COMPARISON OF MULTICHANNEL AND TWO-STATE CALCULATIONS FOR H-ATOM TRANSFER BETWEEN TWO NEARLY DEGENERATE STATES

N. ABUSALBI, D.J. KOURI

Departments of Chemistry and Physics, University of Houston, Central Campus, Houston, Texas 77004, USA

and

Vicente LOPEZ*, Vasil K. BABAMOV** and R.A. MARCUS[‡]
Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA

Received 4 November 1983; in final form 8 November 1983

Multichannel and two-state calculations are made for a collinear H-atom transfer between two heavy masses. The particular reaction studied is on where the initial vibrational state of the reactants is nearly degenerate with a vibrational state of the products. The two sets of results for the reaction probability are in good agreement with each other.

1. Introduction

There have been numerous studies recently [1-14] on the dynamics of collinear light-atom exchange reaction between two heavy particles. Most of the studies have been concerned with the dynamics of symmetric exchange reactions [1-8]. Both the numerical treatment of the coupled equations in terms of polar coordinates and the approximate treatment of the dynamics are simpler for symmetric than for the asymmetric exchange reactions. Indeed there have been only a few studies on collinear asymmetric exchange reactions [9-14]: detailed accurate numerical calculations have been performed on the OHBr [9] and ClHBr [10,11] systems.

An interesting feature of the BrH + Cl \rightarrow Br + HCl reaction is that the ground state of HBr is nearly degen-

* Permanent address: Departamento de Quimica Fisica y Quimica Cuantica, Universidad Autonoma de Madrid, Cantoblanco, Madrid-34, Spain. erate with the v=2 state of HCl. A similar but somewhat less well matched near-degeneracy exists between the v=1 vibrational state of HBr and the v=3 state of HCl, as well as between the higher corresponding pairs of states. In the case of symmetric transfer reactions the degeneracy between the corresponding vibrational states of the reactants and the products leads to nearly vibrationally adiabatic reactions [1]. Analogously, the vibrational distribution of the products in the BrH + Cl \rightarrow Br + HCl reaction is dominated [11] by the transition to the nearly degenerate vibrational state.

The particular surface for the ClHBr reaction [10, 11] for which accurate numerical calculations were available prior to the present study, has a very small saddle point barrier and consequently no activation energy. The corresponding collinear reaction probability versus energy curve for the reaction is complicated by resonance peaks due to formation of long-lived quasibound states in the interaction region.

For H-atom transfer reactions on potential energy surfaces with appreciable barrier heights (such that the reaction has a non-zero activation energy) the reaction rate is, at low and moderate temperatures, determined mainly by the transition probabilities at energies near the classical reaction threshold. Simple analytical formu-

^{**} Also at: Department of Chemistry, California State University Long Beach, Long Beach, California 90804, USA and Centro de Gradiados, Instituto Tecnologico de Tijuana, Apdo Postal 1166, Tijuana, B.C., Mexico.

[‡] Contribution No. 6944.

lae for the reactive transition probability near and below the classical reaction threshold for such H-atom transfer reactions based on a two-state model for the reaction were devised recently [12]. They were used to calculated the transition probabilities for a model potential energy surface for the BrH + Cl reaction with a moderately high saddle-point barrier [12].

In this paper we present converged multichannel numerical calculations of the transition probabilities for the collinear BrHCl system with the moderately high barrier surface studied in ref. [12]. We also present results of an accurate numerical solution of the two-state model [12] for the same system and compare them to the accurate multichannel results. Comparison of the results of ref. [12] with the numerical solution of the two-state model is given elsewhere [13].

The potential surface and the accurate multichannel calculations are described and the results are presented in section 2. The probabilities for transitions between the two nearly degenerate states of the reactions and the products are calculated in section 3 by solving the equations for the two-state model. They are compared there with the results of the accurate multichannel calculations. The results are discussed in section 4.

