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The semiclassical theory of infrared vibrational intensities is extended and applied to multidmensional systems. The validity
and utility of the semiclassical approach is assessed by comparison with perturbative and exact quantum results for one
nonresonant and two resonant mode! Hamiltonian systems. Approximate mean trajectories are found to provide intensities
accurate to within ~20% and frequencies accurate to within ~ 1% for almost all transitions studied. More accurate semiclassical
results can be cbtained by using exact mean trajectories and, for intensities in the nonresonant system, trajectories determined
by an improved correspondence rule. The advantages and limitations of the semiclassical method are summarized.

I. Introduction

Vibrational intensities provide a sensitive probe of the finer
structural features of a molecule. Until the 1970’s the inter-
pretation of intensity data (i.e., the relationship of dipole moment
changes to atomic displacements) was severely limited by un-
certainties in normal coordinates as well as the sign ambiguities
of the normal-mode dipole-moment derivatives' (experiments
measure the square of the derivative). A steady advancement in
intramolecular dynamics and, in particular, vibration-rotation
analysis in the 1960’s and 1970’s led to more reliable force con-
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stants and normal coordinates, including the use of interactions, |

such as Coriolis coupling, to aid in the sign determination of dipole
derivatives.! In addition, beginning in the 1960’s, quantum
structure calculations proved capable of independently and ac-
curately providing the signs of the dipole derivatives, thereby
removing a major obstacle to the interpretation of vibrational
intensities. These breakthroughs, coupled with modern experi-
mental methods which are capable of measuring band intensities
to an estimated accuracy of 1-2%,? have led to what Crawford'
describes as a “renaissance” in vibrational spectroscopy.

(1) Crawford, B. In “Vibrational Intensities in Infrared and Raman

Volume 20 of Studies in Physical and Theoretical Chemistry, Chapter 1.
(2) Riley, G.; Suzuki, S.; Orville-Thomas, W. J.; Chapter 8 of ref 1.
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TABLE I: Potential Parameters

system wy Wy o 8
incommensurate 0.7 1.3 -0.1 +0.1
Fermi resonance 1.4 0.7 -0.04 -0.04
Henon-Heiles 1.0 1.0 0.0125'? A

With the availability of accurate infrared intensity data and
the possibility of its reliable interpretation, it becomes desirable
to develop reliable and straightforward methods of calculating
vibrational intensities for a given molecular potential energy
surface and set of dipole moment derivatives. The purpose of this
paper is to apply and extend the semiclassical theory of the
calculation of vibrational intensities for isolated molecular systems
via the power spectral method.> The semiclassical approach to
spectroscopy is of interest because it provides certain computational
advantages, which are discussed later below, over purely quantum
methods. We study both semiclassically and quantum mechan-
ically the intensities of transitions induced by several arbitrary
dipole moment functions in resonant and nonresonant model
Hamiltonian systems. Since vibrational frequencies are a natural
by-product of intensity calculations and provide an additional check
on approximate methods, we include them in our study. In ad-
dition, we compare, for the nonresonant system, the semiclassical
and quantum evaluations of the vibrational state dependence of
the dipole moment average and its mean square deviation. The
former is useful in the determination of the signs of dipcle moment
derivatives and the latter is related to a transition-intensity sum
rule.

The paper is organized as follows. In section II we describe
the model systems and dipole-moment functions to be studied.
In section I1I a semiclassical theory of vibrational transitions is
discussed; the variational and perturbative quantum calculations
are outlined in section IV. Detailed results are presented in section
V and discussed in section VI. Conclusions follow in section VIIL.

