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A simple DWBA (Franck-Condon) method for calculating the probability of transferring a light
particle between two heavy ones in a collinear collision at energies below and around the reaction
threshold is presented. The region is the important one for the thermal reaction rates. The method
is tested for two different model LEPS surfaces for H-atom transfer with moderately high
barriers. The results are in good agreement with those of accurate multichannel calculations.The
transition probability is calculated as an overlap integral over the reactants’ and products’ wave
functions and the interaction potential. The reactants’ and products’ wave functions are
calculated from their respective distortion potentials as one-term adiabatically separable
approximations. Both the distortion potentials and the interaction potentials are extracted
straightforwardly from the LEPS surface. The novel feature of the approach is that for the first
time accurate results for the absolute values of the reaction probability are obtained from a simple
overlap of single-channel approximate wave functions obtained directly from the rapectwe parts

/9:

of the potential energy surface for the reaction.

1. INTRODUCTION

" Therates of many chemical reactions at low and moder-
ate temperatures are determined mainly by thereactive tran-
sition probabilities at energies below and around the classi-
cal reaction threshold. At such energies the scattering is
predominantly inelastic and the reactive scattering proba-
bilities are low. One can expect therefore that treating the
reactive scattering as a perturbation to the much simpler
inelastic scattering may yield a satisfactory simple method
for evaluating the reactive transition probabilities in the
threshold region, and hence for obtaining thermal reaction

rates.
Treatments of this type, known as distorted wave Born

approximations (DWBA) for reactive collisions, have been
extensively studied in recent years.!-S They consist in evalu-
ating the reactive transition probability as an integral over
two separate nonreactive wave functions, one corresponding

to the reactants’ and one to the products’ configuration, and

an exchange interaction operator. Further simplified ver-
sions of the treatment, known as Franck—Condon theories of
chemical reactions, have also been frequently consid-
ered.*'” One simplification consists in treating the interac-
tion operator as a constant, which reduces the expression to
an overlap integral between the two distorted wave func-
tions. Utilizing analytical approximations to the distorted
wave functions, usually in terms of Airy functions for the
unbound motion and harmonic oscillator wave functions for
the bound motion, also allows calculating an approximation
*'Permanent address: Departamento de Quimica Fisica y Quimica Cuan-

tica, Universidad Autonoma de Madrid, Cantoblanco, Madrid-34, Spain.
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to the transition probability in closed form, clearly at a
further loss of accuracy.

At energies below the classical reaction threshold the
main contribution to the DWBA integral comes from the
exponentially decaying tail end of the distorted wave func-
tions.'® Errors of several orders of magnitude have occurred
in the DWBA integral,>!! due, we believe, to the approxima-
tion used for the tails of the vibrational wave functions. Most
of the work done using the DWBA approximation in reac-
tive scattering has been actually concerned with evaluating
the vibrational-rotational and angular distributions of the
products. Absolute values of the transition probabilities
have only occasionally been calculated.>>'?

More recently,'®-?? it has been shown that a DWBA-
type formalism can yield accurate absolute values for the
reactive transition probabilities in the threshold region if
properly evaluated distorted wave functions and interaction
potential are employed for the reactants and the products.
We have developed '>-?! a simple DWBA treatment of de-
generate and nearly degenerate H-atom transfer reactions in
which the distorted wave functions are constructed as a lin-
ear combination of two adiabatically separable wave func-
tions. The treatment has been shown to give excellent results
for several model systms.'®2' Hubbard, Shi, and Miller?
have demonstrated that the DWBA approximation can give
accurate results in the threshold region for the H + H, reac-
tion, if converged distorted wave functions, extracted from
an accurate coupled channel numerical solution of the com-
plete Schrédinger equation for the problem, and the exact
interaction operator are utilized in the evaluation of the inte-
gral.

© 1884 American Institute of Physics
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In this paper we develop a simpler version of our earlier
DWBA treatment of the light atom transfer reactions.'®*!
The present work is closer in spirit and simplicity to the
Franck-Condon treatments®'” but still retains the high ac-
curacy of the transition probabilities for the light atom trans-
fer reactions mentioned above.'*-2"? It is also not restricted
to transfer between two degenerate or nearly degenerate vi-
brational states. The distorted wave functions are construct-
ed as single channel adiabatically separable eigenfunctions
of readily defined distortion potentials. '

The basic features of the present model are given in Sec.
11. Numerical tests of the treatment for model potential ener-
gy surfaces for the I + HI and Cl + HBr reactions are given
in Sec. III. The results are discussed in Sec. IV.