2. Quantum mechanical treatment

It has been shown [15] that the Schrödinger equation, written in terms of mass-scaled coordinates, for a collinear atom—diatom reaction can be efficiently solved in terms of polar coordinates ρ , ϑ [16], by expanding the wavefunction in terms of wavefunctions for the ϑ motion at a fixed ρ , integrating over the ϑ motion and then integrating the resulting set of coupled equations for the ρ motion from some initial radius (ρ_0) to some final radius (ρ_{max}). The S matrix can be obtained by applying the appropriate scattering boundary conditions in the asymptotic region [15,17–19]. The details of the procedure used here are described elsewhere [19].

2.1. Reaction probabilities

The LEPS potential energy surface is that used by Babamov et al. [12]. Its parameters are listed in table 1. The integration parameters used are the initial radius $(\rho_0 = 4.0 \text{ bohr})$, the final radius $(\rho_{\text{max}} = 32.0 \text{ bohr})$,

Table 1
LEPS parameters for the potential surface

Quantity	HCI	HBr	ClBr
D _e (kcal/mol)	106.4	90.24	52.09
r _e (Å)	1.275	1.414	2.136
$\beta_{e}(A^{-1})$	1.867	1.851	1.923
Sato parameters	0.02	0.02	0.0
zero point energy (kcal/mol)	4.23	3.83	

the number of steps in ρ (N_{ρ} = 400), and the number of steps in ϑ (N_{ϑ} = 700). The $\rho_{\rm max}$ was chosen so that the initial and final states there were in the asymptotic region of the reactants' and products' space ‡ . The masses used are: $m_{\rm H}$ = 1.0078 amu, $m_{\rm Cl}$ = 34.9688 amu, and $m_{\rm Br}$ = 78.9183 amu, which yield an acute angle ϑ_m of \approx 11.58° for a plot of the skewed-axes [21] surface in mass-scaled coordinates.

Twelve vibrational basis functions, seven of which correspond asymptotically to the Br + HCl arrangement states and five to the Cl + HBr arrangement states, were used for generating the coupled equations for the ρ motion. The solution matrix only required stabilization [19] every ten steps. The number of open vibrational channels varied from 4 to 10 as E, the total energy measured relative to the bottom of the HBr diatomic well, was increased from 7.6 kcal/mol to 26.5 kcal/mol. The convergence, as size of the basis set was increased, was checked by comparing twelve-state calculations to sixteen-state calculations at selected energies. The resulting probabilities were virtually the same even at the highest energies. The convergence was also checked with respect to step size in ρ and step size in the vibrational coordinate ϑ . In all calculations, the dominant transition probabilities were converged to better than ±0.001%, flux was conserved to ±0.0008, and the devia-

Let A be a point on the normal to x axis and having coordinates $(x,y) = (\rho_{\max}, \frac{1}{2}\rho_{\max}, \tan \vartheta_m)$. ρ_{\max} was chosen so that A is on the plateau region of the double well potential in the asymptotic region. The asymptotic vibrational states in the initial arrangement are determined along this vertical line and are effectively non-zero only in the region $(\rho_{\max}, 0)$ to $(\rho_{\max}, \frac{1}{2}\rho_{\max}, \tan \vartheta_m)$, where ϑ_m , the acute angle between the skewed axes, is given by $\tan \vartheta_m = [m_2(m_1 + m_2 + m_3)/m_1m_3]^{1/2}$. Particle 2 is the middle atom, the hydrogen atom in this case. (The equation for ϑ_m is taken from a result in ref. [20].)

state of HBr. the one nearly degenerate with the initial vibrational there is very little HCl formed in any state other than fig. 2. Comparison of figs. I and 2 shows clearly that 2 levels of HBr in the same energy range are plotted in tion. The total reaction probabilities from the $\upsilon=0,1$, threshold region of the HBr(v = 1) to HCl(v = 3) transiat \approx 12 kcal/mole there is a resonance spike in the HCl are plotted versus the total energy. One sees that p_{02}^{K} , p_{13}^{R} , and p_{24}^{R} for the reaction BrH + Cl \rightarrow Br + degenerate levels. In fig. 1, the reactive probabilities dominant reactive transitions occur between nearly

