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Nonadiabatic processes may involve both classical-like and quantum-like coordinates. A
semiclassical analysis is used to treat the contribution of the former to the Franck-Condon factor
in the reaction rate expression, thereby avoiding the usual harmonic oscillator approximation.
Microcanonical and canonical rate constants are calculated, yielding an expression which
includes contnbuuons from both types of coordinates. The results are applied to nonadiabatic
electron transfer reactions in solution, and show how 4G ° enters the final rate expression, even
though AE° is present in the initial Golden Rule nonadiabatic formula. This result avoids an
approximation which has arisen in the nonadiabatic electron transfer literature.

_ 1.INTRODUCTION

In nonadiabatic processes, some of the degrees of free-
dom may be treated as largely classical, and for them it is
useful to simplify the usual Golden Rule expression for the
transition rate of the process. One such example occurs in
nonadiabatic electron transfer reactions in solution. In elec-
tron transfer reactions the many orientational coordinatés of
the solvent molecules are typically classical-like and play an
important role in electron transfer reactions,'~* considerably
influencing their rate.

_ One purpose of the present paper is to provide insight
and justification for a physically reasonable but somewhat
ad hoc procedure which has sometimes been used for nona-
diabatic electron transfers.*® In that procedure the quan-
tum Franck-Condon overlap factors for some coordinates
are combined with a classical treatment?” for the rearrange-
ment of the remaining coordinates, typically the orienta-
tional coordinates of the solvent molecules.

In the final theoretical expression for the reaction rate,
sometimes AG ° but more frequently (e.g., Refs.7-11) AE s
written, where 4G ° is the standard free energy of reaction.
AE°is the standard energy change of reaction, which occurs
in the Golden Rule expression for nonadiabatic processes.
The appearance of AE %, instead of AG®, in the relevant final
equations will result from using in such expressions a har-
monic oscillator approximation for all the classical-like co-

ordinates. For harmonic oscillators having the same fre--

quencies for reactants as for products, 45 ° vanishes and so
AE° and AG° become equal.'? For reactions in solution,
however, the harmonic oscillator model is inadequate for
treating the orientations of the solvent molecules. There can
be very large entropic changes accompanying reaction, for
example. This approximation is avoided in the present paper
by the use of semiclassical theory and generallzed (curvilin-
ear) coordinates.

In simplifying the nonadiabatic expression we retain
that part of the Franck—Condon factor which relates to any
highly quantized degrees of freedom and only use semiclassi-
cal theory to convert the rémaining part to a classical ver-
sion. The final result also provides a simple extension of an
expression used for “surface hopping”!® between two elec-
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tronic surfaces via classical trajectories, by allowing some
coordinates to be treated purely quantum-like.

Il. THEORY

The Golden Rule expression for the unimolecular rate
constant k,, for a nonadiabatic transition ai—Bf from elec-
tronic state & to electronic state f and from a quantum state /
of the nuclear motion on surface e to a state fon surface 8 is

2 .
b =2 (g lp 6 1E, — B, + 459, ()

- where V is the electronic matrix element for the transition

(the Condon approximation is made), / denotes the set of
quantum numbers ( f;-+fy) for the nuclear motion in elec-
tronic state 8 (M coordinates), { denotes those (i,--+/ss ) for that

. motion in electronic state @, E, and E, are the corresponding

energies, in excess of the zero-point energy of the 4 state and
of the  state, respectively, and AE °is the standard energy of
the reaction for process a—3 at 0’ K. Equation (1) has been
extensively used in the nonadiabatic electron transfer litera-
ture, e.g., Refs. 4-10. In that case, @ and 8 denote electronic
states of the reactants and of the products, respectively.

We shall suppose that of the M degrees of freedom the-

first N are classical-like and write

@ =vX, @r=YXr (2)
where @, referstoi = 1,...,N, y, tof =i=N + 1,..,M, and
Yrandyptof=1,.,NandF=f=N + 1,...M, respective-
ly. .
It is convenient to denote that part of the energies E,
and E, in Eq. (1) associated with the ¥ classical-like coordi-
nates by €; and €, and the part associated with the remaining
coordinates by E, and E, respectively. We define AE Y, as
the effective AE ° for a transition a/—fF:

AES, =AE°+E. —E,. . (3)
Equation (1) now becomes
2V EID RIS € — & + AES). (@)

kg =

If all the mod&s of motion were rotational, rather than
some being oscillatory, the “primitive” semiclassical wave