II. Model Systems and Dipole Functions

To extend semiclassical intensity calculations to multidimen-
sional systems and to test approximations therein it is convenient
to consider first a set of two-coordinate systems, since the detailed
quantum mechanics is most easily handled for such cases. The
semiclassical spectral method itself is readily extended to higher
dimensional systems>* and has been used in dynamical studies
on a variety of molecular systems.* Our model systems consist
of two coupled vibrational degrees of freedom and are described
by the Hamiltonian

H=Ho+V (IL1)
Hy = V(o2 + 2 + w2x? + 0,y (11.2)
V= a(xy? + x%) (11.3)

Here p, and p, are the momenta conjugate to the mass scaled
coordinates x and y, A = 1 throughout, the quantities w, and w,
are unperturbed (angular) frequencies, and the constants a and
B are coupling coefficients. Three sets of the parameters (wx @)y
a, B) were chosen to yield systems with qualitatively different
energy eigenvalue patterns and absorption spectra, and to establish
a correspondence with systems which have been fully characterized
semiclassically. The most extensively studied system is nonre-
sonant and is obtained by choosing incommensurate fundamental
frequencies.S Two resonant systems are also considered: the
Henon-Heiles system’ with w, = w, and a Fermi resonance
system® with w, = 2w,. The parameters for all three systems are

, (3) Noid, D. W.; Koszykowski, M. L.; Marcus, R. A.J. Chem. Phys. 1971,
67, 404.

(4) Koszykowski, M. L.; Noid, D. W.; Marcus, R. A. J. Phys. Chem. 1982,
86, 2113,

(5) McDonald, J. D.; Marcus, R. A. J. Chem. Phys. 1976, 63, 2180.
Hansel, K. D. Chem. Phys. 1978, 33, 35. Powell, G. E.; Percival, 1. C. J. Phys.
A 1979, 12, 2053. Poppe, D. Chem. Phys. 1980, 45, 371. Farantos, S. C.;
Murrell, J. N. Ibid. 1981, 35, 205. Carter, D.; Brumer, P. J. Chem. Phys.
1982, 77, 4208.

(6) Noid, D. W.; Marcus, R. A. J. Chem. Phys. 1978, 62, 21 19.

(7) Noid, D. W.; Marcus, R. A. J. Chem. Phys. 1977, 67, 559.
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listed in Table I.
“intensity”

For our model systems we consider the

T = (A )P = o (11.4)
where ¥, and ¥; are final and initial vibrational wave functions,
and p is a (here unspecified) component of the dipole moment
operator fi%®. The relationship of eq I1.4 to experimentally ob-
servable quantities is discussed, among other places, in ref 9-11.
Since the systems to be studied are best considered as models of
coupled normal modes, the dipole functions described below are
chosen to be Taylor expansions in the normal coordinates (i.c.,
x and y) about equilibrium values.

The dipole moment functions used to induce vibrational tran-
sitions in each system, apart from any constant term which does
not contribute to transition intensities, are described below; explicit
dipole expressions appear in the tables accompanying sections v
and V1. For all systems we first considered the linear approxi-
mation to the dipole function, p = x + y, and arbitrarily set the
coefficients (3u/dx), and (3p/dy), equal to unity. In addition,
for the incommensurate and Fermi resonance systems we examined
dipole functions with higher order terms in order to determine
if the accuracy of the semiclassical results is more or less inde-
pendent of the form of the dipole function. The nonlinear dipole
used for the incommensurate system has the form of the com-
ponent of u parallel to the molecular axis in OCS (ref 12) without
the bending coordinate; the coefficients are arbitrary. The non-
linear dipole used for the Fermi resonance system has the form
of the component of i perpendicular to the molecular axis of CO,
(ref 13); the coefficients are approximately those for CO,, scaled
so that the coefficient of y is —1. The coefficients in our polynomial
expansions of the dipole function are frequently referred to as the
dipole-moment derivatives.

II. Semiclassical Theory

In the 1970’ the accurate semiclassical evaluation of energy
eigenvalues for bound two and three degree-of-freedom Hamil-
tonian systems demonstrated the validity and utility of semi-
classical methods in the description of molecules. The first of these
involved trajectory quantization®314-1¢ and was followed by the
use of classical perturbation,'’*® and iteration-variation® methods.
The first method readily yields a Fourier series representation of
any dynamical variable® and is thereby capable of providing a
quick semiclassical evaluation of dipole matrix clements. Before
discussing our methodology for semiclassical spectral calculations
via trajectories, we briefly outline some pertinent historical
background.

