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A uniform semiclassical expression for the eigenvalues of a one dimensional periodic Schrédinger
equation with nonperiodic boundary conditions has been derived. The potential energy function
can have any number of symmetric or asymmetric barriers and wells. The treatment is uniform in
that the classical turning points can come close together, coalesce, and move into the complex
plane as the energy passes through a barrier maximum. A detailed application is made to Mathieu
functions of integer order; the equations themselves include the case of fractional order.
Approximate semiclassical expressions are derived for the widths of the energy bands and the
energy gaps of the periodic Mathieu equation when these quantities are small. The semiclassical
results givc a physical interpretation to formulas prwent in the mathematical literature and to the
decrease in the splitting of a sequence of avoided crossings with increasing quantum numbers in
coupled oscillator systems. Numerical calculatlons are reported to illustrate the high accuracy of

the semiclassical formulas.

1. INTRODUCTION

The purpose of this article is to use uniform semiclassi-
cal techniques to study the eigenvalues of the one dimension-
al Schridinger equation:

7 d?
—_— -V =0 .
E e+ E-vie)| wee) (L)
when the potential energy function ¥ (@)is a periodic, analyt-
ic function of 6, with period 2m:
V(0 +2m)=V(6). (1.2)

The boundary condition for the wave function is taken in the
form

V(6 + 2m) = exp(2noi)¥ (0), (1.3)
where o is real. Note that although V'(0) is periodic, the
boundary condition for ¥(@) is nonperiodic, unless
exp(2roi) = 1.

The existence of a wave function satisfying the bound-
ary condition (1.3) is a general result that follows from an
application of Floquet’s theorem to Hill’s equation,'” of
which the one dimensional Schrédinger equation with a pe-
riodic potential i3 a special case. For Eq. (1.1), Floguet’s
theorem states that there exists a particular solution which
can be written in the product form'-’

¥(9) = explic®)P(0), (1.4)

where P(0 + 27) = P(6)isperiodicin fand oiseither realor
complex. The boundary condition (1.3) then follows immedi-
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ately from Eq. (1.4). We also require that the wave function
¥ (0) is always finite along the 8 axis. This restricts o to real
values and gives rise to gaps in the eigenvalue spectrum.

There are a number of areas in chemical physics that
require a uniform semiclassical solution of Eq. (1.1) subject
to the nonperiodic boundary condition (1.3):

{a) In the theory of coupled anharmonic oscillators,
avoided crossings can occur when eigenvalues are plotted as
a function of a perturbation parameter that couples the vi-
brations.>!' The use of Birkhoff-Gustavson classical per-
turbation theory together with a semiclassical quantization
of the resulting good action-angle variables leads'' to an
eigenvalue problem of the type Eqs. (1.1}1.3). Other theo-
retical treatments of coupled oscillator systems also resultin
similar eigenvalue problems.'%"?

{b) In molecular spectroscopy, the theory of mtemal
rotation'*-'? requires the solution of Eq. (1.1) with the non-
pericdic boundary condition (1.3). In particular, in the “in-
ternal axis method,” coordinates are chosen to minimize or
remove the coupling in the kinetic energy operator between
the internal and overall rotation.'*"'® The coupling still ex-
ists however and is apparent in the boundary condition (1.3).
In the alternative “principal axis method,” periodic solu-
tions of Eq. (1.1) are required.'s-!® Other areas of molecular
spectroscopy in which Egs. {1.1}{1.3) occur are the theory of
nonadiabatic transitions'® and Jahn-Teller molecules.?®

{c) The boundary condition (1.3) is also fundamental in
the band theory of solids where o is usually called the wave
number and Eq. (1.4) represents a Bloch wave.? In band the-
ory, the main problem is to determine the range of £ for
which o is real. These form the energy bands; they are sepa-
rated by the energy gaps where o is complex.

In Sec. II we derive a uniform expression for the eigen-
values of Eq. (1.1) with the boundary condition (1.3) for a
potential with m symmetric or asymmetric barriers and
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wells. The treatment is uniform in the sense that the classical
turning points can come close together and coalesce as the
energy approaches the top of a barrier.?'-** For energies
above the barrier maximum, the turning points move into
the complex @ plane. This is possible because of our assump-
tion that V(@) is analytic in a region around the real & axis.
Although various special aspects of Egs. (1.1}-{1.3) have
been investigated previously by semiclassical tech-
niques, '*2%24-28 the general case has not been treated before
and the present article therefore fills a gap in the literature.

In Sec. II1 we apply the results of Sec. II to the special
case of V(@)= 2gcos26 with the boundary condition
V(0 + 2m) = ¥(0), for which Eq. (1.1) reduces to Mathieu’s
equation.*?>-3 We derive several approximate formulas for
the widths of the energy gaps and the energy bands when
these quantities are small. In Sec. IV we present numerical
tests of the semiclassical formulas.

We shall be particularly interested in the case of small
energy gaps since in a recent theory of avoided crossings of
eigenvalues in coupled oscillator systems, the energy gaps
for the periodic Mathieu equation determine the minimum
separation of these avoided crossings.'® In addition, the se-
miclassical theory allows a physical interpretation in terms
of action integrals for the splitting of the eigenvalues. We
also discuss the concept of “dynamical tunneling” which has
been proposed by Davis and Heller**S to explain nearly
degenerate eigenvalues in coupled oscillator systems. We
also give a physical interpretation to some formulas for the
widths of the energy gaps and bands of the Mathieu equation
that have been reported in the mathematical literature.

Our conclusions are in Sec. V.

Il. UNIFORM SEMICLASSICAL THEORY
A. Introduction

subject to the nonperiodic boundary condition (1.3).

We assume that V(6 ) has m maxima and minima in the
range (0,27). Xf instead V(@) has /n maxima and minima in
{0,a] for @ > 0, then a simple linear transformation will trans-
form the range to (0,2] if necessary. The first two terms of
the Fourier expansion of ¥ (6 ) may have the following form
for example:

V@)=4V,[l—cosimb)]. (2.1)
The potential (2.1) has m symmetric barriers and wells in the
range (0,277}, although our theory can also handle the case of
asymmetric barriers and wells. As an example, Fig. 1 shows
a plot of a symmetric threefold potential with the energy
lying below the barrier maxima.