* function ¢; would be a single term. When some or all or the
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modes of motion are oscillatory the phase of the semiclassi-
cal wave function has more than one branch, each branch
corresponding to a particular set of signs for the N momenta
(P, )- The normalized wave function ¢, can then be writ-
ten as the sum in Eq. (5), using a Van Vleck determinant'*'
for each term: ‘

12|38 |2 &SR
b=30""5n wA )

where the sum is over the various branches of S; and would
contain 2V terms if all modes of motion were oscillatory, S,
is the phase integral =, fp, dg,, taken from some turning
point where all the p, s vanish, plus various multiples of 7/
4, depending on the particular oscillatory branch, e.g., Refs.
14b,144d,14f, and a is a determinant of coefficients in the
elementary distance expression (Appendix A). 3 %S, /3gdi de-
notes an N XN determinant having elements d 25, /9g; iy :

|5 ZS,/aqai|Edet a ZS,/aqk ai_, . (6)
We use this shorthand notation for determinants through-

out, as well as an anologous one for differentials and for sets
of variables: '
du=duduy, u=(u,-uy). 7
The normalization factor in Eq. (5) can be verified by
first noting that in the product ¢y, any highly oscillatory

terms can be neglected. Only terms in which S; and S, are of
the same branch then remain. We obtain

71 = [ [ vt adg

= zfexp[z,, (65,/3ix) lix: — i )_/ﬁ]d (05, /i)™,
8

where the sum 2 is again over the branches of S; and where
we have used the shorthand notation (7). In Eq. (8) S; in the
exponent was expanded about S; and |32S,/dqdi|dg was re-
placed by its equivalent d (35, /3i). Each 85,/d(i, h) is the
angle variable conjugate to the classical action ix 4 16 and its
individual domain is the unit interval. However, different
branches in the sum correspond, for oscillatory modes of
‘motion, to different parts of this unit domain. (For any rota-
tional motion the single branch covers the whole unit inter-
val.) Upon removing the sum sign in (8) before the integral we
recognize the fact that each angle variable ranges, thereby,
over its full (0,1) domain. The right-hand side of Eq. (8) then
becomes, on integration, a product of Kronecker deltas
84,6y, Thus, the semiclassical ¢, given by Eq. (5) is
properly normalized. ‘

We consider next the Franck-Condon factor'? {i|f) us-
ing Eq. (5) for ¢, and an analogous expression for ¢,. The
integral over the coordinates g becomes

L) =2f“‘f a2, | £§L|‘”eas,-s,.,,.ﬂ

3q0i| | dq0f ol
&)
and is evaluated, as is customary for semiclassical Franck-
Condon factors, by the stationary phase method. The only
terms retained in the sum are those where S, and S, belong to
the same branch, the remaining terms being highly oscilla-
tory. The stationary phase point is determined by

a
S, —5,)=0,

20, (Sy —5)
i.e.,

Pk =pklk=1,..,N) (10}
and we have

2% anan
X(S; — Si)lgx —q)g; — ) (11)

where the various quantities on the right are evaluated at the
stationary phase point ¢ = ¢°. Integration in Eq. (9) then

yields
ey =[928 | 9°S, / s, —S)|1"”?
s >—Z[ 9a0i aqaf| 3¢ H

X (57 =SV Nz, ' (12)

The stationary phase points (10) all occur at the same g, but
with different combinations of signs of the p,’s. If this ¢° is
the only stationary phase point, the number of terms in the
sum is the same as that in Eq. (5), one per branch of S;. There
may also be stationary phase points at other values of g, and
if so they are then included in the sum.

Equation (12) can be simplified in a straightforward
way to yield'®

_ éei | 12 ﬁq_ 172 giWalh

@ 2' ail larl wve’

where Wj, is the value of S, — S, at the stationary phase

point (10} and the sum is again over the branches of S;.
From Egs. (4) and (13) one obtains

2rV? ap'
Kog = F|D*S | ==
“ #in™ KFIDFS ai

(13)

3

a—;la(e, — € +A4EY).
(14)

The rate constant for a process a/—SF, when the initial

. state of motion of the classical-like coordinates is described

by (i,ix)» is found by integrating Eq. (14) over the f’s. In
doing this we first introduce a coordinate system to simplify
the resulting expression: The intersection of the two poten-
tial energy surfaces U,(g) and Uglg) occurs where
U.,(q) = Uplg) + AE; and defines an N — 1 dimensional
hypersurface in the N — dimensional coordinate space. We
define a coordinate gy which is constant on this hypersur-
face, and which takes on different values for other values of
Uslg) — Us (g}