The idea of spectral intensities being related to Fourier coef-
ficients is an old one, dating back to the pre-1925 era of old
quantum theory.2"% ~ At that time, the connection between the

, (8) Noid, D. W.; Koszykowski, M. L.; Marcus, R. A.J. Chem. Phys. 1979,
1, 2864.

(9) Overend, J.; Chapter 2 of ref 1.

(10) Zerbi, G.; Chapter 3 of ref 1.

(11) Barrow, G. M. “Introduction to Molecular Spectroscopy™ McGraw-
Hill: New York, 1962.

(12) Foord, A.; Whiffen, D. H. Mol. Phys. 1973, 26, 959.

(13) Suzuki, I. J. Mol. Spectrosc. 1980, 80, 12.

(14) Noid, D. W.; Koszykowski, M. L.; Marcus, R. A. J. Chem. Phys.
1980, 73, 391. .

(15) Sorbie, K. S.; Handy, N. C. Mol. Phys. 1977, 33, 1319. 1976, 32,
1327. Sorbic, K. S. Ibid. 1976, 32, 1571,

(16) DeLeon, N.; Heller, E. J. J. Chem. Phys. 1983, 78, 4005.

(17) Jaffé, C.; Reinbardt, W. P. J. Chem. Phys. 1982, 77, 5191.

(18) Swimm, R. T.; Delos, J. B. J. Chem. Phys. 1979, 71, 1706.

(19) Born, M. “Mechanics of the Atom™; Ungar: New York, 1960.

(20) Percival, 1. C.; Pomphrey, N. Mol. Phys. 1978, 35, 649, and refer-
ences cited therein. Colwell, S. M. Chem. Phys. 1980, 46, 165.

(21) Bohr, N. “On the Quantum Theory of Linc Spectra” in “Sources of
Quantom Mechanics™; Van der Wearden, B. L.; Ed.; North-Holland: Am-
sterdam, 1967; pp 95-137.

(22) Van Vleck, J. H. Bull. Natl. Res. Counc. U.S.A. 1926, 10, part 4.

(23) Van Vleck, J. H. Phys. Rev. 1924, 24, 330.
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classical mechanical frequencies of motion in a particular sta-
tionary state and the quantum spectral frequencies was understood
only in the limit of Jarge quantum numbers and was a reflection
of the correspondence principle for frequencies.'®?-2* The as-
sociated correspondence between classical Fourier coefficients of
the mechanical motion and quantum spectral intensities in this
limit was regarded as an additional hypothesis.'*-2 In the small
quantum number limit, it was realized that there was also an
intimate, yet unspecified, connection between the classical motion
and quantum line spectra. It was considered likely that the
observed transition probabilities (and frequencies) could be ob-
tained by averaging, in some manner, the appropriate classical
quantities over the “continuous succession of “disallowed” orbits
(i.c., trajectories) in between the initial and final states™?* Many
specific, ad hoc forms for this averaging were proposed® and,
although some were found to qualitatively describe X-ray tran-
sitions in atoms, the limited experimental data were too crude to
establish the accuracy of any one particular intensity expres-
sion.2*2¢  Although correspondence principle discussions and
calculations focused on separable systems, the extension of these
ideas to weakly coupled, nonseparable systems was anticipated.'*?!

In the modern era, renewed interest in the semiclassical cal-
culation of spectral intensities has stemmed from (1) the success
of semiclassical quantization for eigenvalues (and hence transition
frequencies) of nonseparable systems, (2) the feasibility of nu-
merically obtaining Fourier coefficients® by integrating classical
trajectories, (3) some advantages over purely quantum methods,
and (4) the emergence of correspondence rules (discussed below)
for selecting a particular intermediate orbit, thereby eliminating
the impractical averaging, supposed in the old quantum theory,
over a family of intermediate orbits. In a different context, Wilson
and co-workers?” have derived methods for obtaining purely
classical ro~vibrational bandshapes for species in the dilute-gas
and solvated phases. In this approach classical power spectra for
specific trajectories are ensemble averaged over a Boltzmann
distribution and then approximately corrected for quantum effects.
Heller et al. have used a wavepacket propagation technique which
employs classical trajectories to obtain electronic absorption spectra
for molecular photodissociation. As noted earlier? their method
is complementary to the present one, which deals with purely
vibrational (or ro~vibrational) spectra.