The derivation presented below is an improved version
of one given sometime ago® but not published then. The use
of matrix techniques leads to an elegant solution of the prob-
lem.?**? Qur derivation is similar to that of Miller** except
that we include a “quantum correction function” ¢ (€) in the
semiclassical analysis and explicitly discuss the role of
Stokes’ points when the energy lies above a barrier maxi-
mum. In Sec. III we will derive formulas in which it is essen-
tial toinclude ¢ in the semiclassical analysis in order to avoid
an infinite divergence at a barrier maximum.

B. Uniform semiclassical wave functions and
elgenvalues

Figure 1 shows there are four classically allowed re-
gions (denoted 1-1V), separated by three identical symmetric
barriers. In each classically allowed region a certain linear
combination of semiclassical wave functions is valid.>’ In
region I we can write

w,(o)~7“%,-z- exp [ —iJ:' k(a')do']

In this section we derive a uniform semiclassical expres- ¥a [ . J"’ o ian a0t
. . v ot . —_— 2.2
sion for the eigenvalues of the Schrédinger equation (1.1) + k()2 P’ A k6')do 22)
v(8) b b, bs
I I I N

FIG. 1. Potential energy function ¥{0)
plotted against 8 for the symmetrical
threefold case. The classical turning
points are denoted by a,,¢,,8,,6219:.¢5. The
€ positions of the barrier maxima are de-
g9 G aQ G a4 Cq noted &,,5,,b, and the positions of the po-

tential minima d,,d,.dy.

dy da
1
) 2
6/rad
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and in region II,

s!q,(ea)-.;-é;-")ﬂT exp [— ifk(e') da']

5097

The first problem in the semiclassical theory is to con-
nect the coefficients ¥, and ¥, in region I with the coefficients
7, and ¥, in region II. To do this we use semiclassical para-
bolic connection formulas for a barrier,?"-** because the re-

¥s . " ame sulting wave function is then uniformly valid as the energy
+ k(0)'? exp [‘fk(o )6 ]’ (2.3) crosses the barrier maxima.
' If we write

where v v

3 1
k(@)= [2m[E — V(6)])'/*/% (24) (7,4) =C (n) ’ 2.5)

is the local wave number. then the connection matrix C is given by*'2
J
— i exp{ — me)

C= ([1 + exp| — 27€)]'/? exp( — ig)
- i exp( — me)

where e is the action integral for the barrier

Te= _if' k(0)d6 @7

- - f k()] d6 when V(d)<E<V(b), 28)
and ¢ (€) is the quantum correction function
=€+ argl‘(%+ ie) — € Inje|

=—¢(—¢.

The branch of k () in Eq. {2.7) is chosen so that € <0 when
E < V|b,), where b, is the position of the barrier maximum.
InEqgs. (2.2)and (2.3), thebranch of k (€) isselected sothatthe
action integrals are always positive. In Eq. (2.9) the branch of
arg I'"(} + i€) is not necessarily the principal one rather it is
chosen so that § (€}—»0ase— + oo with the requirement that
¢ (€) is a continuous function of €.

The next step is to write the action integrals in Eq. (2.3)
in terms of the turning point a, associated with the second
barrier in Fig. 1. We have

w,.(o)~-k-(%‘),7exp [ if’kw') do']

¢l (2.9)

+_7’5_exp[_:J:'k(a')do'], (2.10)

k(o)llz
where
)1 =B("), 2.11
(Yi) (7'4) ‘ )
with
e 0
and
a=r'k(a)de (2.13)

is the action integral for the well.

Next we use the connection equations (2.5) and (2.6) to
find the form of the semiclassical wave function in region III;
asecond application of this procedure then gives us the wave
function in region IV. If we write

(1 + exp{ — 2me)] /2 explid)

) ] (2.6)

W,v(9)~-;(—;§)—”—zexp [ -irk(a') da']

Y- : ' ' \
+ro';lﬁ-§xp[1J:k(0)d0], (2.14)
then we find ¥, and ¥, are related to ¥, and ¥, by
(7'7) = CBCBC (";) . 2.15)
Vs Y-
Next we impose the boundary condition
¥ (2m) = exp{2moi)¥ (0) {2.16)

on the semiclassical wave functions (2.2) and (2.14) and de-
duce that the boundary condition can be written in the form

Y7\ _ 1[N
(7’3) = exp(2wai)B~" (n) , 2.17)
which becomes
[CBCBC — exp(2moi)B~"] (;:;) =0 (2.18)

using Eq. (2.15).
Equation (2.18) has nontrivial solutions for ¥, and 7,
only if

det|CBCBC — exp(270i)B~'| =0, ©(2.19)
which can be written in the alternative form
det|(CB)® — exp(2moi)l| =0 (2.20)

since det|B| = 1.

Equation (2.20) determines the eigenvalues for the
threefold symmetric potential in Fig. 1. However the deriva-
tion does not require that each barrier be symmetric about its
maximum and Eq. (2.20}is also valid for asymmetric barriers
provided the potential still has a periodicity of 27/3.

For a potential of periodicity 27/m the generalization
of Eq. (2.20) is

det|(CB)™ — exp(27oi)l| = 0. (2.21)
If the potential has m different barriers and wells but has
only a periodicity of 27, then the eigenvalue equation is

det|(CB),(CB),...(CB),, — exp(27ai)l| =0 (2.22)
with a different €;, @, for each barrier and well, respectively.

The derivation so far has been restricted to cases where
the energy lies below the maxima of all the barriers. How-

J. Chem. Phys., Vol. 80, No. 10, 15 May 1984

B




5098 Connor 6! a/.: Eigenvalues of the Schradinger equation

Img

FIG. 2. Complex turning points a,,

N el =athaycy =a})as eyl = al)

in the corplex & plane for a three-

fold asymmetric potential function

V (8)whentheenergylicsabovethe

barrier maxima. The branch cuts

s associated with e, i=1,2,3 are
3 denoted by a wavy line (A~} and

ever, the derived formulas remain valid when the energy is
above the maxima of some or all of the barriers, provided we
make certain modifications.

