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Unimolecular rate theory for various types of reactions is implemented for any looseness of transition state. Quantum
states are counted for all but the “transitional” modes, their phase space being counted via Monte Carlo sampling. The rate
constant kg is then weighted with the initial £ and J distributions.

1. Introduction

In the transition-state theory of chemical reactions
the position of the transition state along the reaction
coordinate is frequently readily identifiable, for ex-
ample when the potential-energy surface for the re-
action has a pronounced saddle point. In this case the
transition state is often chosen to be a hypersurface
passing through the saddle point so as to separate the
reactant and product valleys *.

In reactions such as bond fissions, the reverse reac-
tion of free-radical recombination, or some ion—mol-
ecule reactions, there is little or no potential-energy
barrier along the reaction coordinate. However, one
may define a dividing surface such that the available
phase space on it, restricted by any constants of the
motion, is a minimum [2]. This dividing surface is
then the transition state [2] and it depends on any
constants of the motion, such as, for an isolated mol-
ecule or pair of molecules in the gas phase, the total
energy E, the total angular momentum J and its com-
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* Sometimes, as in the transfer of a light particle, such as an
H atom or proton between two heavy particles, the system
may by-pass the saddle-point region bécause of the large
curvature of the conventional reaction path. A treatment
of such cases is given in ref. [1].

230

ponent J, along a space-fixed axis. In practical ap- -
plications of this criterion (or in a quantum treatment)
it is common to choose as a dividing surface a hyper-
surface in coordinate space such that the number of
available classical (or quantum) states Ng; for motion
on the hypersurface, is a minimum when plotted ver-
sus the reaction coordinate [3—S5]. (This criterion was
noted in ref. [S], which mistakenly attributed it to
Bunker. However, Bunker and Pattengill [6] minimized
a density of states for RRKM theory rather than Ng;,
which is not quite correct but gives essentially the
same result.)

For bond-fission reactions the main difficulty in cal-
culating N lies in the “transitional” degrees of free-
dom, namely those vibrations, rotations, and hindered
rotations in the dissociating reactant which become
free rotations and orbital motions of the separating
products. In the transition-state region these modes
may display large-amplitude anharmonic motion and
may be strongly coupled to each other. The calcula-
tion of their quantum energy levels and the associated
sum of states becomes very complicated indeed. In
this Letter we treat the transitional modes in a way
which affords computational tractability and which
makes use of coordinates designed to facilitate the
analysis. Namely, action—angle coordinates related to
those used for bimolecular collisions [7] are introduced
for these modes. Next, a classical Monte Carlo calcu-
lation of the available phase space is made, including
quantum corrections if needed. The remaining coor-
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dinates are treated via the usual quantum count [8].

The procedure, choice of variables, and some re-
sults are given below. The present work extends in a
practical way that which we have given earlier [9.10]
in which the transition states were assumed to be
“tight” or “loose” in actual applications. Monte Carlo
calculations of phase-space volumes have been used in
completely classical calculations of numbers of states,
densities of states, or unimolecular reaction rate the-
ory [11-14]. Both rotating [11] and non-rotating
[12—14] systems have been so studied, although for
the rotating systems [11] the ensembles used were
not J-fixed. A comparison between classical and quan-
tal counts for separable [12] and non-separable [13]
systems has also been given.

2. Theory

The rate constant kg ; for the unimolecular decom-
position or isomerization of a molecule with total en-
ergy in the center-of-masss frame £ and specified J is
given in RRKM theory [9] by

kgy=Ngs/hogy 1)

where N is the number of quantum states of the
transition state having an energy less than or equal to
E in the degrees of freedom orthogonal to the reaction
coordinate and at the given J; pgy is the density of
states of the dissociating or isomerizing molecule.
Tunneling corrections along the reaction coordinate
[5,15,16] (eq. (4) of ref. [16]) and reaction path de-
generacy [5,10,16,17] can be introduced into N if
needed. A unimolecular rate constant at any pressure
is obtained from eq. (1) in the standard way by suit-
ably weighting the E's and Js (eq. (4) of ref. [10]). In
the center-of-mass system the modes are subdivided
into “transitional” modes and the remaining coordi-
nates, thereby yielding the following expression for
NEJ:
E