Recent analytical and numerical work, relevant to this study
and aimed at identifying the correspondence rules mentioned
above, is summarized below. Noid, Koszykowski, and Marcus?
(NKM) compared quantum and semiclassical results in limited
studies on 2D and 3D incommensurate systems. Semiclassical
frequencies, obtained as averages of thosc associated with tra-
jectories corresponding (approximately) to the initial and final
states, were found to agree well with the quantum frequencies for
fundamental transitions from the first few states of these systems;
intensities were not included in this study. Subsequently, intensive
studies on diatomics have confirmed the accuracy and utility of
semiclassical mechanics in predicting vibrational frequencies and
intensities in 1D systems. First, NKM* demonstrated, for a Morse
oscillator with linear dipole (u = r), that selecting a trajectory
with mean action J = (J + J%)/2 (throughout primes denote final
state quantities and unprimed quantities are those of the initial
state) yields, in addition to a Hermitian dipole operator,® analytic
agreement between the quantum and semiclassical frequency, and
approximate agreement between the intensities in the limit A/n
& 1 where A = n’— n is the difference between the final and initial
quantum numbers.?® Second, in a related study, Stine and Noid*?

(24) Kemble, E. C. Phys. Rev. 1925, 25, 1. Kemble, E. C. Proc. Natl.
Acad. Sci. U.S.A. 1924, 10, 274. Fowler, R. H. Phil. Mag. 1928, 49, 1272,

(25) E.g.. six such expressions were proposed by Hoyt, F. C. Phil. Mag.
1923, 46, 135.

(26) Hoyt, F. C. Phil. Mag. 1924, 47, 826.

(27) Fredkin, D. R.; Komomicki, A.; White, S. R.; Wilson, K. R. J. Chem.
Phys. 1983, 78, 7077. Berens, P. H.; White, S. R.; Wilson, K. R. Ibid. 1981,
75, 515. Berens, P. H.; Wilson, K. R. Ibid. 1981, 74, 4872,

(28) Heller, E. J. Acc. Chem, Res. 1981, 14, 368. Kulander, K.; Heller,
E. J. J. Chem. Phys. 1978, 69, 2439. Heller, E. J. Jbid. 1978, 68, 3891.

(29) Percival, 1. C.; Richards, D. J. Phys. B 1970, 3, 1035.
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obtained, for many of the transitions considered, excellent nu-
merical agreement with quantum results by using trajectories with
J = (J + J)/2 to determine frequencies and intensities of vi-
brational transitions in CO, NO, and HF; accurate RKR potential
energy functions and ab initio dipole-moment functions were used
in these calculations.

Exact analytical results for the quantum—classical intensity
correspondence for both large and small quantum numbers appear
thus far to be confined to the harmonic oscillator;3 approximate
analytical results are available for the Morse oscillator**3 and for
the Coulomb potential.*» Our study involves other potentials and
is based on numerical results. We seeck accurate semiclassical
results from a single trajectory for each transition and therefore
test the conjecture that it will be a good approximation to use a
trajectory whose actions, Ji(nf) [i = 1, 2], are the averages of the
initial and final state actions, i.e., n° = (m + n?)/2 =nm + 8;/2
= A, The frequencies and intensities so determined are here
termed wgc and Jsc, respectively. We also test the idea that more
accurate semiclassical intensities, for transitions with 4,/m; ~ 1

‘in the incommensurate system, will be obtained from a corre-

spondence rule which is based on Naccache’s analytic results for
the harmonic oscillator** and prescribes nf < #;

