniform
Monte Carlo sampling. The relative computation times to obtain
NEJ for each of the three systems were found to be essentially inde-
pendent of E and J. Computation times for systems larger than eth-
ane will be approximately the same as that for ethane since the
number of transitional modes is the same. Thus, large systems
and large Es are readily treated.

A sample of the results is presented in Fig. 2 where NEJ/(2J + 1) is
plotted versus J for three values of available product energy. One
sees that the ordinate depends strongly on J at small J and that it
undergoes a maximum with increasing J at high Js. Quantum cor-
rections can be introduced as needed. When there are many acces-
sible quantum states in each zeroth-order transitional degree of
freedom, the quantum correction is negligible. This situation oc-
curs when the transition state is loose or when the available � is
high enough. One can estimate quantum counts using a method
such as Doll’s [12] or using the frequencies of the transitional
modes obtained from the power spectrum [20] of a typical trajec-
tory for Hcl in Eq. (4). One can also adapt quantum Monte Carlo
methods [21] to a microcanonical ensemble to obtain a quantum
correction for the transitional modes. From the typical value ofR

XJð�0Þd�0=ð2J þ 1Þ, integrated from 0 to �, one can roughly esti-
mate whether quantum corrections are needed or not. When this
value is of the order of unity or less, they certainly are needed.
(See for example Refs. [12,13].)

In subsequent papers [19] results such as those in Fig. 2 are
compared with those for simple models, e.g, the loose and tight
transition states. Also explored there are the dependence of NEJ

and of R� on the large-R behavior of the potential-energy surface,
the calculation of unimolecular and bimolecular rate constants, en-
ergy disposal cross sections, the ‘‘transition-state switching’’ topic
in ion—molecule reactions [22], and the approximation of mini-
mizing an appropriate ensemble-weighted average of kEJ, instead
of minimizing NEJ for each E and J. Comparison will also be made
with a statistical ‘‘adiabatic channel’’ model [17]. Some features
of the present method for obtaining kEJ are its simplicity, rapidity
of computation and, particularly, its use of actual potential-energy
surfaces as they become available.
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