Il. DIABATIC FORMALISM

We consider a rearrangement collision which involves a
transition from a vibrational state r of the reactant molecule
BC to a vibrational state m of the product molecule AB:

A + BC(n}—~AB{m) + C. (2.1)
The Schridinger equation can be conveniently written in
terms of the two alternative sets of Jacobian mass-weighted
coordinates {7,, R, ], {rs, Rg} appropriate for describing
the reactants’ and the products’ configurations:

1 &
H= = - h achr
H, 2 R: + holras Ra)
1 & .
By (res Ry) = — ——=+ Volras R2)s 2.2
al7as Ra) ¢26r§+ (ras Rg) 2.2)
&
H=Hy= ~ 23 + hglrs: Rg),

1
h,(rp, Rﬂ) == - -2—5% + Vﬂ("ﬁ, RB)’
B

where r, = m}”?r!, r; being the internal coordinate of the di-
atomic molecule (/ = a for reactants, 8 for products); m; is
the reduced mass of the molecule i Similarly,
R, =MVY?R}, R} being the separation between the atom
and the center of mass of the diatomic molecule §; M, is the
reduced mass of the relevant atom—diatom pair. ,(r;, R;)isa
vibrational Hamiltonian for fixed R,.

In the asymptotic region the dependence of the vibra-
tional Hamiltonian A,(r,, R,) on R, vanishes. The two 4,’s
reduce to the vibrational Hamiltonian for a single diatomic
molecule:

1 &

hBC(ra)= _?3;2_+ Va(’a)!
haslral = —%5‘?';+ Valra). 23)
B

In the case of transfer of a light particle lying between
two heavy ones (i.e., mg €<m,, mc) the polar coordinates

(p6):
p={RL+nA)*=R}+r)"% : 2.4)
6=tan~"(r,/R,) =6, — tan~"(rs/R,) (2.5)
are, as shown elsewhere,'®2"2* particularly well suited for

simplifying the approximate treatment of the dynamics, due
to the near separability of the motion along the fast (6) and

(:

FIG. 1. Plot indicating the various variables used in the text. The “skewing
angle” 6, is also given.

slow ( p) coordinates. The angle 6, between the skewed axes
in Fig. 1 equals tan~'[mg/(m,M,)"/*]. The Hamiltonian
{2.2) in these polar coordinates is writtenas .

go_ 1@ 13 1 & L yg, 06

It is also convenient to define an arc length, measured from
the R, axis in Fig. 1, and to denote the maximum arc léngth
by s,,:

s=pb; s, =p0b,. 2.7)

Asymptotically the system can be in the arrangement
channel a or B. For large values of p one can relate the
asymptotic form of Eq. (2.6) to that of Eq. (2.2) by employing
the approximate relations between the polar and the Carte-
sian coordinates in the region relevant to the motion of the
system, namely in the regions s<s,, ands,, — 5€S,.. Wehave
there

R,~p, ro~5 Rg~p, rg~s,—Ss. (2.8)

In order to obtain the DWBA reaction amplitude for

" the rearrangement reaction we divide the potential energy

function
Vis,p)= Valssp) = Vglss ) 29)
into two parts
_ 1 11
Vals,p) = Vils. p) + Vs ph (2.10)

Vls, p) = V‘lﬂ(s’ P+ Vg(s! P)
The distortion potential ¥ }(s, p) includes all the distortion of
the potential between the atoms in the diatomic molecule
due to the proximity of the third particle but none of the
interactions responsible for the rearrangement. The interac-
tion potential ¥ (s, p) on the other hand represents solely
the reactive part of the interaction which causes the rearran-
gement (i = a, B).

We take the nonreactive wave functions for both ar-
rangements to be the solutions of the Schrédinger equations
with the distortion potential ¥} only.

1 82 1 4 1 a*
[—75;--275—-2;—30—,-+V:.(s,p)]¢:=5¢f;,
(2.11)

2 Vi, ol = B

J. Chem, Phys., Vol. 81, No. 9, 1 November 1984




30684 Lopez, Babamov, and Marcus: H-atom transfer

In the absence of the reactive interactions the motion along p
and along s is nearly adiabatically separable within each of
the valleys (reactants’, products’} of the potential energy sur-
face. Thus, a good approximation to these nonreactive solu-
tions of Eq. (2.11) can be obtained using the adiabatic ap-
proximation®*

als, pl=@ (Pl ls: )
(2.12)