Slightly less accurate values for the transition intensities are
found, in the present paper, to be

Ie=(1+1Y/2 (11L1a)
with associated frequency?
dgc = (w + ) /2 (I11.1b)

where (/,w) and (/') are the classical intensities and frequencies
obtained from trajectories corresponding to the initial and final
states, respectively. Equation IIl.1a is of possible interest if
eigentrajectories for the states involved in the transitions under
study happen to be available. In the case of exact eigentrajectories,
the transition frequencies are simply given by eigenvalue differ-
ences and will agree closely with the quantum frequencies.514
In addition, it is desirable to ascertain the accuracy of spectral
data obtained from approximately quantized trajectories rather
than the exactly quantized trajectories implicit in the above
discussion, i.e., from trajectories chosen to approximate those with
“quantized” actions J(nf), { = 1, 2. These various ideas are tested
in detail in section VI. We conclude the present section with an
outline of the spectral analysis method.

For both quasiperiodic and ergodic motion it has been shown®
that the classical power spectrum [,(w) is related to the Fourier
transform of the classical dynamical variable u(t)

1 . 1= . R ;

5o lim 5,| j; dr p(e) exp(-iwn)|  (1112)
where the time dependence of u is obtained by integrating, in the
case of a nondegenerate system, a single trajectory. (A degenerate
system requires an ensemble of trajectories, chosen so as to average
over the phases corresponding to the zero frequency modes.’)
However, for a transition the connection between the classical
and quantum spectra is clear, at present, only for classically
quasiperiodic motion, to which we restrict our study. The eval-
uation of eq II1.2 and the method by which intensities are obtained
for finite time T are described in the Appendix.

The relation between eq 111.2 and the quantum matrix element
has been described elsewhere*?? for 1D systems and an analogous
derivation is readily given for a multidimensional systemn. Consider
the matrix element for x for the |#) — |#’) transition:

I(w) =

(30) For multidimensional systems it has been shown, via the introduction
of semiclassical wave functions in the quantum matrix element* or, equiva-
lently, via the classical limit of the Wigner formulation of quantum me-
chanics,”! that arithmetic mean quantum numbers provide the correct semi-

.classical correspondence with quantum matrix elements in the large quantum

number limit.
(31) Jaffg, C.; Brumer, P., manuscript in preparation.
(32) Stire, J. R.; Noid, D. W. J. Chem. Phys. 1983, 78, 1876.
(33) Naccache, P. F. J. Phys. B 1972, 5, 1308.
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- - l -
iy = [ (E9) (i) d
~ J; ! e—lrlﬂ'-iu(jw'ﬁ',op)ezrm-ﬁ dw

! =) o-2xAR g
~ _[; w(Je)e2ER dip (1IL.3)
Here w = (w;, wy, ..., w,) are the angle variables conjugate to the
actions J = (Jy, ..., J,); the primitive semiclassical wave function
(W) = exp(2=im-W) and the semiclassical action and angle
operators, J® and ™, have been introduced; and A = /'~ fi. Since
a rigorous way of proceeding from the second to third line of eq
I11.3 is not known at present, we have followed previous work4
and obtained the classical form of the integrand by introducing
the (unspecified) correspondence J* = J(F), with 7 = f(#,i").
Implicit in eq I11.3 is the use of the same angle variables w for
both the initial and final states. That is, it is assumed that both
wave functions correspond, classically, to trajectories with the same
type of motion and we therefore do not expect this semiclassical
approach to describe transitions between states characterized by
trajectories separated by a separatrix in resonant systems. In
addition, it is not known if transitions involving initial and/or final
states which require a uniform semiclassical approximation can
be described by eq II1.3. _

The details of the relationship between eq I1L3 and eq I11.2
are as follows. Since the motion is assumed quasiperiodic x can
be gcritten as a Fourier series with coefficients which only depend
on

w(Fw) = %#ﬁ(j“)e""“ (111.4)
Introducing eq II1.4 into eq IIL.3 yiclds
1
iy ~ T [ uaJ)ee B g
i Vo
= %Mm(-")ém.i
= u3(F) (1IL5)

Thus the semiclassical intensity is luz(FI? with associated fre-
quency A-® where & = (; ..., w,) are the fundamental frequencies
of a trajectory on the torus specified by J°. As has been dem-
onstrated in ref 3, the Fourier amplitude 413(JF) can be obtained
from any one trajectory with actions J°. Clearly this intensity
is obtained from eq II1.2 by choosing w = A-@.

IV. Quantum Calculations

(a) Variational Calculation. The eigenvalues and eigenvectors
were calculated by using EISPAK™ with a harmonic oscillator basis
set for the incommensurate and Fermi resonance systems. The
largest basis set had N, X N, = 25 X 25 elements where N, -
1 and N, - 1 are the maximum number of quanta permitted in
the x and y degrees of freedom, respectively. In the case of the
Henon-Heiles system a basis set of polar wave functions (n,J) of
the 2D isotropic harmonic oscillator Hamiltonian was used. The
largest basis set had (N + 1)(N + 2)/2 = 630 clements, where
N is the maximum value for n, and / varies in units of 2 from -n
to +n.

(b) Perturbation Theory. For the incommensurate system we
used nondegenerate Rayleigh-Schrodinger perturbation theory®
to obtain second-order eigenfunctions and third-order eigenvalues.
The corresponding degenerate theory* was used for the Henon-
Heiles system, with the following modification. The zeroth-order
polar basis set was chosen to be

9 =0, ifl=%l,£2, £4, &5, ...
= Vo = 172200, £ 9] )]
ifl=2=%3 k=12 .. (IV.])

(34) EISPAK is a package developed by National Activity to Test Software.
Sec, for cxample, “Lecture Notes in Computer Science™; Goos, G.; Hartmanis,
3., Ed., Springer: Berlin, 1976; Vol. 6.

(35) Messiah, A. “Quantum Mechanics™; Wiley: New York; Vol. 11.
Alonso, M.; Valk, H. “Quantum Mechanics: Principles and Applications™;
Addison-Wesley: Reading, MA, 1973,
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rather than {¥9 ). The third-order correction to the eigenvalues
does not lift the degeneracy of the / = %3k pairs of states and
therefore does not predict the correct zeroth order wave functions.
The nature of the perturbation’ indicates, however, that the de-
generacy of these states should be lifted by some higher order
theory, and indeed the variational calculation described in part
(a) displays this feature. Perturbation intensities obtained via eq
1V.1 were found to be in qualitative agreement with the exact
quantum results whereas those obtained by using {¥2,} were not.
Since primitive semiclassical theory also does not predict any
splitting of / = &3k states, we propose that semiclassical intensities
for transitions involving these states be obtained from trajectories
as follows. Let us consider a transition from an / ¢ %3k initial
state ¥, to a final state W,y with /= £3k. The semiclassical
intensity is taken to be

Isc = K ¥l ¥a )
= 1/2[|4] + |BP + AB' + A'B]  (IV.2)

where 4 = (Y jul¥,,) and B = (¥, _+lu|¥,,) are obtained
semiclassically from the appropriate mean action trajectories, as
described in section III. This formula is tested in section VI.

In the Fermi resonance case a perturbative treatment given by
Sanders?® was used. In a footnote®’ we point out several errata
for the Fermi resonance paper of NKM?® and the implications for
Sanders’ comparison to their results.

V. Results

The results for the semiclassical frequencies are reported, in
Tables II-IX, to three decimal places and the intensities to two
significant figures (cf. the Appendix). For the purpose of com-
parison the quantum results are reported to the same accuracy
although the variational calculations readily yielded frequencies
converged to four decimal places and intensities to three significant
figures.