2.2. Resonances

channel problem, have calculated the lifetime matrix [22] for the multi-In order to estimate a delay time, as in ref. [21], we HCl(v = 4), are due to formation of quasibound states. 1) + CI \rightarrow Bt + HCI(n = 3) and BtH(n = 2) + CI \rightarrow Bt + ties just below the thresholds of the reactions BtH(v = v) The spikes featured in fig. 1 in the reactive probabili-

$$Q_{ij}(E) = i\hbar \sum_{k} S_{ik} dS_{jk}^*/dE.$$
 (1)

diagonalized to yield the proper time delays. size of 0.01 kcal/mol. The lifetime matrix was then uated with a five-point formula [23] with a fixed step well. The derivatives of the S_{jk}^{*} were numerically evalkeal/mol, measured relative to the bottom of the HBr HCl) was calculated in the energy region 15.5 to 16.0 six open channels v = 0 to 1 for HBr and 0 to 3 for A 6 \times 6 complex lifetime matrix (corresponding to the

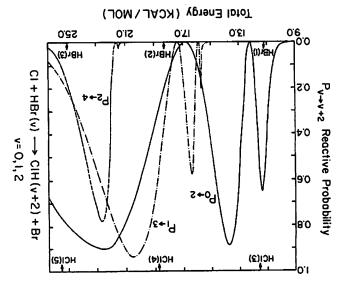
multichannel ones 3. Comparison of the two-state results to the

can be represented by a pair of coupled equations of the dynamics of the BrH + Cl - Br + HCl reaction As discussed elsewhere [12-14] the main features

$$(0)^{\dagger} \Psi_{ij} = V_{ij} = V_{ij} \Psi_{ij} = V_{ij} = V_$$

j denotes the i+2 vibrational state of the HCl which where i denotes the initial vibrational state of HBr and $(q)_{i}\Psi_{i}(\varphi) + V_{i}(\varphi) - \mathcal{E} \Psi_{i}(\varphi) = V_{i}\Psi_{i}(\varphi),$

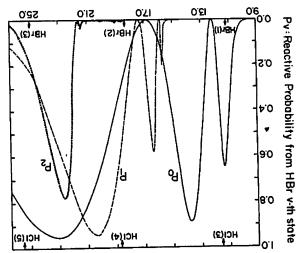
(z)



well. The arrrows denote energetic thresholds. ergy in keal/mol relative to the bottom of the HB1 diatomic $HBr(u) \rightarrow CIH(u + 2) + Bt$ with u = 0, 1, 2, versus the total en-Fig. 1. Transition reactive probabilities for the reaction CI+

sible. where 10 out of 12 channels were energetically acceswas negligible even at the highest energy considered, tion of the dominant S matrix elements from symmetry

heavy—light—heavy (H-L-H) systems such as IHI, the $\upsilon + 2$ of the HCl molecule. Analogous to symmetric levels v of the HBr molecule with the vibrational levels CIHBr system is the near-degeneracy of the vibrational As mentioned earlier an important feature of the



Total Energy (KCAL/MOL)

to the bottom of the HBr diatomic well. tional levels of HBr versus the total energy in keal/mol relative Fig. 2. Total reaction probabilities Pu from the first three vibra-

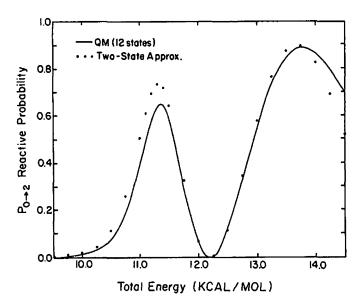


Fig. 3. Reactive transition probability P_{0}^{R} for the BrH($\nu = 0$) + Cl \rightarrow Br + HCl ($\nu = 2$) reaction. The solid line is obtained from a converged (twelve-state) calculation in section 2 and the points are obtained from solving the two-state model [eq. (2)]. The energy is measured from the bottom of the HBr well.

is nearly degenerate with the initial HBr one. The procedure of obtaining eq. (2) is discussed elsewhere [12], as are approximate methods of solving it [12-14].