Vnls, )=l plXmls, P)s
where the y 's are the eigenfunctions of the nonreactive Ha-
miltonian [Eq. (2.11)] for a fixed p and depend parametrical-
ly on p. They satisfy
1 42 I
St Vals, p)xals p) = €[ plyals, o),
(2.13)

[- ;jsﬁm(s.p)]x’(s.p) )

where we have used ds = pd@ in the derivative. The distorted
single channel vibrational wave functions y (s, p) are func-
tions of s which depend parametrically on p. It can be readily
shown that the p-dependent coefficients @f in Eq. (2.12) sa-
tisfy approximately the Born-Oppenheimer-like Eq. (2.14):

192 1 .
[~ 353 5~ E-tapito =0
(2.14)
18 10 (p_ 2(p)=
[_”pz 5~ e‘,’;(p)l]rpm(p)

The DWBA transition amplitude for the reaction is
then given by

T4 = (alveivn), (2.15)

where ¥2(?) is the wave function for the reactants (pro-
ducts) when the potential is the nonreactive part ¥} (V). A
perturbative treatment that includes the reactive part of the
potential " to the first order can be expected to give accu-
rate results at energies below the classical threshold, where
the reaction can be viewed as a perturbation to the nonreac-
tive scattering.

Using the single channel adiabatic approximation (Eq.
(2.12)) the T-matrix expression [Eq. (2. 15)] for going from
state n of channel a to state m of channel 3 can be rewritten
as

T =f: do @2 oo %)

x ["ahis oW iaosns @16

For every value of the radial coordinate p between the
asymptotic region and the saddle point region, the cut along
the s coordinate on the potential energy surface of a light
atom transfer reaction represents a double minimum poten-
tial. We confine our attention to such p’s for which the cut is
a double minimum potential. The boundary between “reac-
tants” and “products” at any finite p is defined as the top of
the barrier s = 5°( p) in Fig. 2. We now define ¥}, insuch a

P —— 12

Sb

1 1 1

wr

FIG. 2. Profile of the potential energy surface fora fixed p is deplcted by the
curve ABCD. The nonreactive surfaces V' (s, p) and V§(s, p) are given by

the curves ABCG and FCDE, respectively.

way as to be identical to ¥, in the reactants’ valley and to be
a constant, namely the value of ¥, ats®(p) in the products’
valley. Similarly, ¥} is defined at each p to be ¥ in the
products’ valley and to be V(s®, p) in the reactants’ valley.
That is,

Vuls,p) s<s(p)
1 =
kel = [Va(sb,p) s> (o)’ 217
Similarly for ¥ (s, p) we have
Vsls,p) s>5°(p)
1 _ 8
Vebip) = [V,,(s", P s <ol 218

The reactive part of the potential ¥ J( p,s) is then given
by ,

Vi=v,—Vi li=aB) (2.19)
V1 vanishes for s<s*(p), for all p, and V5 vanishes for
s>s( p) for all p. Equation (2.16) then reducesto

T =L°° do @5, Pl 5( )

x [ ds Vi pesien. (220
< (o}

iHl. APPLICATION TO | 4+ HI AND Cl + HBr SYSTEMS

The major part of the contribution to the integral above
comes from a narrow range of values of p near the classical
turning point. We shall therefore approximate thé solution
of Eq. (2.14) by the solution of the equivalent equation in
which the potential (E — ¢}, wherei =a, fandj=n, m, is
linearized around the classncal turning point (o) and g, for
the reactants’ and products’ channels, respectively):

(E—~e)=(p—pa)Fus
(3.1)

(E—€h)=(p —pn)Fm
The F,’s are the derivatives of E — ¢ with respect top at the
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turning point p{. That is,'®
@2 = (2/B,)* Ai[ = B,(p —p3)],

(3.2)
@58 = (2/B,)""* Ai[ — B,.(p —pm)],
where B, = (2F})'/* and Ai is the Airy function.
The reaction probability is given by
P = [27T% ] (3.3)
2 [
T = ———J Ai[ — -p°
=Ty ). Pl Enlp=pull
X Ai[ — B,(p —p3)} Ln ds xa(s, p)
X [Vals: p) = Vals, p))x(s; p)- (3.4)
The integral over s in Eq. (3.4),
Vit = [ dalsplVatsp)
— Vils. p)]xals, pMs (3.5)

was evaluated numerically. The eigenfunctions y2 and 4, of
Eq. (2.13) were also evaluated numerically using a finite ele-
ment method.?® Since V2, is approximately an exponential
function of p in the region around the turning points, the
region making the principal contribution to the integral, it

logy Pho

=I0 1 | 2 | 2 l
6 8 10 12

Total Energy (Kcal/mol)

FIG. 3. Log P&, vs total energy for the I + HI — IH + I system. The cir-
cles denote the results given by Eq. (3.3) and the solid line represents the
results of the numerical solution of the two-state problem.

3865

can be written as

paB o y0 o= P—ed . (3.6)
where V2, is the value of V2 (p) at the “average” turning
point p3 halfway between the turning points p§ and p§. The
slopes F,, and F, for each of the present systems are almost
identical

F,=F,=F, B,=B,=28.
Equation (3.4) can then be written as

(3.7)

. 2y° o
rog 2V m o | Ai[ —B(p—pf)]e” %~
XAi[ — B(p —pb)]dp, 3.8)
which can readily be evaluated analytically'” to yield
Ve e A?
a8 - = - —) 39
wm = 2weF)"? exP( 24F)°XP( 2cF) (9

Here, 4 is the value of ¥'%(p) — V4,( p) at pg. More details
on the (3.8) integral evaluation are given in Ref. 19, Sec. V. In
the case of symmetric H-atom exchange between the same
vibrational states the same formula applies with 4 = 0 and,
then Eq. (3.7) is exact. In the case when states n and m are far
from being degenerate, the integral in Eq. (3.4) can also be
readily evaluated analytically using a slightly different pro-
cedure.?®

The forward and the reverse transition probabilities
P2=58 and P52 obtained from Eq. (3.8) areslightly differ-
ent due to the lack of symmetry in the approximate Eq. (3.3).
The mean of the forward and reverse probabilities P25, and
P52 was found to give amore accurate approximation to the
transition probability than either P25, or P75, alone and is
used below in the comparison of the results. Due to the close-
ness of the P22 and P#2 results the particular form of the

0

loge P

'8 ! L 1
8 9 10 I

Total Energy (Keal/mol)

FIG. 4. Log P&, vs total energy for the C1 + HBr — CIH + Br system. The

circles denote the results given by Eq. (3.3) and the solid line represents the
results of an accurate coupled channel numerical solution of the problem.
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mean used (geometric or arithmetic) did not influence the
result significantly.

Equation (3.8) was used to calculate the probabilities for
H-atom transfer in two different collinear systems:
I+ HI — IH + I and Cl + HBr — CIH + Br for which ac-
curate numerical solutions of the two-state problem are
available.?

The transition probabilities obtained by using Eq. {3.8)
are presented in Figs. 3 and 4 as a function of the total energy

for the IHI and CIHBr systems, respectively. The results of .

an accurate numerical coupled channel solution of the
CIHBr problem?® are also given for comparison in Fig. 4.
The results for the IHI system in Fig. 3 are compared with
the results of an accurate numerical solution of the two-state
problem.'® The latter have been shown'®-?” to be in excellent
agreement with the coupled channel results on a slightly dif-
ferent potential energy surface for the reaction for which
accurate coupled channel calculations have been per-
formed.?’

IV. DISCUSSION

The results presented in the preceding section demon-
strate that the present simplified DWBA treatment leads to
very accurate results for the reactive transition probabilities
below the classical threshold. As discussed in Ref. 20 such
accuracy in the threshold region is sufficient to determine
the reaction rates at low and normal temperatures for the
reactions tested as well as to explain curvature of the Arr-
henius plots for H-transfer reaction at low tempera-

tures. 15,16,28
The present treatment is conceptually simpler than the

one we devised in Refs. 19-21 since it follows a very straight-
forward formulation of the DWBA distorted wave functions
and interaction potentials. It is also computationally simpler
since it does not involve evaluation of eigenfunctions of dou-
ble minimum potentials. Although the eigenfunctions of the
one-dimensional anharmonic potentials are evaluated in the
present work numerically, approximate analytical proce-
dures for their evaluation can also be devised.

The validity of the present method is restricted to light
atom transfer reactions with moderate to high potential en-
ergy barriers to the reaction. The present formalism hinges
on the possibility of defining separate vibrational states for
the reactants and the products, and cannot be implemented
if the barrier is not appreciably larger than the zero-point
vibrational energy of the reactants. The systems to which the
present formalism does apply are the ones for which the tun-
neling contribution to the reaction rate is significant and for
which the DWBA transition probabilities around the reac-
tion threshold determine the thermal reaction rates.

The formalism presented here is not restricted to trans-

fer between nearly degenerate vibrational states, since no
such assumption is used in the derivation. Comparisons with
accurate numerical results are, however, presented only for
nearly degenerate and degenerate systems due to the pauclty
or absence of accurate results for other systems.
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