Ngs= [ NE - )Qle)de, )

0

where §27(¢)de is the number of states of the transi-
tional modes for the given J when their total energy
lies in (e, € + d€). Ny(E'— €) is the number of quan-
tum states in the remaining coordinates having an en-
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ergy less than or equal to E' — ¢, E” being the available
energy, i.e. E minus the potential-energy minimum at
the given value of the reaction coordinate and minus
the zero-point energy of the modes included in Ny
The two types of coordinates are taken to be un-
coupled from each other in eq. (2), apart from an in-
direct coupling via the dependence of the molecular
constants on the reaction coordinate.

To obtain Ny we define two sets of body-fixed
coordinate axes, each fixed in a separating fragment
[7,18]. The origin of each coordinate system is located
at the center of mass of that fragment. If either frag-
ment has soine symmetry, its coordinate axes are
chosen to coincide with the symmetry axes. Using
the action—angle coordinates of polyatomic species
[7,18] referred to earlier to represent the phase space
of the transitional modes, £; and then N is cal-
culated as a function of R, the separation distance
of the fragments’ centers of mass. Our use of action—
angle rather than Cartesian coordinates is a matter of
convenience rather than of necessity, chosen so as to
enhance the sampling in the Monte Carlo calculation
of ; and to minimize the dimensionality of the
phase-space integral. These coordinates are also suit-
able for a scattering description of the process and, as
such, are useful in describing the separated-product
properties as well as exit-channel effects.

In the case of a reaction such as H,0, - 20H, ac-
tion variables, written throughout in units of h asjy,
j1z J1z0 722> 1 and I, and their conjugate angles canbe
used [7,18] to specify the relative orientations of all
the atoms. j; and j, are the individual rotational an-
gular momentum actions of fragments 1 and 2,jy,
and j,, are their space-fixed z components, and / and
1, are the orbital angular momentum action of the
fragments and its z component, respectively. -However,
we choose to make a canonical transformation [18] #2
to the action variables J, Jz, /1, /2,4 k and their respec-
tive conjugate angles &, 8, &y, @3, &, G, where k is
an intermediate angular momentum action associated
with a vector sum |j; + /5|, andJ corresponds to |k
+1|. (/ now denotes an action variable rather than
the angular momentum, from which it differs by a
factor or 2m.) The transformation between action—

#2 4 different but related angular momentum coupling schem
is used in ref, [7] because of the different application in-.
volved.
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angle and internal-type coordinates, in which the po-
tential is usually given, is similar to that described in
ref. [7] and is given elsewhere [19]. (In the case of a
dissociation of a polyatomic molecule into non-linear
fragments there are two additional action variables in-
volved in the description of the transitional modes,
namely the component k; of each j; along the body-
fixed z axis of fragment i. In such cases there are six
transitional degrees of freedom, apart from those as-
sociated with J and J.)

For a system described by the above variables, such
as H,0, - 20H, we have

Qe)= @+ 1)
X [ ... | diydjpdidkde, daydedagd(e - H) , (3)

where Hy, is the classical Hamiltonian for the transi-
tional modes, and is given below. The factor 2J + 1
arises from the J multiplicity. The limits on the angle
variables are 0 to 1. The angular momentum action
variables are restricted by energy conservation and by
the triangle inequalities: |j; — j, | <k <j; +j, and |k
—I|< J <k + 1. The relative positions of all the par-
ticles are independent of the overall orientation of the
set of atoms and so the integrand cannot depend on
Jz,B,and a {19]. H_ is taken to be

(a) H\ . H H
T, { T
/B> 0
e
H
(b) H /]

X
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( R O\ 2
2
H

Fig. 1. (a) The O—0 and O—H bond lengths (*0—0, 71, 72),
bending angles (84, 62), and the torsional angle for H,0,.