Eq. (2) was solved numerically to obtain the reactive transition probabilities $P_{02}^{\rm R}$ and $P_{13}^{\rm R}$. The resulting reactive transition probabilities $P_{02}^{\rm R}$ and $P_{13}^{\rm R}$ are shown in figs. 3 and 4, respectively, together with the results of the multichannel calculations from section 2. The logarithm of the transition probabilities $P_{02}^{\rm R}$ and $P_{13}^{\rm R}$ at

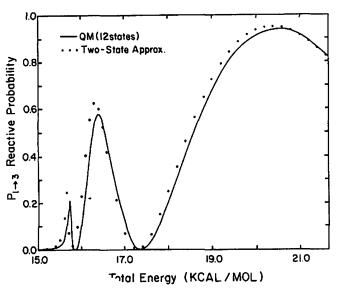


Fig. 4. Same as fig. 3 for the v = 1 state of HBr and the v = 3 state of HCl.

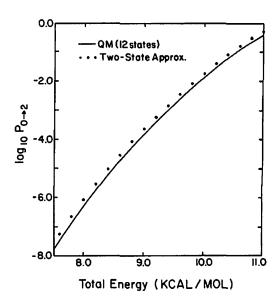


Fig. 5. The \log_{10} of the reaction transition probability $P_0^{\rm R}$ for the BrH($\nu = 0$) + Cl \rightarrow Br + HCl($\nu = 2$) reaction at energies below the classical threshold (the tunneling region). The solid line represents the accurate twelve-state calculations (section 2) and the points are obtained from the two-state model [eq. (2)]

energies below the classical threshold are shown in figs. 5 and 6, respectively.

The quasibound state of the uncoupled adiabatic equation,

$$\left[-\frac{1}{2}d^2/d\rho^2 + \epsilon_i(\rho)\right]\varphi_i(\rho) = E\varphi_i(\rho), \tag{3}$$

which correlates asymptotically to the v=1 state of HBr, is mostly responsible for the resonance peak on the P_{13}^R probability versus energy curve (fig. 4).

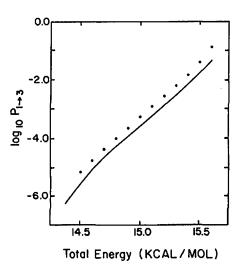


Fig. 6. Same as fig. 5 for the v = 1 state of HBr and the v = 3 state of HCl.

4. Discussion

A comparison of the results presented in figs. 3-6 shows that the two-state model, given by eq. (2) for Hatom transfer between two nearly degenerate states, simulates well the main features of the dynamics. The deviations of the two-state results from the converged multichannel ones are similar to the differences between the two-state [1] results and the multichannel ones [6,24] for the higher vibrationally excited states in the symmetric reaction.

The results for the reactive transition probabilities between the two nearly degenerate states show oscillations somewhat similar to those between the exactly degenerate states with same quantum number in a symmetric exchange reaction [1-8]. The main difference from the symmetric case is that the oscillations do not approach the maximum probability of 1 as closely as they do in the symmetric case. This difference is due to the lack of exact resonance between the reactant and product vibrational levels. Approximate analytical formulae for the model based on eq. (2) [13] show that in addition to the sine square term responsible for the oscillations in the symmetric case [1] the transition probability is reduced by an additional factor which depends exponentially on the resonance energy defect for the reaction. In the present formalism this factor is responsible for the maxima of the P_{v} values in fig. 2 and for the P_{ij} values in figs. 3 and 4 being smaller than unity.