Consider the m = 3 fold symmetric potential in Fig. 1
again. When E lies above ¥/ (b,), the turning points move into
the complex & plane with a; = c?. The definition (2.7) for me
remains valid with the branch of k (#) chosen so that €> 0.
For the action integral e, the integration limits are now the
Stokes’ points 5, and s, (see Fig. 2). However for a symmetric
barrier s, coincides with b, the position of the barrier maxi-
mum, and we can write (see Fig. 1).

a-—:rk(ﬁ)d& E> V(b,) (symmetric barrier).
(Y
(2.23)

For an asymmetric barrier, this is no longer true and we
must write instead (see Fig. 2)

a,=rk(0)d8, E>V(b), and E>V(by).
) (2.24)

In applications, Eq. (2.24) requires the numerical evaluation
of 5, and s,. To avoid having to calculate these quantities, it is
convenient to exploit the fact that, by definition,?%4! the ac-
tion integral is pure imaginary along a Stokes’ line; @, can
then be calculated from

a,=Ref'k(6)de, EsV(b,), and EaVF(b,).
' (2.25)

Equation (2.25) is also valid when one of the turning points is
real and the other one is complex. This situation occurs for
example if E < V' (b,) and E> V (b,).

It is also necessary to remember that the general for-

mula (2.22) assumes that parabolic connection formulas?®'-?

R by,b,,b;, are the positions of the
ed barrier maxima. The Stokes' lines
joining the complex turning points
are indicated by a solid line (—)
and cross the Re @ axis at 5,,5,,5,.
For a symmetric threefold barrier
$1482,83 coincide with b;,0,,5,, re-
spectively.

can be applied to each barrier at a given eigenenergy. In some
applications, the minimum of one well may lie above the
maximum of one or more of the other barriers. In this cir-
cumstance, Eq. (2.22) may not be valid and it may be neces-
sary to use a different kind of connection formula in the
analysis. For example, parabolic connection formulas for a
well may be appropriate?'*® if it is necessary to account for
the coalescence of the turning points associated with the
well.

C. Uniform semiclassical eigenvalues for a potentiat of
periodicity 27/m

The formula (2.22) for the energy eigenvalues of a gen-
eral asymmetric potential cannot be further simplified.
When the potential possesses some symmetry however, ad-
ditional simplifications may be possible. We shall now con-
sider the case of a potential of periodicity 27/m as this case
often arises in applications.

Since det|C| = det|B| = 1, it is straightforward to de-
duce that det|(CB)™| = 1, and that Eq. (2.21) is equivalent to

Tr[(CB)™] = 2 cos(2mo), (2.26)
where Tr denotes the trace of a matrix. Now a trace is invar-
iant under a similarity transformation U:

Tr[(CB)"] = Tr[(UCBU"Y)"], (2.27)
and if U is chosen so that UCBU ™' is diagonal, then the
diagonal elements of UCBU ™" are equal to the eigenvalues
of CB. To find the eigenvalues of CB, we solve the equation

detjCB—11| =0, (2.28)
obtaining from the characteristic equation for 4 the eigen-
values

Ay =exp{ £ iy), (2.29)
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where
cos y = [1 + exp( — 2me)])' cosla — 4) . (2.30)
We then have
Tr[(CBy"] =47 +47 (2.31)
or using Eq. (2.29):
Tr[(CB)™] =2 cos{my) . (2.32)

Finally, equating Egs. (2.26) and (2.32), we obtain the
uniform semiclassical quantization condition for a potential
of periodicity 27/m:

(1 + exp — 27€)]*/2 cosla — ¢ ) = cos[2n{j — a)/m] ,

(2.33)

where j =0, + 1, + 2,... . Equation (2.33) is the main result
of this subsection.

For special values of o and m, the general result (2.33)
reduces to formulas that have been reported in the literature.
For m =3 and o =} [so that ¥ (@ +27)= — v (6)), Eq.
(2.33) is equivalent to the result of Karkach and Osherov
[Eq. (35) of Ref. 20]. Karkach er al.'” have also studied the
caseo = } for the potential V() = (B + cos 20)%and foren-
ergies near the the maxima of the four barriers of V(6 ), their
quantization condition [Eq. (26) of Ref. 19]is a special case of
the more general formual (2.22). Whenm = 3and o = 0, Eq.
(2.33) reduces to the equation used in Ref. 25 to study the
torsional vibrational energy levels of acetaldehyde. For
m = 2 and o = 0, Eq. (2.33) is equivalent to the semiclassical
quantization condition applied in Ref. 39 to the energy levels
of a rigid asymmetric rotor. Finally when m = 1, so that the
potential has a single barrier per 27, we obtain the first order
dispersion formula derived by Froman [Eq. (40) of Ref. 26]
using phase integral methods.

Various other more approximate formulas in the litera-
ture'®13:2440 can be obtained from Eq. (2.33) by setting ¢ =0.
However, the definition of ¢ (¢) [Eq. (2.9)] shows that é (¢} is
not identically zero except for € =0 and € = + . The
quantum correction function ¢ (€) is important for energies
near the top of the barrier because it cancels a logarithmic
singularity in the action integral a.2%4!

It is interesting to note that in the related problems of
orbiting collisions in elastic scattering **4'4? and for the
eigenvalues of a double well potential,*’ ¢ is related to the
action integral @ in the combination a — i¢ rather than
a — ¢ as is the case here. This illustrates that it is not
straightforward to “‘guess” the quantization rule (2.33) by
examining results for related problems or even by consider-
ing formulas for special values of m and o which have ¢ =0.
The reason why a — ¢ occurs in Eq. (2.33) is that a receives
singular contributions from two barrier maxima unlike the
orbiting and double well problems where just a single barrier
maximum contributes to the singularity in a.

1il. EXAMPLE: THE MATHIEU EQUATION
A. Introduction

In this section we apply the general uniform semiclassi-
cal quantization formula (2.33) to the special case of Math-
jeu’s equation. Mathieu’s equation is obtained from Eq. (1.1)
by setting #i = 1, m = } and choosing ¥ () = 2g cos 20 with

5099

¢>0so that V(@) has two barriers in (0,27]. We then have
d*v
dé?
where E has also been replaced by a so as to obtain the ca-

nonical form of Mathieu’s equation.?® The boundary condi-
tion is taken to be

WO +2m)=¥(0). (3.2)

Solutions of Eq. (3.1) with this boundary condition are usual-
ly denoted ce, (8), n = 0,1,2,... and se,, (0 ), n = 1,2,3,... with
eigenvalues @, and b,, respectively.?’ Note that we could
have used the alternative boundary condition

w6 +7)=+¥0),

for which the Mathieu potential has one barrier per period .

