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Multichannel and two-state calculations are made for a collinear H-atom transfer between two heavy masses. The partic-
ular reaction studied is on where the initial vibrational state of the reactants is nearly degenerate with a vibrational state of
the products. The two sets of results for the reaction probability are in good agreement with each other,

1. Introduction

There have been numerous studies recently [1-14]
on the dynamics of collinear light-atom exchange reac-
tion between two heavy particles. Most of the studies
have been concerned with the dynamics of symmetric
exchange reactions [1-8]. Both the numerical treat-
ment of the coupled equations in terms of polar coor-
dinates and the approximate treatment of the dynamics
are simpler for symmetric than for the asymmetric ex-
change reactions. Indeed there have been only 2 few
studies on collinear asymmetric exchange reactions
[9—14]: detailed accurate numerical calculations have
been performed on the OHBr [9] and CIHBr [10,11]
systems.

An interesting feature of the BrH + Cl1 - Br + HCl
reaction is that the ground state of HBr is nearly degen-
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erate with the v = 2 state of HCI. A similar but some-
what less well matched near-degeneracy exists between
the v = 1 vibrational state of HBr and the v = 3 state of
HCl, as well as between the higher corresponding pairs

. of states. In the case of symmetric transfer reactions

the degeneracy between the corresponding vibrational
states of the reactants and the products leads to nearly
vibrationally adiabatic reactions [1]. Analogously, the
vibrational distribution of the products in the BrH + Cl
- Br + HCl reaction is dominated [11] by the transi-
tion to the nearly degenerate vibrational state.

The particular surface for the CIHBr reaction [10,
11] for which accurate numerical calculations were
available prior to the present study, has a very small
saddle point barrier and consequently no activation
energy. The corresponding collinear reaction probabili-
ty versus energy curve for the reaction is complicated
by resonance peaks due to formation of long-lived quasi-
bound states in the interaction region.

For H-atom transfer reactions on potential energy
surfaces with appreciable barrier heights (such that the
reaction has a non-zero activation energy) the reaction
rate is, at low and moderate temperatures, determined
mainly by the transition probabilities at energies near
the classical reaction threshold. Simple analytical formu-
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lae for the reactive transition probability near and below
the classical reaction threshold for such H-atom transfer
reactions based on a two-state model for the reaction
were devised recently [12]. They were used to calcu-
lated the transition probabilities for a model potential
energy surface for the BrH + Cl reaction with a moder-
ately high saddle-point barrier [12].

In this paper we present converged multichannel
numerical calculations of the transition probabilities
for the collinear BrHCI system with the moderately
high barrier surface studied in ref. {12]. We also pre-
sent results of an accurate numerical solution of the
two-state model [12] for the same system and com-
pare them to the accurate multichannel results. Com-
parison of the results of ref. [12] with the numerical
solution of the two-state model is given elsewhere [13].

The potential surface and the accurate multichannel
calculations are described and the results are presented
in section 2. The probabilities for transitions between
the two nearly degenerate states of the reactions and
the products are calculated in section 3 by solving the
equations for the two-state model. They are compared
there with the results of the accurate multichannel cal-
culations. The results are discussed in section 4.

2. Quantum mechanical treatment

It has been shown [15] that the Schrédinger equa-
tion, written in terms of mass-scaled coordinates, for-a
collinear atom—diatom reaction can be efficiently
solved in terms of polar coordinates p, 8 [16], by ex-
panding the wavefunction in terms of wavefunctions
for the ¥ motion at a fixed p, integrating over the &
motion and then integrating the resulting set of coupled
equations for the p motion from some initial radius
(pg) to some final radius (p,,,, ). The S matrix can be
obtained by applying the appropriate scattering bound-
ary conditions in the asymptotic region [15,17—-19].
The details of the procedure used here are described
elsewhere [19].

2.1, Reaction probabilities

The LEPS potential energy surface is that used by
Babamov et al, [12]. Its parameters are listed in table 1,
The integration parameters used are the initial radius
(pg = 4.0 bohr), the final radius (o, = 32.0 bohr),

CHEMICAL PHYSICS LETTERS

20 January 1984
Table 1
LEPS parameters for the potential surface
Quantity HCI HBr CIBr
D(kcal/mol) 106.4 90.24  52.09
re (A) 1.275 1.414 2,136
Be (A71) 1.867 1.851  1.923
Sato parameters 0.02 0.02 0.0
zero point energy (kcal/mol) 4,23 3.83 -

the number of steps in p (V, = 400), and the number
of steps in & (V¢ = 700). The p,,, was chosen so that
the initial and final states there were in the asymptotic
region of the reactants’ and products’ space ¥, The
masses used are: my = 1.0078 amu, m¢ = 34.9688
amu, and mp, = 78.9183 amu, which yield an acute
angle 8, of ~11.58° for a plot of the skewed-axes [21]
surface in mass-scaled coordinates.

Twelve vibrational basis functions, seven of which cor-
respond asymptotically to the Br + HCI arrangement
states and five to the Cl + HBr arrangement states, were
used for generating the coupled equations for the p mo-
tion. The solution matrix only required stabilization
[19] every ten steps. The number of open vibrational
channels varied from 4 to 10 as £, the total energy
measured relative to the bottom of the HBr diatomic
well, was increased from 7.6 kcal/mol to 26.5 kcal/mol.
The convergence, as size of the basis set was increased,
was checked by comparing twelve-state calculations
to sixteen-state calculations at selected energies. The
resulting probabilities were virtually the same even at
the highest energies. The convergence was also checked
with respect to step size in p and step size in the vibra-
tional coordinate ¢. In all calculations, the dominant
transition probabilities were converged to better than
+0.001%, flux was conserved to £0.0008, and the devia-

* Let A be a point on the normal to x axis and having coordi-
nates (x,)) = (P axs %”max tan 9,,). piyax Was chosen so
that A is on the plateau region of the double well potential
in the asymptotic region. The asymptotic vibrational states
in the initial arrangement are determined along this vertical
line and are effectively non-zero only in the region (pmax, 0)
to (Pmax:3Pmax tan 9,y), where 9,y, the acute angle be-
tween the skewed axes, is given by tan 9,y = [ma(m; + my +
m3)/mims] 1/2_particle 2 is the middle atom, the hydrogen
atom in this case. (The equation for 9, is taken from a re-
sult in ref. [20].)
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Fig. 3. Reactive transition probability P& for the BrH(v = 0)

+ Cl - Br + HC1 (v = 2) reaction. The solid line is obtained
from a converged (twelve-state) calculation in section 2 and
the points are obtained from solving the two-state model {eq.
{2)]. The energy is measured from the bottom of the HBr well,

is nearly degenerate with the initial HBr one. The pro-
cedure of obtaining eq. (2) is discussed elsewhere [12],
as are approximate methods of solving it [12—14].

Eq. (2) was solved numerically to obtain the reactive
transition probabilities sz and Pﬁ, . The resulting reac-
tive transition probabilities sz and Pﬁ; are shown in
figs. 3 and 4, respectively, together with the results of
the multichannel calculations from section 2. The
logarithm of the transition probabilities sz and P¥3 at

1 C T ¥ v or
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Fig. 4. Same as fig. 3 for the v = 1 state of HBr and thev = 3
state of HCI.
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Fig. 5. The log,¢ of the reaction transition probability P& for
the BrH(v = 0) + C1 = Br + HCl(v = 2) reaction at energies
below the classical threshold (the tunneling region). The solid
line represents the accurate twelve-state calculations (section 2)
and the points are obtained from the two-state model [eq. (2)].

energies below the classical threshold are shown in figs.
5 and 6, respectively.

The quasibound state of the uncoupled adiabatic
equation,

[-3d%/dp? + €0)] ¢(0) = Ew,(0), €);

which correlates asymptotically to the v = 1 state of
HBr, is mostly responsible for the resonance peak on
the P}g probability versus energy curve (fig. 4).

0-0 L) L)

I4I.5 Ié.O Ié.5
Total Energy (KCAL/MOL)

Fig. 6. Same as fig. 5 for the v = 1 state of HBr and thev =3
state of HCI.
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4. Discussion

A comparison of the results presented in figs. 3—6
shows that the two-state model, given by eq. (2) for H-
atom transfer between two nearly degenerate states,
simulates well the main features of the dynamics. The
deviations of the two-state results from the converged
multichannel ones are similar to the differences between
the two-state [1] results and the multichannel ones
[6,24] for the higher vibrationally excited states in the
symmetric reaction,

The results for the reactive transition probabilities
between the two nearly degenerate states show oscilla-
tions somewhat similar to those between the exactly
degenerate states with same quantum number in a sym-
metric exchange reaction [1—8]. The main difference
from the symmetric case is that the oscillations do not
approach the maximum probability of 1 as closely as
they do in the symmetric case. This difference is due
to the lack of exact resonance between the reactant
and product vibrational levels. Approximate analytical
formulae for the model based on eq. (2) [13] show
that in addition to the sine square term responsible for
the oscillations in the symmetric case [1] the transi-
tion probability is reduced by an additional factor
which depends exponentially on the resonance energy
defect for the reaction. In the present formalism this
factor is responsible for the maxima of the P, values in
fig. 2 and for the Py values in figs. 3 and 4 being smaller
than unity.

As in ref. [21], the resonance is localized in a single
eigendelay which corresponds to an eigenstate domi-
nated by the v = 1 HBr vibrational state. The peak in
the resonant CIHBr delay time is 6.6 X 10-13 s,
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