Equation (14) is next integrated over the ( Siseees Sy var-
iables, noting that |9g/df |df equals dg. Further, each station-
ary phase point (10) occurs on the hypersurface just cited,
and at that point €, — ¢, equals Uy — U,, since p, = Pk
there for all p,’s. Thus, the § (6, — ¢, — AE ) in Eq. (14)
canbereplaced by 8 (Us — U, — AE %;). One can then write
dgy asd(Ug — U, /[0 (Ug — Uy )/dqy] and define the ab-
solute value S of this difference of slopes:

S = |9(Up — Us)/3gn|- (15)
Inintegrating over the f*sin Eq. (14) one notes that |3g/df |df

equals dg, then uses the § (U — U, — AE §7) in the integra-
tion overd (U — U, ), and so obtains the rate constant fora

"state (iy---iy )"
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k iy m—ﬂlwmlz

X3 f f %S"’dq,---dq,v_,/h". (16)

The microcanonical rate constant k;(¢) for a given
transition a/—BF is obtained by integrating & (f,-iy) over
all i, 's such that ¢, lies in a narrow interval (¢,€ + de) and
then dividing by the number - di,--diy of states in this
interval, i.e., by p, de, where p, is the density of states of the
classical-like degrees of freedom in electronic state a. One
next notes that |dp’/8i| di equals dp', and that when the
space of numbers (i, ) is mapped onto the space of p}, ’s the
various signs of p} s, which created the various branches in
the sum in Eg. (16), serve to map the i;’s onto all of the
relevant p’ space, and so the sum in Eq. (16) disappears. We
then have

2 2
1;: (|<)5€;Z,I J-"JS_I dp,dpy dq,-~dqy _,.

kiele) =
(17)

The integration in Eq. (17) is restricted to the domain where
(@GN~ 1» PrPw) lies within the energy shell (,¢ + de),
and so the integral is proportional to de.

To obtain the rate constant at a given temperature
k(T for the aI—BF transition, one multiplies Eq. (17) by
Pal€lexpl — /kT )de/Q, Q being the partition function for
the N classical-like coordinates of the reactant, and extends
the integration to all values of the 2V — 1 variables:

- ktr(T)—ﬂ-l(FU)F f f

Xe e/kTs - ldpl.-.de dq""qu_ 1+ ‘18)

In passing we note that the stationary phase point for a tran-
sition (f,+++iy)—{f,fx) determines a point in the 2N-dimen-
sional phase space. When the additional condition on the
energy €, is imposed, via the delta function in Eq. (14), the
i—f transition corresponds to a point in 2N-1 dimensional
phase space, a point in the domain in Eq. (17) and (18). The
integration over this space corresponds to the integration
over all s and /s, subject to the one constraint imposed by a
delta function.

Equation (18) is first integrated over the momenta. The
kinetic energy in € is written as =,,8” p,p; and one obtains
(Appendix A)

ke(T) = ﬂ (FID?

ff M S ~Wadg,dqy_,
f f ~ Ua/kT [g dg,--dgy

The overall rate constant k (T') is obtained by multiply-
ing Eq. (19) by the probability of finding the system in the
state  and summing over all /’s and all F’s:

S kip(Te=5%T/Qy, (20)
TF
E,;/kT) of the

(19)

k(T)=

where Q, is the partition function Z,exp( —
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degrees of freedom associated with the quantum numbers /.

The k (T') for the reverse reaction is obtained by inter-
changing (I,a) with (F,3). One can verify that microscopic
reversibility is obeyed by these two rate constants, upon not-
ing that U, equals Uy + AE %:. The ratio of the two rate
constants is found to equal, as it should, exp{ — AE%/kT)
times the ratio of the appropriate partition functions.

In the case of an adiabatic reaction one obtains Eq.
(19),° but with several differences [cf. Eqs. (33) and (34) of
Ref. 20]: the S ~! is absent, the N — 1 dimensional surface
element differs slightly from that element in Eq. (19), a con-
sequence of the absence of a gy term in Eq. (17), and a differ-
ent factor precedes the integral.

To telate Eqgs. (19) and (20) to an equation which has
been used* for treating nonadiabatic electron transfers
when some of the degrees of freedom are treated quantum
mechanically and some classically, two further steps will be
used. We need to relate the integrals in Eq. (19) to a free
energy of formation of a nonequilibrium polarization state™*
appropriate to the transition state of the reaction, and re-
quire, thereby, the two integrals to have the same number of
coordinates. This nonequilibrium state is one which is “cen-
tered””>?! on the intersection hypersurface.

Torelate these integrals to this free energy of formation,
we first replace the S ~' by some average (S ~!) which we
discuss later, and thus obtain an integral involving
exp(— U, ' /kT Wadg,~dgy _ ,. We next replace this surface
distribution by an “equivalent equilibrium distribution”,* 2
by multiplying by exp{ — Uy /kT) dgy, integrating over g,
and then dividing by a one-dimensional configuration parti-
tion function Qy for this motion of gy.2* Here, Uy is an

‘effective potential energy function which vanishes on the

intersection surface U, = Uy + AE %, and which serves to
convert the surface distribution to a volume distribution cen-
tered on the intersection surface, the “e.e. d.” of Refs 3and
21. We.now have

Zi ’:<F|1>|2‘S"’

le(T) =
N
f f = YA Ja dgydgy
) (21)
e dagetan
where
Us=U, + Uy. . (22)

The possibility of having a large entropy of activation
for the reaction is allowed in Eqs. (19) or (21): In the transi-
tion  state region, i.e., at the intersection of the
U, and Uy + AEY potential energy surfaces, the behavior
of U, can be very dlﬁ‘erent from its behavior in the region
appropriate to the reactants [denominators of Egs. (19) or
(21)]. For example, in an electron transfer reaction the ionic
charges of the reactants differ from those of the products,
resulting frequently in enormous changes in entropy of sol-
vation. These changes are reflected in a difference in the
behavior of U, in the “reactants’ region” of the N-dimen-
sional coordinate space compared with the behavior of Uy in
the “products’ region”. This difference is mirrored in the
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behavior of U on the intersection hypersurface.

An expression derived for the ratio of integrals in Eq.
(21), using a “dielectrically unsaturated” approximation for
the response of the solvent outside the coordination shells of
the reactants to changes in ionic charges, yielded®?

—USHT
@ J dq,--di
J‘ J‘e aaq,--aqy Ao (1 AG(IJF)Z]
ff e~ V-"*TJadq,--dgy 4T Ao '

= exp

(23)

where A, is a quantity in terms of the molecular properties.
For example, if dielectric continuum theory is used it de-
pends on the change in charges of the reactants, the ionic
radii of separation distance between reactants, and the di-
electric properties of the surrounding medium.? If any vi-
brations are included, in addition, in the classical-like co-
ordinates (g,---¢x ), Ao includes a contribution from them also
and then depends also on the changes in the corresponding
equilibrium bond lengths and on the vibration frequencies.?®
AG%inEq.{23)isAG® + Er — E,. Thatis, it is the effective
AG° when the system goes from state J of the quantum de-
grees of freedom of reactants to state F for those of the pro-
ducts. :

We turn next to the remaining factor in Eq. (21) (S ~')/
Qn- We consider first a simple case, namely where U, for
each value of (¢,-+gy _ , ) has a term }k ‘(g5 — @)* and where
U behaves as a displaced oscillator at that (g,--gy_ ), and
so has 1k '(gy — &) — AE S, there, k' is a force constant
assumed independent of (Grgn_1) Then
[(@(Ug — U,)/3qy| equals k'a. Further, Qy
S exp[ — k'q%/2kT )dgy,** where gy =0 is the value of
gy on the intersection hypersurface. Thus, Qy equals
27kT7k" and so (S ~')/Qy equals 1/427kTk 'a’. One
can express this quantity in terms of A,, by noting that A,/4
in Eq. (23) is the energy barrier when 4G % = 0. For the

simple quadratic model for U, and Uy one finds that 1,/4

equals k ‘a®/8. Thus, we have

s7h___ 1 (24)
On JATAKT

In the actual many-dimensional case the values of U, and
Up on any N — 1 dimensional hypersurface (fixed gy ) when
suitably averaged at that ¢, depend approximately quadra-
tically on a suitably chosen g, when one makes a “dielectri-
cally unsaturated” approximation.’> One can show that Eq.
(24) is approximately valid for this many-dimensional sys-
tem also.?¢

Equations (21)24) yield
k(T) _ 20V? o |(F|I)|%e~ E/5T
#i Q,(4mAkT)'?
. _ ( “G_r)]
: Xexp[ kT 1+ . (25)

an equation used in several recent articles.*-

We have noted earlier that in the rate expression for
nonadiabatic transfers, e.g., Refs. 7 and 10, an exponential
containing AE ®instead of the AG °in Eq. (25) has been some-
times written. In derivations of the latter result it was as-

4497

sumed that all the classical-like coordinates were equivalent
to harmonic oscillators, and, as already noted, for such sys-
tems, A4S °vanishesandso 4 E °and 4 G ®become equal for the
present reaction.'? '