As in ref. [21], the resonance is localized in a single eigendelay which corresponds to an eigenstate dominated by the v = 1 HBr vibrational state. The peak in the resonant ClHBr delay time is $\approx 6.6 \times 10^{-13}$ s.

Acknowledgement

This research was supported by grants from the National Science Foundation (USA). One of us (VL) is pleased to acknowledge support by a Fulbright—Spanish Ministry of Education and Science Fellowship.

References

- [1] V.K. Babamov and R.A. Marcus, J. Chem. Phys. 74 (1981)
- [2] J.A. Kaye and A. Kuppermann, Chem. Phys. Letters 77 (1981) 573.
- [3] J. Manz and J. Römelt, Chem. Phys. Letters 76 (1980) 337; 81 (1981) 179.
- [4] J. Manz, E. Pollak and J. Römelt, Chem. Phys. Letters 86 (1982) 26.
- [5] C. Hiller, J. Manz, W.H. Miller and J. Römelt, J. Chem. Phys. 78 (1983) 3850.
- [6] D.K. Bondi, J.N.L. Connor, J. Manz and J. Römelt, Mol. Phys., to be published;J. Römelt, Chem. Phys. 79 (1983) 197.
- [7] V. Aquilanti, G. Grossi and A. Lagana, Chem. Phys. Letters 93 (1982) 174;
 V. Aquilanti, S. Cavalli, G. Grossi and A. Lagana, J. Mol. Struct. 93 (1983) 319.
- [8] D.K. Bondi, J.N.L. Connor, B.C. Garrett and D.G. Truhlar,
 J. Chem. Phys. 78 (1983) 5981;
 B.C. Garrett, D.G. Truhlar, A.F. Wagner and T.H. Dunning
 Jr., J. Chem. Phys. 78 (1983) 4400.
- [9] E.J. Shipsey, J. Chem. Phys. 58 (1973) 232.
- [10] M. Baer, J. Chem. Phys. 62 (1975) 305.
- [11] J.A. Kaye and A. Kuppermann, Chem. Phys. Letters 92 (1982) 574.
- [12] V.K. Babamov, V. Lopez and R.A. Marcus, J. Chem. Phys. 78 (1983) 5621.
- [13] V.K. Babamov, V. Lopez and R.A. Marcus, Chem. Phys. Letters 101 (1983) 507.
- [14] V.K. Babamov, V. Lopez and R.A. Marcus, J. Chem. Phys., to be submitted for publication.
- [15] A. Kuppermann, J.A. Kaye and J.P. Dwyer, Chem. Phys. Letters 74 (1980) 257;
 J. Römelt, Chem. Phys. Letters 74 (1980) 263.
- [16] L.M. Delves, Nucl. Phys. 9 (1958) 391; 20 (1960) 275;
 F.T. Smith, Phys. Rev. 120 (1960) 1058;
 A. Kuppermann, Chem. Phys. Letters 32 (1975) 374;
 A. Kuppermann, J.A. Kaye and J.P. Dwyer, Chem. Phys. Letters 74 (1980) 257.
- [17] J. Römelt, Chem. Phys. Letters 74 (1980) 263.
- [18] G. Hauke, J. Manz and J. Römelt, J. Chem. Phys. 73 (1980) 5040.
- [19] C.L. Shoemaker, N. AbuSalbi and D.J. Kouri, J. Phys. Chem., to be published.
- [20] S. Glasstone, K.J. Laidler and H. Eyring, The theory of rate processes (McGraw-Hill, New York, 1941) p. 102.
- [21] A. Kuppermann and J.A. Kaye, J. Phys. Chem. 85 (1981) 1969.
- [22] F.T. Smith, Phys. Rev. 118 (1960) 349.
- [23] H. Margenau and G.M. Murphy, Mathematics of physics and chemistry (Van Nostrand, Princeton, 1962).
- [24] V.K. Babamov, V. Lopez and R.A. Marcus, unpublished results: