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An exponentiated DWBA formuia for H-atom transfers. Extensions to lower
barrier potentials and to higher energies
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Analytic formulas obtained earlier for the probability of H-atom transfer between two heavy
particles in the threshold region are extended to higher energies and to systems with lower barrier
potentials. The calculated reaction probability vs energy curve is in good agreement with
numerical results for the model system investigated involving transfer between two nearly

degenerate states.

I. INTRODUCTION

The dynamics of a light atom transfer between two
nearly degenerate vibrational states in a collinear A
+ HB—~AH + B collision, where H denotes the light atom,
has been studied recently.'” It was shown'-? that the reac-
tion dynamics can be represented approximately in terms of
the two nearly degenerate vibraticnal states, suitably distort-
ed throughout the collision, between which the exchange
occurs. Approximate solution of the resulting two coupled
equations yielded analytical formulas for the reactive transi-
tion probability in the threshold region.'? They were tested
in Ref, 2 for reactions which have a nonnegligible activation
energy.

In this paper we present approximate analytical formu-
las for the transition probability valid at higher energies up
to the limit of validity of the two-state approximation. The
formulas are also valid for reactions with a smaller barrier
height (a small activation energy) for which the treatment in
Ref. 2 is not applicable.

The procedure for calculating the potential energy ma-
trix in a set of two coupled equations in the diabatic represen-
tation, on which the treatment is based, is given in Sec. II.
The approximate analytical formulas are presented and test-
ed against an accurate numerical solution of the two-state
coupled equations in Sec. III. A discussion of the results and
their relation to alternative treatments is given in Sec. IV.

Il. EVALUATION OF THE EFFECTIVE EXCHANGE
COUPLING -

It was shown earlier'-? that in a collinear H atom trans-

fer collision in which one of the product states is nearly de- .

generate with the initial reactant one the dynamics of the
collision can be approximately represented by two coupled
equations which correspond to the two nearly degenerate
states between which the exchange occurs.

A set of coupled equations in the adiabatic representa-
tion can be constructed® by expanding the wave function of
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the system in terms of the local eigenfunctions y (sp) of the

double minimum potential ¥ (s,0)'?:

¢= ; @lolx)(sp) 2.1)

" where s is an arc length o} in a mass-weighted internal coor-

dinate space for the collinear triatomic system and p and &
are polar coordinates. y; depmds on s and parametrically on
p. On substituting the expansion into the Schridinger equa-
tion in polar coordinates and integrating over the ¢ depen-
dence one obtains the couple'd equations™*

[+~ (emas oo

+ ;( i, d_ + —Qo)wf(Pl
The notation is that of Refs. 1 and 4 with 4 replacing P.
A pair of coupled equations which involves only the two

nearly degenerate states can readily be obtained by truncat-
ing Eq. (2.2) to obtmn

22
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where the negligible 1/80? term has been omitted for simpli-
city. Solving Eq. (2.3) directly (e.g., Ref. 8) may lead to inac-
curacies, since the adiabatic coupling elements 4, contain
other contributions® aside from the exchange interaction
(similar to the “translational factor” in gas phase electron
transfers'®). One can construct! another pair of coupled
equations in the diabatic representation in which the cou-
pling represents only the exchange interaction®, namely

2 dp? ule) ] lel=V,¥ )',
(.)

[ 12 v o—E|¢p =7
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E - The potential matrix elements ¥V, were evaluated in
Refs. 1 and 2 for the threshold region of reaction, with the
Eud of the diagonal potential matrix elements of Eq. (2.3}
$Two methods were described in Refs. 1 and 2 for determin-
img the diabatic states from the adiabatic states. A more gen-
{'eral method which covers a broader range of conditions is
described below. At the energies used in Refs. 1 and 2 it gives
“results in excellent agreement with the ones cbtained from
gthe other methods, but, in addition, is applicable to higher
jenergies and to lower barriers. The three methods are com-
gpmed in Sec. IV.
i  Localized (diabatic) vibrational states §(s;0) can be de-
ed at every p as that linear combination of the two adiaba-
tic states yis;p) for which the H atom is localized near the
atom A or B. The most localized diabatic states £; and ¢,
elements of a column vector &(s;p), can be found by finding a
-guitable orthogonal transformation matrix T which acts on
F e column vector x(s;p) with elements y; and y;:

; blsip) =Tx(s0) (2.5)
L[cf Eq. (3.3) in Ref. 1]. We consider potentials such that in
domain of p’s important for the reaction, the potential for
8 given p has two distinct wells as a function of s. For these
ble minimum potentials the most localized wave func-
ftions £, and &; will be construed as the ones for which the
iprobability density within one well of the potential is the
2 t."
* The transformatxon matrix T can then be used to trans-
form the diagonal potential energy matrix € in Eq. (2.3) into
e desired diabatic potential energy matrix V in Eq. (2.4)."

V=TeT. (2.6)

The above procedure gives results for reaction probabilities

Qwhxch are in excellent agreement with the ones obtained us-

Hing the alternative procedures in Ref. 1 at the energies for
which the latter can be evaluated.

The diagonal potential matrix elements obtained as
ve for the two lowest pairs of nearly degenerate states in
model BrH +.Cl—Br + HCl system studied in Refs. 1-3
shown in Fig. 1 (solid curves). Shown in Fig. 2 is the

logarithm of the interaction matrix element ¥, obtained as
E’pbove for these two pairs of states.

Lo
H. MODIFICATIONS OF THE EXPONENTIATED DWBA
MULA FOR LOWER BARRIER POTENTIALS AND/
HIGHER ENERGIES

5 The DWBA approxnnatxon to the transition probabil-
for the nearly degenerate H-atom transfer problem repre-
seated by Eq. (2.4) can be written in terms of an integral' T'§.

¢
b Ti= f o)V PW](P)p, (3.1)

i

'where the (o) are the real solutions, regular at small p, of
’Eq. (2.4) with the right-hand side set to zero, i.e., of

1 d?
[- 35 +vub- ~E|iti1=o, k=t ()

i
;lt was shown in Ref. 2 that the DWBA transition probability
EP for a nearly degenerate H-atom transfer [= (2#T§)?]
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FIG. 1. Plot of diabatic eigenvalues ¥,(p) {solid curves) vs p for the states
which correspond asymptotically to Cl + HBr (v =0}, ClH(v 2)+Br,
Cl 4 HBr{v = 1), CIH(v = 3) + Br, in order of increasing energy. The
dashed curves are the adiabatic cigenvalues of a corresponding degenerate
problem, obtained from the ¥, and ¥, as described in Eqs. (4) and (S)of Ref.
2. The numbers on the left- (right-) ha.nd side are relative to the minimum of
the HBr (HCI) well. ;
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FIG. 2. Plot of In ¥ (o} v8 p for the lowest pair of nearly degenerate states
{lower curve) and for the next pair of states {upper curve) for the system in
Fig. 1.
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can be written in terms of the DWBA transition probability
P}, for a corresponding degenerate H-atom transfer prob-
lem, as in Eq. (3a) in Ref. 2:

Py =(2aTYP = [e~2"F 1P, (3.3)
where 4 is the resonance defect V(o) — V(o) evaluated at
the classical turning point po, F is (d¥3/dp),,, Viilp) being
172 [Vulp) + Vy(p)], and @ is — [dn Vy(pV/dp],, This
corresponding degenerate H-atom transfer problem is de-
fined by Eqs. (4) and (5) of Ref. 2.

The above simple DWBA formula, derived by lineariz-
ing ¥, and In ¥, in Eq. (2.4) as a function of p and by taking
¥, — V; asconstant, can become inaccurate at energies high
above the reaction threshold. As shown in Ref. 2 such devia-
tions at higher energies do not influence significantly its uti-
lity for evaluating reaction rates at low to moderate tempera-
tures, since the latter depend mainly on the behavior of P, in
the threshold region. However, the DWBA formula (3.3)
also becomes inaccurate for potentials with saddle-point
barrier heights of only a few kcal/mol or less, since for such
reactions the V'S vs p plot can deviate strongly from linear-
jty. The latter plot may even have a well as a function of p,
which leads to quasibound states or “resonances” in the
strong interaction region. The method given below handles
this latter source of difficulty, and also treats the case where
there are deviations of the energy defect ¥,,(p) — V;(p) from
constancy and of ¥%(o} and In ¥(p) from linearity.

When the resonance defect ¥, — V; is nearly constant
and the potential matrix element ¥% and In ¥, are nearly
linear as a function of p throughout the interaction region,
the DWBA result Eq. (2.3) can readily be extended to higher
energies simply by replacing P2, in Eq. (3.3) by the exact
two-state result? for the corresponding degenerate exchange
problem. Denoting this new quantity by P, we have?

P, =sin™E 5 — £3) (34)
where £2 and £¢ are the elastic phase shifts for the p motion
on the hypothetical symmetric and antisymmetric adiabatic
eigenvalue curves defined by Eqgs. (4) and (5) of Ref. 2. The
latter are depicted in the present Fig. 1 as the dashed curves.

The resonance defect V(o) — V() is often not con-
stantand ¥'$(p)andIn ¥, are often not linear as a function of

p. Animproved approximation for the transition probability

P, can be obtained by averaging the influence of the reso-’

nance defect over the effective interaction strength f{p) dur-
" ing the collision, e.g., by replacing Eqgs. (3.3) and (3.4) by

Py{e= 4" Vising s — £3), (3.5)
where
rf(plexp{ — A% p)/2al pIF(p)dp
<e—4’/zar)= Pa — . .
f fip)p
* (3.6)

Here A (p), a(p), and F(p) now denote Vlp)— Vylp)
—dInV,(p)//dp, and dV§(p)/dp, respectively. The
weighting function f( p) in Eq. (3.6) is taken to be the inte-
grand in an approximate semiclassical perturbation expres-
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FIG. 3. Reaction probabilities Py, and P, vs total energy £ relative to mini-
mum of HBr potential. The dashed curves are those given by Eq. (3.4). The
solid curves represent the numerical solution of the two-state problem.?

sion for 27T, namely in*

20T =2 [ Vodo/pdo)
'Po
where po{ p) equals {2[E — V'3(p)]}'/% Thus, we have

= Vis p) . 3.8
flp) BIE= VoA (3.8)

A comparison of the results of Egs. (3.5){3.8) with re-
sults of an accurate numerical solution of Eq. (2.4) is shown
in Fig. 3 for the lowest two pairs of nearly degenerate states
of the model system of Refs. 1-3.

3.7)

IV. DISCUSSION
The results of the analytical extension of the DWBA

‘formulas for a nearly degenerate H-atom transfer to higher

energies presented here are seen from Fig. 3 to be in very
good agreement with the results of the numerical solutions
of the two-state problem, Eq. (2.4). Previously, the numerical
solution of Eq. (2.4) had itself been shown to agree well with
accurate multichannel results for the same system.* The de-
viation of the present results of Eq. (3.7) from those obtained
by solving Bq. (2.4) numerically is comparable to the devi-
ation of the latter from the accurate multichannel ones.’
We consider next the various maxima in Fig. 3. The first
sharp peak in the P,; curve (at about 15.65 kcal/mol) in Fig.
3 is a resonance,? as one can indeed anticipate from the well
in the adiabatic eigenvalue which corresponds mainly to the
v = 3 state of HCI (cf. Fig. 4 of Ref. 3, and also the corre-
sponding dashed curve in the present Fig. 1, the second from
the top.) The next P,; maximum occurs at an energy where
the 1—3 reaction becomes classicdlly allowed for such adia-
batic states, namely,at an energy where the mean of the adia-
batic eigenvalues at the turning-point p, approximates the
local maximum of the double well potential V(s,) at po."*
The first P,, peak occurs at an energy (11.3 kcal/mol) some-
what less than that (11.75 kcal/mol) where the 0—2 reaction
becomes classically allowed for these adiabatic states. Presu-
mably it occurs at that low energy because of very extensive
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H-atom tunneling.

The problem of solving Eq. (2.4) is also encountered in
treating the transfer of an electron between two atoms and is
known as the Demkov problem'? in the atomic physics liter-
ature. Approximate solutions to Eq. (2.4) valid at energies

high above, but not near or below the threshold have been

devised. 15-17
In concluding this section we consider the factor multi-
plying P, .., in Eqgs. (3.3) and also the choice of diabatic states.

" The factor multiplying P,,., in the DWBA Eq. (3.3) has
an interesting interpretation. We first note that in the vicini-
ty of the classical turning-point p, of the p motion, the inte-
gration of the p equations [Eqs. (4.11) and (5.2) of Ref. 1]
yields (p — po)'/? = (F 72)"/*r, where 7 is the time for the sys-
tem to go from p, to p. We consider next the relevant value of
P — po for change of ¥} with p. (In the simple DWBA mod-
¢l, the reaction probability is proportional to ¥.) V' de-

creases to 1/eth of its value at p, when p — p, equals 1/2a. -

The total time spent by the system in thisp — p, interval is of
the order of r (really 27) equal to [2{o — po)/F]~'"3, ie.,
(@F)~'/2, Remembering that the results are in units of i = 1,
onesees that the presence of the exp[ — 4 /(aF)!/*]* factor in
Eq. (3.3) reflects the Heisenberg uncertainty principle.

. This factor serves as the counterpart to the well-known
delta function & (4 ) which appears in Golden Rule expres-
sions for radiationless transitions and for electron transfer
reactions. Because the mass ratio in H transfers (ratio of
mass of light particle to the heavier masses) is smaller thanin
electron transfers, the 6 (4 ) factor is replaced by a less severe
constraint, namely the exp[ — (74 )] factor. This factor also
has as its counterpart an analogous factor such as sech’r4,’
obtained from a classical path treatment of a glancing atomic
collision in charge transfer processes,'>™"’ 7 being a rough
measure now of the “collison time” for such collisions.

We have given previously' two alternative ways of cal-
culating the diabatic states at each value of p: in one of these
the diabatic states were calculated from the adiabatic ones
via approximate relations connecting the two.' A second
‘way was to use the same method to determine the diagonal
clements ¥, and ¥}, but to use a semiclassical method to
determine the off-diagonal element ¥, in terms of a tunnel-
ing integral between the two wells. ! This second method pro-
vided a more accurate determination of the off-diagonal ele-
ment ¥, when ¥, was small but, unlike the first, was
restricted to the case where each of the separated wells were
deep enough to individually support at least one quantum
state at the desired range of p. As such it was limited to
energies below the classical reaction threshold, i.e., to the
purely tunneling region of the dynamics.

The present method for obtaining the diabatic states of
eachp from the adiabatic ones is as easily applied as the other
two. Unlike the second it does not require each of the wells to
suppert a quantum state and unlike the first it is still accurate
atsmall V. Thus, it has virtues of both previous methods. In
the energy range where those two methods were applied'?
all three methods give similar results for the transition prob-
ability, P, and, indeed, the present method is the one em-
ployed in Ref. 2, as already noted there. An advantage, nev-
ertheless, of the semiclassical method givenin Ref. 1 over the

1815

other two methods is that it can be used for extremely small
Vy's.
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