Equation (25) is the rate constant at a fixed separation
distance R. If the reaction involves, instead, contributions
from a distribution of R 's one can proceed as in Ref. 3. One
would obtain Eq. (25), but now instead of AG J; one finds
AGY%, equal to AG Y + w? — w', where w" and w” denote
the work required to bring reactants together and the pro-
ducts together, respectively, to some average distance R in
the transition state. One also finds that Eq. (25) is multiplied
byafactor 47R 25R exp( — w’ /kT '), where R is the range of
separation distance R contributing significantly to the reac-
tion rate. An elaboration, in which a somewhat slow diffu-
sion may be involved, is described in Ref. 5. A

In obtaining Eqs. (14)-{21), all stationary phase points
(10) were taken to be real, since the aim in the paper was to
treat the g, ’s classically. One quantum correction is that of
nuclear tunneling along the ¢’s. This tunneling occurs when
one or more of the p,.’s in Eq. (10) is complex valued. In that
case a factor exp( — 2|Im Wj|) appears in the integrand of
Eq. (14) (and in later equations), Im W being the imaginary
part of W;?’ at this complex-valued stationary phase point.
Additionally, some subleties appear in the sum X in Eq. (16)
and hence in the subsequent equations.?®

In concluding this section we comment on the relation
between Eq. (18) and an interesting paper of Schmidt.?® He
employed Yamamoto's*® expression for the rate constant in
terms of the reactive flux correlation function and intro-
duced a classical approximation by a different procedure. To
see the connection between that paper and Eq. (18) we begin
the present Eq. (4), the (F |I ) being absentin Ref. 29 since the
intent there was to convert all coordinates to classical. After
replacing the delta function in (4) by its Fourier integral re-

 presention and noting that ¢, |/} and €| /') equal H,|i) and

H,| f), the H’s being Hamiltonians, one finds

4 2 7| © iHt, — iH, 1) it

bap =T KEIDIGLPY [ Crtemve= et
(26)

Toobtain k(T ') as in Ref. 29, one sums over all final states f,

uses the completeness relation to remove the ;| /) (f|, mul-

tiplies by a Boltzmann factor exp{ — Be;)/Q, and sums over

i. A classical-like approximation is then introduced® by neg-

lecting the commutator of H, and H, in Eq. (26). One obtains

2
kar(T) = 2= (FID)

xz (i}fﬂ e(H,—H,+dE',’,-)xdt
[} -

H, — H; equals Uy — U,, and a second use of the integral
representation for the delta function then yields an expres-
sion frequently used in the physics literature®!

2
ke (T) = 3’;—5— KFID?

i)e‘”". 27)

Xy (il6(Ug — U, + AE%])|i)e—B=. (28)
[]
Because of the neglect of the commutator this type of expres-
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sion is sometimes termed “semiclassical”®' but it differs
from the semiclassical approximation used in the present
paper.

Schmidt then replaces the trace in Eq. (28), i.e., the sum
over i, by an integral over phase space, and so obtains the
desired classical expression. His procedure, beginning with
Eq. (4), is clearly very direct. Its one disadvantage is that at
an intermediate stage, namely Eq. (28),itcanlead toa sxgmﬁ
cant error, seen as follows: Equation (28) has been shown,*
when all coordinates are treated as harmonic oscillators, to
lead to another'' expression for the reaction rate. That
expression can be inaccurate (calculated*? to be a factor of
~20 different from the quantum value for the rate constant
of thermoneutral reactions such as the Fe?*+/** aquoion
exchange at room temperature). The physical nature of the
approximation has been identified,*>** and one finds that
Eq. (28) overestimates the quantum effect.*

Iil. SUMMARY

Microcanonical and canonical rate constants are de-
rived for a nonadiabatic transition using generalized coordi-
nates for the classical-like degrees of freedom. The results
are used to derive Eq. (25), previously used in several studies
in the nonadiabatic electron transfer literature.*® In Eq. (25)
AG° plays a major role even though it is AE ° which appears
in the Golden Rule expression (1).
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APPENDIX A: RELATION BETWEEN COEFFICIEN‘I’S ay
and g; AND APPLICATION TO EQ. (18)

We consider the coefficients®® a; and g, referred to in
the text. An infintesimal element of length ds is given in
terms of curvilinear coordinates (¢’,....¢" ) by

_—ZZay dq' d¢', (Al)
where
k
“=35 a2

and the x*’s are Cartesian coordinates. The usual covariant—
contravariant notation.?° is used. (We drop this notation in
all other sections of the paper.) The kinetic energy is given,
on the other hand, by

1 ' 1 i
KE=—38,49'=>3 &b pp (A3)
7]
where
ax" 8.x
)= S ST (A4).

and m, is the mass associated with Cartesian coordinatex*.
Equation (A1) leads to the following relation between
the determinants:

ax* ax* 81

Py (A5)

using the usual product rule. (In the text we have denoted
determinants such as |dx* /3¢’ | by [dx/dq|.) Equation (A4)
leads to

’"k

axkl_

g = lay |l;[ my. (A6)

lgy |, which equals the reciprocal of |g¥ |, is denoted conven-
tionally as g. Denotmg lay| by a, qu {(AS5) and (A6) yield

Vgl =g=a n e, (A7)

a result used below and in Appendix B.
We have considered the following momentum integral
in treating Eq. (18):

1= [[ eno( -5 3 &p p/KT Jip-don.  (AY
Integration over the p;’s and use of Eq. (A7) yields

_ (2wkT)¥"*g, and hence a IT, (27m, kT)". Introducing

this result into the integral in the numerator in Eq. (18) and
into the Q there then yields Eq. (19).

APPENDIX B: RELATION OF EQ. (19) TO THE LANDAU-
ZENER FORMULA

It is useful to consider the connection between Eq. (19)
and that obtained using the one-dimensional Landau~Zener
formula for nonadiabatic transitions, since the differences
between Eq. (19) and the adiabatic expression are then un-
derstood in a simple way. (See Ref. 6 for closely related deri-
vation.) '

For weak electronic interactions (small matrix element
V') the Landau-Zener probablhty P of transition from elec-
tronic state a to state B is given by**

P=4nV¥,S,, . (B1)

where v, is the (Cartesian) velocity X at the crossing point
and S, is the difference of slopes of the two potential energy
curves at that point, the slope being expressed in Cartesian
coordinates S, = d (U — U, )/dx. The product v, S,, ie.,
(dx/dt){d (Us — U, )/dx]canalsobewrittenasd (Up — U, )/
dt, and hence as g53(Ug — U,)/dqy, since Ug — U, de-
pends on only gy by definition of this coordinate in the text.
Systems initially on surface a cross the intersection of the
two potential energy curves, and if they do not go to 8, reach
a classical turning point on a and recross that intersection
surface. Equation (B1) includes this probability of a double
crossing.

The reaction rate constant k (T°) is equal to P,, , the prob-
ability of finding the system in a phase space volume element
at the crossing point, per unit length along the reaction coor-
dinate, namely by

P, =e~“*dg,dgy_ ,dp,~dpy/Qh", (B2)
multiplied by the velocity g5 and by the P given by Eq. (Bl),
then integrated over all coordinates(g,-qy_ ,)onthe N — 1
dimensional surface of intersection of U, and U + 4E Y,
and integrated over all momenta, noting that the ¢ in Eq. (B2)
equals U, + 12, g%p,p;. (Even py is allowed to be positive
and negative since the system crosses the intersection hyper-
surface twice, in the low transition probability limit, for each
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crossing in the forward direction.) Using Eq. (A7) of Appen-
dix A one obtains .

V2 ff e~ 4TS ~\adg,--dgy
T

# f..-fe' U-”‘T\/Edql...qu

If multiplied by the probability |(F |/ }|? Eq. (B3) yields Eq.
(19) in the text for k;-(T'). Of course, a main purpose of the
present paper was to derive Eq. (25) systematically from the
Golden Rule expression (1) and not to begin with the classi-
cal expression (B2).

k(T)= -(B3)

"Recent reviews of the electron transfer literature include those of N. Sutin,
Progr. Inorg. Chem. 30, 441 (1983); L. Eberson, Adv. Phys. Org. Chem.
18, 79 (1982); R. D. Cannon, Electron Transfer Reactions (Butterworths,
Boston, 1980); D. DeVault, Quart. Rev. Biophys. 13, 387 (1980); J. Ul-
strup, Charge Transfer Processes in Condensed Media, Lecture Notes in
Chemistry, No.10 (Springer, New York, 1979). An early review is given in
R. A. Marcus, Annu. Rev. Phys. Chem. 15, 155 (1964).
2R. A. Marcus, J. Chem. Phys. 24, 966 (1956).
3R. A. Marcus, J. Chem. Phys. 43, 679 (1965).
4S. Efrima and M. Bixon, Chem. Phys. 13, 447 (1976); their results were
also utilized by R. P. Van Duyne and S. F. Fischer, Chem. Phys. 5, 183
(1974).

SR. A. Marcus and P, Siders, J. Phys. Chem. 86, 622 (1982).

SA. Warshel, J. Phys. Chem. 86, 2218 (1982).

V. G. Levich and R. R. Dogonadze, Collect. Czech. Chem. Commun. 26,
193 (1961) (O. Boshko, Translator, Univ. of Ottawa).

*V. G. Levich, in Physical Chemistry, Volume 9B: Electrochemistry, edited
by H. Eyring, D. Henderson, and W. Jost (Academic, New York, 1970),
Chap. 12; R. R. Dogonadze, in Reactions of Molecules at Electrodes, edit-
ed by N. Hush (Wiley, New York, 1971), pp. 135ff.

9N, R. Kestner, J. Logan, and J. Jortner, J. Phys. Chem. 78, 2148 {1974).
The authors were aware, of course, of the important role played by 4G°
{e.g., in Refs. 2 and 3). I am indebted to Dr. Jortner for first calling the
present AE° problem to my attention.

19, Ulstrup, and J. Jortner, J. Chem. Phys. 63, 4358 (1975).

1], 3. Hopfield, Proc. Natl. Acad. Sci. U.S.A. 71, 3640 (1974); M. Redi and
J. J. Hopfield, J. Chem. Phys. 72, 6651 (1980).

13(3) When AS°® = 0, AG® = AH °. AH °is negligibly different from 4 £ ° for
reactions in solution. (b) The entropy of activation (and of reaction) has
also been obtained for the particular case that all modes of motion are
treated as harmonic oscillators, but of different frequencies for reactants
and products, by R. R. Dogonadze, A. M. Kuznetsov, and M. A. Voro-
tyntsev, Phys. Status Solidi B 54, 125 (1972). Such an entropy change is
expected to be zelatively small in comparison with major changes result-
ing from changes in solvation and associated with restricting or freeing the
orientations of solvent molecules.

1J. C. Tully, in Dynamics of Molecular Collisions, Part B, edited by W. H.
Miller (Plenum, New York, 1976), Chap. 5.

") J. H. Van Vleck, Proc. Natl. Acad. Sci. U.S.A. 14, 178 (1928); (b) J. B.
Keller, Ann. Phys. 4, 180 (1958); (c) V. A. Fock, Vest. Leningrad Univ.
Ser. Fiz, Khim. 16, 67 (1959); Technical Translations 4, 53 (1960}, No. 60-

17464; (d) V. P. Maslov, Zhur. Vychisl. Mat. Mat. Fiz. 1, 113, 638 (1961),
[English translation: USSR Compt. Math. Math. Phys. 1, 123, 744
{1962)]; (e) R. Schiller, Phys. Rev. 125, 1109 {1962); (f} R. A. Marcus, J.
Chem. Phys. 59, 5135 (1973); R. A, Marcus, Faraday Discuss Chem. Soc.
55, 34 (1973); (2) W. H. Miller, Adv. Chem. Phys. 25, 69, (1974); (h) 30, 77
{1976). To be sure, all of these articles tacjtly or explicity assume that the
phase of the semiclassical wave function S;/# has a finite number of
branches, i.e., it describes a “quasiperiodic™ motion, or at least it assumes
that the system can be approximated by such a description. Quasiperiodic
and chaotic behavior are discussed in D. W. Noid, M. L. Koszykowski,
and R. A. Marcus, Annu. Rev. Phys. Chem, 32, 267 (1981), and references
cited therein.

15The usual expression has been modified to include in Eq. (5) the curvilin-
ear factor @ ~ /2 and the sum Z. In our case some motions are oscillatory

and some are not. Usually only a single term, or in the one-dimensional .

oscillatory case, two terms, are written in the literature. The fact that

many branches and hence many terms in = may exist is, of course, well
known [Ref. 14{b)].

If i, is a quantum number, the relevant classical action is actually
(ix + &), rather than i, h, where § = O for a rotation and 1/2 for a vibra-
tion. However, the value of § does not affect any of the equations used
here, since they involve differentials, such as di, , or differences, such as
i — iz, N

YExamples of “primitive” semiclassical calculations of Franck-Condon
factors in the literature include L. D. Landau and E. M. Lifshitz, Quan-
tum Mechanics, 3rd ed. (Pergamon, New York, 1977), Sec. 51; W, H. Mill-
er, Ref. 14{h); M. S. Child, in Semiclassical Methods in Molecular Scatter-
ing and Spectroscopy, edited by M. S. Child {Reidel, Boston, 1979), p.
12711,

'The argument leading from the varicus determinants in Eq. (12) to the one
in Eq. (13) parallels that in Ref. 14(e) and 14(h): Differentiation of the sta-
tionary phase condition (10) with respect to f; yields

a2 dq a1s,
— (S, — ;) =L+ —L-=0.
3 Faan e Y g
[g; depends on the f*s and the /s, because of the stationary phase condition
(10).) Hence, |3 (S, — S:)/3¢*| |99/ | equals |3 S, /3qdf |, using the pro-
duct rule for determinants. The ratio of determinants in Eq. (12) then be-
comes |d 28, /9di| |9g/3f |. Since 3, /g, equals p;, Eq. (13)follows. We
note, parenthetically, that the determinants in Eq. (13) can be shown to
equal | W, /3idf |: Using Eq. (10) @W; /i, equals ~ 35, /3i, ,and hence
I*W;/3f,di\ equals — 2,(9S,/3q,3i,)(3q,/3f;). Thereby, |3* W /3/0i)
equals |3 2S,/3¢3i| |3¢/3f |, i.e., |Op/dii |0g/3f |.

“In the integration over d (U — U, ) the net result is positive, regardless of
the sign of the slope, and hence the use of the absolute value sign in Eq.
(15).

2R, A, Marcus, J. Chem. Phys. 41, 2624 (1964).

2IR, A. Marcus, Discuss Faraday Soc. 29, 21 (1960).

22Asin Refs. 3 and 21 we choose the quantity now labeled as Uy, in Eq. (22)
to be m(U, — Uy — AE %), [cf. Eq. (13) of Ref. 3, where the potentials
were instead defined relative to the same zero}], m is a Lagrangian multi-
plier, which now depends on 7 and on F; m is chosen using a procedure
analogous to that in the above references, but for the given and £, i.e., for
the given AES, and hence for the given AG ;. The Qy in Eq. (21) is de-
fined in the following way: The surface integral prior to the introduction
of Uy in Eqs. (21} and (22) was f--fexp{ — U, /kT Na dg,~dgy_, and is
writtenasexp{ — 7 (g )/kT ), definingtherebyafreeenergy/ {gx). Onemul-
tipliesbydgy , integrates over g, and expands / (g Jasaquadraticfunction
of g about its value (g5 = 0) on the intersection surface (Ref. 3). Oy is
defined (Ref. 3) as the integral over this exponential and equals
{271 "(0)kT )%, I * being the value of d I /dq, at the intersection hyper-
surface.

BOpe can see this comparing Eq. (19) (and Eq.(13)] of Ref. 3 with Eqs. (31)
and (81) there. The notation is somewhat different from the present nota-
tion.

In Ref. 3 4,0ccursin Eq. (68) and, by comparison with Eq. (89) there, is the
cocfficient of m* in Eq. (89).

25This contribution to A, is labeled A, in Ref. 3 and given by Eq. (84) there.

25We use the e.e.d. to calculate the averages of U, and U, and describe these
averages using the parameter m. This m entered earlier (Ref. 22) into Uy
and like g, has played a major role (Ref. 21) in defining the position of the
intersection hypersurface: m is varied by varying AG}; (Ref. 3 and 21).
Wewrited /dgy as(d /dm){dm/dq,). Thedifference, Uy — U, ,averaged
overan e.e.d. at a given gy (and hence at a given m) can be shown from Eq.
(68) of Ref. 3 and from an analogous equation for the free energy of forma-
tion of the c.c.d., at this same g, on the S surface from the products to be
{m + 1?4 — m*1°, plus a term independent of m. Thatis, (U — U, ) at
this gy is {2 + 124, — m*A° plus an m-independent term. Hence,
(d|Up — U, )dgy) equals 2A4dm/dqy . Further, the g, -partition func-
tion Q, is approximately equal to that for the reactants, namely
Sexp( ~ AF3/kT\dgy, where [Eq. (68)] AF§$ is m*4,. Integration of the
latter over g, yields y7kT /A, dgy/dm. Thus, the approximate value of
(S)="/Qy is 1/J&mA kT . While {(S') ~'is not exactly equal to (S ~') ex-
cept when S is a constant, as it was in the simple harmontic oscillator
model, we see that approximately (S ~')/Qy cquals 1/{37AKT, as in
Eq. (24).

*"For example, in onc dimension the exponential factor exp( — 2|Im W]/
#) becomes exp{ — 2J /#) where, when the slopes U, /3gy and dUs /gy
are of opposite sign, J is the sum of the absolute values of the phase inte-
grals fpydqy from the classical turning point on curve & to the crossing

J. Chem. Phys., Vol. 81, No. 10, 16 November 1984



R A R L T

-

4500 R. A. Marcus: Nonadiabatic electron transfers i
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