Physically, Mathieu’s equation corresponds to a plane
pendulum in quantum mechanics.** With the more general
boundary condition (1.3), it also arises in many other differ-
ent areas of physics and chemistry including: theories of
avoided crossings'’ and local mode behavior'? of coupled
oscillator systems (see also Ref. 45), band theory,?¢-264¢
problems involving hindered rotations,'*-'**’ field theory,*®
soliton free energies,*® atoms and molecules in external
fields, as well as in other problems.*

Mathematically, the Mathieu equation has been well
studied.?®? Nevertheless, there are still interesting features
to be learned from it as we demonstrate below. In particular
for the boundary condition (3.2) we derive semiclassical for-
mulas for the widths of the energy gaps (corresponding to a/
g>1) and for the widths of the energy bands {a/g<!) when
both these quantities are small. This also allows us to give a
physical interpretation to some formulas in the mathemat-
ical literature. In addition, we present in Sec. I'V a numerical
test of the accuracy of the various semiclassical formulas.

(3.1)

+(a—2qoos29)ll’=0,

B. Semiclassical theory

Setting m = 2, o = 0 in Eq. (2.33) gives

cosla — @)= + [1 + exp{ — 2me)]~*/? (3.3)
as the uniform semiclassical quantization condition that de-
termines the width of the energy bands (and hence the width
of the energy gaps). Equation (3.3) can also be written in the
alternative form?®

a — ¢ = (m — §)m + tan~ '[exp(me)},

m=123,.., (3:4)
where the plus (minus) sign determines the upper (lower)
edge of the mth band and the arctangent takes its principal
value. In conventional Mathieu notation the width of the
mth band is obtained from b,, —a,, _,.

The mth gap is defined as the difference between the
energy of the lower edge of the (m + 1)th band and the upper
edge of the mth band. With the help of the identity

tan~'[exp( — 7e)] + tan~ '[exp(me)] = 7/2,
we obtain

a — ¢ = m + tan~'[exp( — 7e)] ,

m=123,.., (3.5
where the plus (minus) sign determines the upper (lower)
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edge of the mth gap. The width of the mth gap is given by
a,, — b,, in conventional Mathieu notation.

Next we consider the case of narrow energy bands.
Equation (3.4) shows that the energy of the center of the band
is given approximately by?¢

a—-¢=m—Yr, m=123,.. (3.6)
Equation (3.6) is a Bohr—Sommerfeld quantization condi-
tion, modified by the presence of the quantum correction
function ¢. If the energy is well below the barrier maximum,
¢ can be neglected and we have simply

a=(m—Yhr, m=123,.. (3.7)
We now expand @ — ¢ in Eq. (3.4) to first order’>*®

about the energy of the center of the band, (which will be
denoted °E, ), obtaining for the width of the band °4,,:

SAWE, )= }';ME—Z,I,,_.;;; tan~' {exp[7€(’E, )]},

m=123,.., (3.8)
where

a=a—4¢. (3.9)

Equation (3.8) is valid for energies below, at, or above the top
of the barrier, provide the bandwidth remains narrow. At
the barrier maximum da/dE is infinite, but this singularity is
exactly cancelled by one in d¢ /dE, with the result that da/
dE is finite. The quantity d¢ /dE is related to the digamma
function ¢{z) by*!

dg Lefn — [ — Inje| + Re gf} + i€)] .3_; (3.10)

If we approximate the tan—" x factor in Eq. (3.8) by the
first term of its Taylor series expansion when x < 1 we obtain

2 =
——————ex E.)].
da/dE | ;v exp[melE)]
m=123,.. (3.11)

When the energy of the center of the band lies well below the
barrier maximum, wecan neglect thedg /dE term, obtaining
from Eq. (3.8):

‘48U, ) =

=
24 0, ) = 2P En) ton—+(exp[ 7B, )]
m=123,.., (3.12)
where da/dE = 7/#iw and
* dé
= L 3.13
olE) ﬂ'ﬁ/[mfk(a) (3.13)

is the classical angular frequency of oscillation between c,
and a, (or ¢, and a,). If we again approximate the tan™ !term
in Eq. (3.12) we get

_
490, =22 expl et En]

m=123,.. (3.14)

It is interesting to compare the bandwidth (3.14) with the
semiclassical expression for the splitting of the energy levels
of a symmetric double well potential,”* which is (fiw/
) expime). The extra factor of 2 in Eq. (3.14) can be under-
stood physically in that the particle can tunnel in either di-

rection for the Mathieu potential whereas in the double well
problem it can only tunnel in one direction (namely to the
other well).

We now derive a similar set of semiclassical formulas to
those just given but for the case of narrow energy gaps. From
Eq. (3.5), the energy of the center of the gap is given approxi-
mately by?®

a—¢=mm, (3.15)
This is a modified Bohr-Sommerfeld quantization condition
analogous to Eq. (3.6). If we neglect ¢, which is permissible
for energies well above the barrier maxima we obtain

a=mr, m=123,... {3.16)
Notice that for the case of narrow energy bands, the quanti-
zation formulas (3.6) and (3.7) have {m — }}7 on their right-
hand sides, as is appropriate for vibrational motions, where-
as for narrow energy gaps, mm occurs, as is expected for
rotational problems without real classical turning points.

Expanding @ — ¢ to first order about the energy of the
center of the gap °E,,, we then obtain for the gap width 24,

2
da/dE |, .

m=123,...