(b) Angular momenta for fragment rotations and relative mo-
tion of HO...OH, and distance between the centers of mass, R,
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where y; is the reduced mass of fragment i, and u is
the reduced mass tor the relative motion of the two
fragments. H is specified by the variables (R, ry, 75,
Jipip bk ap,as,a ;). The potential V, for the
transitional modes is modeled in the example below
for H,0, to be function of the internal coordinates
ro_o,9;and7,in fig. 1a. The two other coordinates
there, 7| and r5, correspond to OH vibrations and are
therefore included in Ny (£’ — €). The reaction coor-
dinate R and several angular momenta involved in the
description of H,0, are depicted in fig. 1b. The func-
tional form used for V;, together with numerical con-
stants, are given elsewhere [19].

From eq. (2) and (3) one obtains

Ngr=(2/+1)

X [ ... [ NAE'~ Hyp)djydjpdldkday day da,doé,g),

where Ny, is zero unless £' > H ). The Monte Carlo
evaluation of this integral involves random selection
of the angles in the (0,1) interval and random selection
of the angular momenta subject to the constraints de-
scribed above.

3. Results

In developing and assessing the present method
three bond-fission reactions were examined using
model potential-energy surfaces: NO, - NO + O,
H202 = 20H, and C2H6 - 2CH3, having 2, 4and 6
transitional modes, respectively. For each system Ng;
was calculated over a range of Es and Js, and in each
case the transition-state location R defining the min-
imum in the Ng; versus R curve was readily identifi-
able. Np J(RT) was obtained to within a variance of
~1% for NO, and H,0,, and ~3% for C,Hg with
uniform Monte Carlo sampling. The relative compu-
tation times to obtain N, for each of the three sys-
tems were found to be essentially independent of E
and J. Computation times for systems larger than
ethane will be approximately the same as that for
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Fig. 2. Semilog plot of Ngy(RT)/(27 + 1) versus J (in units of
h) for various values of £7,,the energy available to the system
at R = e, The calculations are given for R = RT; the value of
RT varies with £ and J and is in the range 3.0-3.75 A,

ethane since the number of transitional modes is the
same. Thus, large systems and large E's are readily
treated.

A sample of the results is presented in fig. 2, where
Ng /(2] + 1) is plotted versus J for three values of
available product energy. One sees that the ordinate
depends strongly on J at small J and that it undergoes
a maximum with increasing J at high Js. Quantum
corrections can be introduced as needed. When there
are many accessible quantum states in each zeroth-
order transitional degree of freedom, the quantum
correction is negligible. This situation occurs when
the transition state is loose or when the available € is
high enough. One can estimate quantum counts using
a method such as Doll’s [12] or using the frequencies
of the transitional modes obtained from the power
spectrum [20] of a typical trajectory for A in eq.
(4). One can also adapt quantum Monte Carlo methods
[21] to a microcanonical ensemble to obtain a quan-
tum correction for the transitional modes. From the
typical value of [ (e")de'/(2/ + 1), integrated from
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0 to €, one can roughly estimate whether quantum
corrections are needed or not. When this value is of
the order of unity or less, they certainly are needed.
(See for example refs. [12,13].)

In subsequent papers [19] results such as those in
fig. 2 are compared with those for simple models, e.8..
the loose and tight transition states. Also explored
there are the dependence of N, and of RY on the
large-R behavior of the potential-energy surface, the
calculation of unimolecular and bimolecular rate con-
stants, energy disposal cross sections, the *transition-
state switching” topic in ion—molecule reactions [21]
and the approximation of minimizing an appropriate
ensemble-weighted average of kg, instead of minimiz
ing Ng; for each E and J. Comparison will also be
made with a statistical ‘*adiabatic channel” model
[17]. Some features of the present method for obtain:
ing kg are its simplicity, rapidity of computation
and, particularly, its use of actual potential-energy
surfaces as they become available.
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