"4 VEE, )= tan~'{exp[ — me(°E,.)]} ,

m=123,. (3.17)
and approximating the tan—' term gives

SARE,) = exp [ — metE,,)] ,

da/dE |
m=123,.. {3.18)
Equations (3.17) and (3.18) are valid at the barrier maxima if
the gap width is sufficiently narrow.
When ¢E,, is well above the barrier maxima so thatd¢ /

dE can be neglected, we obtain equations analogous to Egs.
(3.12) and (3.14), namely,

*AVE,)= E’z‘—)g@ tan~'{exp[ — 7e’E,,)]}
m=123,. (3.19)
and
¢4 W¢E,,) = %’"—) exp [ — 7e(°E,,)] .
m=123,..., (3.20)
where
w(E]=1rﬁ/[mf -&%}. (3.21)

Alternatively, Eqgs. (3.19) and (3.20) can be written in terms
of the time ¢ (E ) for the particle to cross one period 7 of the
potentialsince? (E ) = 7r/w(E ). Equations(3.16)and(3.20)are
equivalent to the formulas derived by Dykhne.** Notice that
in the expressions for %A ‘?(E ) and 24 ' (E ) it is necessary to
specify the energy E to be used for their evaluation. The
derivation presented above corresponds to the choice
E=*E, orE=%E,.

The derivation given in this section has not used any
specific  properties of the Mathieu potential
V() = 2g cos 26; the equations are in fact valid for any po-
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tential with one barrier per period 7. Another interesting
point concerns Eq. (3.20) which shows the gap widths be-
come exponentially small as SE  increases. It is known that
this is a general result>* which follows from our assumption
that ¥ (@) is an analytic function of 6 in a region around the
Re 8 axis.

C. Use of elliptic Integrals in the semiclassical formulas
for Mathieu's equation

We now apply the semiclassical formulas derived in
Sec. I1I B to the special case of Mathieu’s equation (3.1). In
particular we express the action integrals and their deriva-
tives in terms of complete elliptic integrals of the first and
second kinds X {k )and E (k ), respectively, where k is the mo-
dulus. We use the notation of Byrd and Friedman® rather
than the alternative notation of Milne~-Thomson.* By using
elliptic integrals we can exploit the considerable body of the-
ory that exists for these functions.** In addition, it is easy to
perform numerical calculations since efficient subroutines
areavailablefor the evaluation of K (k ) and E (k )in most pro-
gram libraries.

It is convenient in the numerical calculations to have
the modulus k of the elliptic integrals satisfy 0 <k < 1. This
requires that we distinguish between the case of real turning
points ( — 29<a<2g) and complex turning points (a> 2g).
Notice that when a > 24, a convenient alternative form for
the action integral a is

+ 7
a=f k(6')d6’,
8

see also Eq. {3.21).

The derivation of a, 7€, da/da, d (w€)/da in terms of
K (k)and E (k )is generally straightforward*® so wejust quote
the final results.
(a) When — 2¢<a<2g,

o=t [5((222)"
a2

(3.22)

(3.23)
(54
- (Z2=) e ((22) )],
(3.24)
S o
o ) o
{b) When a > 2g,
a=2(‘a+2q)"25(( i"zq)m), (3.27)

me=2a+ 24)”’[K ((——Z)) ~E ((:_;%)m():;]z'tz)
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% e lzq)l/z K ((a fzq)m) , (3.29)
—_— 172

d,(;:) = @+ lzq)llz K ((: " 22;) ) . (3.30)

It can be checked using the identities in Ref. 55 together
with the fact that k is allowed to take any real or complex
value that the equations for a > 2¢ can be obtained directly
from those for — 2¢<a<2g.

D. Narrow bandwidths and gaps for Mathleu’s equation

When — 2g <a < 2q and a/g<], the energy bands are
very narrow and Eq. (3.14) is valid. Similarly for a/g» 1 the
energy gaps are very narrow and Eq. (3.20) applies. The exis-
tence of narrow energy bands and gaps is also readily appar-
ent from an inspection of the stability diagram for Mathieu’s
equation.>”*® We now show that the semiclassical equations
derived in Sec. III B are asymptotically equivalent to some
results reported in the mathematical literature. This gives a
physical interpretation to these mathematical results which
apparently has not been done before.

First we consider Eqgs. (3.7) and (3.23) for the energy of
the center of a narrow band. If we write for the Bohr-Som-
merfeld energy

G = —29+8,, m=123,.., (3.31)

then we can expand E (k ) and X (k) for small & using the ex-
pansions®*

E(k)=4m(1 — }k*) + Ok *), (3.32)
K(k) =yl + 1) + Ok %), ’
We then find that

G~ -2+ 4(m - %) @, m=123,.. (3.33)

or recognizing thata,, _,, b,,.and ‘G5’ areall asymptotical-
ly equal, since the bandwidth is exponentially small, we can
write
0GB by ~ By~ — 29+ Hm — 1) g',
m=123,... (3.34)

Equation (3.34) agrees with the rigorous mathematical re-
sult.5%% Physically, the Bohr-Sommerfeld quantization
condition (3.7) corresponds to vibrational motion in either of
the two wells of the Mathieu potential and Eq. (3.34) can be
recognized as the harmonic oscillator result.
Next we consider the semiclassical formula (3.14) for
the width of a narrow band. If we substitute ‘@n’
= — 29 + 4{m — })g'/*into the integral 7¢, then we can use
the following expansions®® in Eq. (3.24):

E(k)=1+[In(@d/k)—}1k*+ Ok*), (3.35)

K(k')=In(d/k) + }(In(4/k) — 1]k 2 + O{k*), (3.36)
where

k'= (l - kZ)llz

is the complementary modulus. We then obtain for the
asymptotic semiclassical bandwidth the formula
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4 l:'\m= 24m+13 exp(m -i_' 4q”2) q;m-u’
mim — "1

m=123,.. (3.37)
Meixner and Schiifke®' and Blanch®? quote without proof
the following rigorous asymptotic mathematical expression
for the bandwidth:

21/2 exp( — 4ql/2)
bA:=24m+l m+|,
2m — 1)! ¢

m=123,.. (3.38)
It should be noted however that Eq. (3.38) is actually due to
Goldstein. % If we use Stirling’s form®® of Stirling’s ap-
proximation

(m — )i~ (2m)"*m — )"~ exp[ — (m — §)]

m=123,.., (3.39)
we see that Eq. (3.37)is obtained. The approximation (3.39) is
only in error by 7.5% for m = 1 and 2.8% for m = 2. By
comparing Egs. (3.37) and (3.38) we can improve the semi-
classical expression ®4 ¥ so that it gives the correct result for
the Mathieu potential without having to invoke Stirling’s
approximation, namely,
2#w(’E,

DA ‘I:)(bEM) =fm _17'_"')’ eXp[frE(b-E_m)] N

m=12,3,.., (3.40)
where
1/2 —1ym-i
fo=l im0, (34D
e im— 1)l

Itis likely that the result (3.40) can be derived using semiclas-
sical connection formulas for a parabolic well since the cor-
rection factor f,, occurs naturally in that approach.?'3%:6667

We now consider the case of narrow energy gaps which
occur for a/g» 1. Notice that this inequality includes g> 1 as
well as the pérturbation limit g—0.

The Bohr-Sommerfeld quantization condition (3.16)
determines the energy @25, of the center of a gap. When
q =0, Eq. (3.16) gives %a% = m?, which is the plane rotor
result and Eq. (3.20) correctly yields ¢4 =0, i.e., there are
no gapsforg = 0.Itisknown that ¥ (9 )=constantisthe only
potential for which this behavior occurs.*® Note that every
energy level is doubly degenerate (except for the ground state
level ap) when ¢ = 0.

For ¢#0, we use the approximation (3.32) for E (k) in
Egs. (3.16) and (3.27) to obtain for the energy of the center of
the gap

GES~m? + 1 ¢/m*, m=123,..
The exact result for m>3 is®

a, ~b, ~m*+1qg/m*—1), m=345,... (343

Thus the semiclassical result makes an error in the denomi-
nator of the second term of Eq. (3.42) where it has m? instead
of m? — 1.

In order to calculate the asymptotic form for the width
of the energy gap ?4 ¥ we need to use the expansions (3.35)
and(3.36)for E (k ')and X (k '}inEq. (3.20). Setting®a®5 = m?,
we then find that

(3.42)
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2 m
94 9o 1’1( eq ) . m=123,.. (3.44)
m \4m?
The rigorous asymptotic mathematical result is™
- F—. R— (i)'", m=123.. (345)
(fm - 1)1)2 \ 4

If we use de Moivre’s form’’ of Stirling’s approximation
(m—=1~2m'"2mm™le~", m=123,..,

we see that 24 ¥ and 4 & are asymptotically equivalent
[note that Eq. (3.44) is also known’” in the mathematical
literature).

Finally we remark that the above equations suggest that
the energy of the center of a narrow band or gap may actually
be displaced from its true position by a large number of
widths. A similar phenomenon occurs in the uniform semi-
classical theory of resonances in molecular orbiting colli-
sions. 1%

E. Discussion

The semiclassical expressions derived in Sec. III B all
involve the two action integrals a, e, and their derivatives.
For narrow energy bands, the uniform semiclassical expla-
nation for the splitting of the energy levels is the convention-
al one of tunneling through a barrier, i.e., the coordinate 8 is
real, the wavenumber k (@ }d6 takes pureimaginary valuesin
the barrier region but 7€ remains real. For energies above the
barrier maxima, the energy gaps arise from above-barrier
reflection. In the uniform semiclassical treatment this is tak-
en into account by allowing 6 to be complex so that we have
two complex conjugate turning points, k (6 }d6 is imaginary
(along a Stokes’ line) and e is again real. The primitive semi-
classical theory as represented by the Bohr-Sommerfeld
quantization formulas only gives the energy for the center of
a band or gap and incorrectly predicts that each level is dou-
bly degenerate.

We consider next the application of these results to the
avoided crossing problem described by two of us and Noid."!
In that problem an avoided crossing of eigenvalues for a two
dimensional coupled oscillator system was generated by (3:1)
Fermi resonance and was analyzed in terms of a Schrodinger
equation involving action angle variables. One of the ac-
tions—the total action—was a constant of the motion. There
remained a one dimensional Schrédinger equation contain-
ing a “slow” angle variable which was equivalent to a Math-
ieu equation of fractional order. Each avoided crossing in-
volved pairs of eigenvalues for which the x and y quantum
numbers n,, and n, respectively, satisfied n = 3n, +n, +2,
where n is an integer and n,,n, =0,1,2,.... Thus, e.g., the
(n,,n,)states (0,3)and (1,0) underwent an avoided crossing as
did the (0,6), (2,0) pair, the (0,9), (3,0) pair, the (1,3), (2,0) pair,
and so on. Each avoided crossing occurred at a different
value of a perturbation parameter A in the Hamiltonian. The
minimum splitting of the avoided crossing was given by
(@,, — b,,)/D, where D i3 a known constant, a,, and b, are
the eigenvalues of Mathieu’s equation of integer order and
m = [n) — n|, i.e., the difference in the n, values of the
pair of eigenstates undergoing the avoided crossing. Equa-
tions (3.44) or (3.45) show that for small g, this splitting de-
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creases rapidly with increasing |n"’ — 2| in a sequence of
pairs, such as (n,,0), (0,37, ).

The above analysis corresponds semiclassically to a
splitting at the avoided crossing due to an “over the barrier”
reflection process. This barrier occurs in the angle variable
and involves semiclassically a path between complex values
of the angle variable but having a real (conjugate) action.
When expressed in terms of the original Cartesian coordi-
nates and momenta of the coupled oscillator Hamiltonian, it
again corresponds, in the first approximation, to an over the
barrier reflection.'! As noted in Ref. 11, each of the primitive
semiclassical states is associated with a particular trajectory
and the two trajectories associated with the quantum me-
chanical avoided crossing can be connected to each other
with the classically forbidden path just described.

Another view of a pair of trajectories connected by a
classically forbidden path is that of Lawton and Child,” who
treated a pair of local mode vibrations of H,0, and found
that these local modes are each associated with a separate
classical trajectory. This pair of trajectories was connected
by a classically forbidden path which involved a tunneling in
Cartesian coordinate space from the cusp of one caustic to a
cusp of the other caustic. The splitting of the local mode
energies was then calculated using the semiclassical formula
for the splitting of the eigenvalues of a symmetric double
well potential.” This phenomenon has been termed “dyna-
mical tunneling” by Davis and Heller*** in that there is no
energy barrier between the two trajectories arising from the
original potential surface, rather a (dynamical) barrier is gen-
erated by the existence of certain variables which are approx-
imately constants of the motion. Although Lawton and
Child calculated the splitting of the two states using an ap-
proximate cusp-to-cusp (double well) tunneling path, Sibert
et al.'? were able to calculate the splitting using an over-the-
barrier reflection model in which the barrier was along some

5103

angle coordinate. Thus it is quite possible that in our case
also, a cusp-to-cusp (double well) tunneling path may be
found to explain the splitting even though the approximate
theory of Ref. 11 involves a classically forbidden over-the-
barrier reflection path.

Finally we remark that the present semiclassical analy-
sis for Mathieu functions of integer order is easily extended
to functions of fractional order of the kind used in Ref. 11 by
solving the general equation (2.33) with g#0. It is also
straightforward to derive formulas corresponding to °4 !
and 4 'Y for the case 07#0.

IV. NUMERICAL CALCULATIONS AND RESULTS
A. Introduction

The formulas we derived in Sec. III do not have error
bounds associated with them. It is therefore important to
carry out numerical computations to assess their validity.
The results we present below are for ¢ = 4 since this case has
also been investigated by Froman?®?? using higher order
phase integral techniques.

B. Computational methods

Thecompleteellipticintegrals X (k )and E (k ) wereeval-
uated by Gauss-Mehler quadrature.’® For 0<e<5.0,
arg I'(} + ie) was calculated from the expansion™

g P+ = e + 3 [ &~ ("ii)L’n

where ¢{}) = — ¥ — 2 In 2 and y is Euler’s constant.” For
€>5.0 we evaluated the quantum correction function ¢ ()
directly from its three term asymptotic expansion.*!

Equation (3.10) shows that we must also calculate
Re ¥} + ie) in order to determine d¢ /da. We used the fol-
lowing expansion™:

TABLE I. Exact eigenvalues g for the Mathieu equation with ¢ = 4. Approximate results are shown as ratios of the exact values, g™ is the uniform
semiclassical eigenvalue from Eqs. (3.4) or (3.5). 4™ is obtained from the same equations but with ¢ =0. The quantity 3 is the average of the exact eigenvalues

for narrow energy bands or narrow energy gaps. 355

is the Bohr-Sommerfeld semiclassical average energy calculated from Eq. (3.6) for narrow bands or Eq.

(3.15) for narrow energy gaps. > is obtained from the same equations but with ¢ ==0. The asymptotic average energies & are given by Eq. (3.34) or (3.42).

The dashed line indicates the top of the barrier at 2¢ = 8.

Band

edge a a=*/a a/a a a*/a /3 @*E 06 /@

i mE @@ omoomom U

by 2.746 881 03 1029 1085 : : X . _ )
B T et i et

a, 10.671 027 10 1.008 0.991 9.9662  1.008 0.983 1.023 0.999 0.992

51 :::2:: g;:: :? :gg: g:g:; 165509 1004 0597 1004 0998 099

PEE 2B o wow e
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a 49.167 082 82 1.001 1.000 49.1671 1001 1.000 1.001 1.000 1.000
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@ 2
Re g} + ie) = gf) + € ..2.:. o 1" 61)’;"‘;"; - 4.2)

This expansion can be obtained from the duplication for-
mula for the digamma function

Y2 =1d2) +idz+)) +In2,
with z =} + /€, together with the result’

Rey(l +iy)= —y +)* fjl n='n? 450"

C. Resuits

Table I shows our results for the first 17 eigenvalues of
the Mathieu equation when ¢ = 4. The accurate eigenvalues
a are from Ref. 76. Ten figure accuracy is necessary to calcu-
late the widths a,, — b,, of the small gaps. Notice that for
a; — b, we are only able to calculate the gap width to two
figure accuracy.

The uniform semiclassical eigenvalues obtained from
Egs. (3.4) or (3.5) are denoted by a™*, or by = when we put
¢ =0. The semiclassical expressions for the widths of the
bands 4, i = 1,2,3,4,5 and the gaps 4, i = 1,2,3,4 re-
quire that we specify an energy for the center of a band or gap
as appropriate. For g, a**, a* this energy was obtained by
taking the mean of the neighboring eigenvalues. These aver-
aged energies are denoted @, @**, @*, respectively. The aver-
age energy obtained from the Bohr-Sommerfeld quantiza-
tion formulas (3.6) or (3.15) is denoted @ or 3*° when ¢ =0.
Finally the asymptotic energies (3.34) or (3.42) are denoted
3=, A superscript “b " or “‘g” is added when it is necessary to
distinguish between a band and a gap.

Table I shows that generally all the semiclassical results
agree well with the exact ones. In particular a** agrees with
the exact 2 to within 4%, or much better than this. Notice

TABLE II. Exact and approximate widths of narrow energy bands for the
Mathieu equation with ¢ = 4. The exact widths are denoted by °4,,. Ap-
proximate results are shown as ratios of the accurate values. Thenumbersin
parentheses are the power of ten by which the entry must be multiplied. The
superscripts 1, 2, 3, 4, § refer to Eqs. (3.8), (3.11), (3.12), (3.14), (3.40), re-
spectively, while %4 ' and *4 € are given by Egs. (3.37) and (3.38), respec-
tively.

Mean cigenvalue

Ratio 3. g a= ad i
m=1 4, =b,—a,=2.1336{ - 2)
4004, 0.889 0928 0957 0928 0957
sAR14, 0889 0928 0957 0928 0957
2404, 0894 0933 0963 0934  0.963
A1/, 0894 0933 0963 0934 0963
24024, 0961 1003 1035 1004 1035
548754, = 1.138 sAWm/b4, = 1.056
m=2 84, = b, —a, = 4.2887(— 1)
44744, 0941 0972 1024 0966 1015
sA0/4, 0944 0976 1028 0969  1.020
540144, 0968 1001 1055 099 1046
410704, 0971 1005 1059 0998 1051
sa /04, 0998 1032 1088 1025  1.080

SA5/04, = 1808 A ePA, = 1,759

that 4™ is more accurate than a* in the neighborhood of the
barrier maximum, thereby illustrating the utility of the
quantum correction function ¢. At higher values of m, a*
becomes more accurate than 2** although the error in ¢* is
only 0.1%. This behavior is a consequence of the parabolic
barrier comparison equation used for the calculation of 4.
The assumption of an approximately parabolic potential be-
comes less valid as the complex turning points move far into
the complex & plane. For the average energy of a gap all
methods are in close agreement with the exact 4. For the case

TABLE III. Exact and approximate widths of narrow energy gaps for the
Mathieu equation with ¢ = 4, The exact widths are denoted* 4, . Approxi-
mate results are shown as ratios of the accurate values. The numbers in
parentheses are the power of ten by which the entry must be multiplied. The
superscripts 1, 2, 3, 4 refer to Eqs. (3.17), (3.18), (3.19), (3.20), respectively
while #4 2% and #4 & are given by Eqs. (3.44) and (3.45), respectively.

Mean eigenvalue
Ratio @n ay a, ™ i,
m=3 T4, =gy — by = 1.4096
4474, 1.008 0987 1052 0949 1010
494, 1077 1051 113 1005  1.080
140/4, 1.037 1018 1.075 0983 1039
AY/a, 1108 1.084 1158 1041 L1

AT/r4, = 1419 A e/8A, = 1,500

m=4 A,=a,—b,=19778{-1)
404, 1.033 1012 1.047 1.011 1.046
140704, 1034 1013 1048 1012 1047
1404, 1.048 1026 1.062 1025 106l
A4, 1.048 1.027 1.063 1.026 1.062

A3/°4,=1.14 A9/, = 1,171

m=5 fAs=ay— by = 1.3213(—2)
A4, 1030 1013 1034 1013 103§
424, 1.030 1.013 1.034 1.013 1.035
4504, 1.034 1.017 1.038 1.017 1.038
424, 1.034 1.017 1.038 1.017 1.038
4 3/74, = 1.051 84 /24 = 1.087
m=6 $45=05— bs= 54109 —~4)
a4, 1026 1.013 1.028 1.013 1.028
454, 1.026 1.013 1.028 1013 1.028
4024 1.028 1.014 1.030 1.014 1.030
a4 1.028 1014 1030 1014 1.030
84 ¢'/%4, = 1.027 24984, = 1,056

m=17 $4,=a,—b,= 1519~ 5)
A 1/54, 1.023 1.012 1.024 1012 1.024
A 3'24, 1.023 1.012 1.024 1.012 1.024
144, 1.024 1.013 1.025 1.013 1.025
14904, 1.024 1.013 1.025 1.013 1.025

454, = 1.016 84401714, = 1,040

m=8 $Ay,=a3—-by=3.1(—-7)
a4\, 1.026 1.017 1.027 1.017 1.027
54 {754, 1.026 1.017 1.027 1.017 1.027
24004, 1.027 1.017 1.027 1.017 1.027
24024, 1.027 1.017 1.027 1.017 1.027

4 5'/%4, = 1.016 4 {=/84, = 1.037
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of narrow bands the discrepancies are greater especially for
the bandwidth b, — a, as given by 3.

Tables IT and III show the exact and approximate
widths for narrow bands and gaps, respectively. For energies
well removed from the barrier maximum we have for a given
i, °A 0(@?)=A (@5 and *A (@5 )="4 |1(@") and simi-
larly for the gap widths. This behavior is a consequence of
the fact that 3° =32 and 3~ 3" (see Table I). In general
the 41 agree to within 5% of the exact results although
occasionally the error is larger, eg., 11% for
b4 (@, ) or for m = 3. An important advantage of the 4  is
that the widths of narrow bands and gaps are given directly
and do not involve taking the difference of two nearly identi-
cal numbers, as is necessary for the exact numerical results
or if the full semiclassical formulas (3.4) and (3.5) are used.
The results in Tables II and I1I suggest that the semiclassical
A can be used to calculate reliably very narrow band and
gap widths for cases where accurate exact or full semiclassi-
cal values are not available. Incidently, for potentials which
give rise to narrow bands or gaps lying close to a barrier
maximum, it is essential to use the semiclassical width for-
mulas (3.8), (3.11) or (3.17), (3.18) which include d¢ /dE, in
order to cancel the infinite divergence contained in da/dE at
the barrier maximum.

Sometimes the trends in the results differ from those
expected from the derivation presented in Sec. I B. It is
likely that this arises in part from cancellation of errors,
since the same effect has been observed in semiclassical cal-
culations of resonance energies and widths for orbiting re-
sonances.4 To better understand the errors in the semi-
classical results, it would be necessary to calculate
eigenvalues and widths over an extended range of ¢ values.
Finally we note that Tables IT and III show that the asymp-
totic widths 4 = and 4 ' are generally less accurate than
the semiclassical widths 4 2.

V. SUMMARY AND CONCLUSIONS

In this article we have derived a uniform semiclassical
expression for the eigenvalues of a one dimensional Schrd-
dinger equation with a periodic potential but with nonperio-
dic boundary conditions. The semiclassical analysis used
parabolic connection formulas for a barrier and the resulting
formulas are valid for real or complex classical turning
points as the energy passes through a barrier maximum. For
a potential with periodicity 277/m our quantization formula
generalizes and unifies previous formulas in the literature.

A detailed application was made to Mathieu functions
of integer order. Similar detailed treatments could be given
for more complicated problems such as Mathieu functions of
fractional order or for potentials with more than two barriers
in (0,277]. We derived semiclassical formulas for the widths
of the energy bands and energy gaps of the periodic Mathieu
equation when these quantities are small. All the action inte-
grals appearing in the semiclassical formulas can be ex-
pressed in terms of complete elliptic integrals thereby letting
us exploit the considerable body of theory that exists for
these integrals. We showed that the semiclassical formulas
are asymptotically equivalent to results in the mathematical
literature. This gives a physical interpretation to the math-
ematical results which apparently has not been done before.

Our results for the splitting of the eigenvalues provide
an example of dynamical tunneling when applied to the
avoided crossing problem of Ref. 11. However, in the present
case the splitting arises from an above barrier reflection pro-
cess rather than from tunneling below the barrier as occurs
for a symmetric double well potential.
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