Table 11 lists exact (Q) and semiclassical (SC) frequencies and
intensities for fundamental, first overtone, and binary combination
transitions of the incommensurate system with 2 = x + y. The
most highly excited initial state is (3,3) whose eigenvalue is ~60%
of the dissociation energy. The initial state is labeled by (n),n2)
and the final state by (n’,,n). The quantities labeled SC were
obtained from approximate mean trajectories, i.e., from trajectories
with Cartesian initial conditions determined®® by the zeroth order
(unperturbed) Hamiltonian Hy and the mean “quantum numbers”
A = (n + n’)/2,i = 1,2. The accuracy of spectral data obtained
via such trajectories is assessed in section VI. With the resolution
employed in this study (see Appendix) classical spectral peaks
with intensity =10 were discernable above the “background”
noise. Smaller intensities (.g., higher overtones) can be obtained
by increasing the spectral resolution via longer trajectories.

In Table III are given results of first-, second-, and third-order
transitions in the incommensurate system, using a nonlinear dipole

(36) Sanders, J. A. J. Chem. Phys. 1981, 74, 5733.

(37) In the NKM? paper there is a sign error in cg 1.1, the last term of
which should be Ax(y? + ax?) rather than Ax()? - ax?). In addition, under
E, (3rd column) in Table II, for the state (2,1) the entry should be 2.422
rather than 2.442 and for state (4,-1) it should be 3.908 rather than 3.906.
In both cases the agreement with the semiclassical eigenvalue, E in column
4, improves. Furthermore, Sanders used the NKM? Hamiltonian and hence
the wrong sign for a in a comparison of his perturbation theory to the NKM
results. We therefore performed his calculation with the correct sign for a
and found better agreement between his eigenvalues E,, and the quantum
cigenvalues E than demonstrated in Table II of ref 36; no such corrections
were attem,| for his Table 1. Finally, in Table I of ref 8 (and hence Table
11 of ref 36) the labels of the #, = 6 states should be interchanged as follows:
(6,2) == (6,1) and (6,~2) <~ (6,-1).

(38) For the incommensurate system the initial conditions were taken to

P=P=0

where E; = (nf + '/Juwpi=1,2,and Ho= E= E, + E,. Such trajectories
are found to have actions, J, = §px dx and J, = §p, dy, which are ap-
proximately equal to the actions J®* = 2x(n + 1/2) of the exact mean
trajectory. Approximate trajectories defined in this way can be regarded as
perturbations of the associated exact trajectories.

Pxo = (25‘)”1 Pyo = (25,)1/2
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TABLE Il: Frequencies and Intensities for the Incommensurate
System with u=x + y

nan, n'Ln'®  wse wQ Igc® 1Q°
0,0 1,0 0.692 0.691 7.1 Q1) 7.2(1)
0.1 1.283 1.283 3.8 (1) 39
2,0 1.379 1.379 6.0 (4) 4.7 (4)
1,1 1.963 1.963 23 (3) 2.3(3)
0,2 2.552 2.552 8.6 (5) 8.0 (5)
1,0 0,1 0.591 0.591 79 (3) 6.9 (3)
2,0 0.688 0.688 1.5 14
11 1.271 1.271 3.8(1) 3.8¢(1)
3,0 1.373 1.373 1.5 (3) 1.5 (3)
2,1 1.947 1.948 4.7 (3) 4,7 (3)
1,2 2.528 2.529 8.3 (85) 7.8 (5)
0,1 1,1 0.680 0.680 7.6 (1) 73 (1)
0,2 1.269 1.270 7.8 (1) 7.8 (1)
2.1 1.356 1.356 7.3 @) 54 @4)
1,2 1.937 1.938 5.2(3) 4.9 (3)
0,3 2.525 2.526 2.6 (@) 2.6 4)
1,1 0,2 0.589 0.590 1.8 (2) 1.5Q2)
2,1 0.676 0.676 1.5 1.5
1,2 1256  1.258 74(1) 1.7(1)
31 1348 1349 16(3) 17(3)
2,2 1.920 1.922 1.1 (2) 1.02)
1,3 2.498 2.501 24 @4) 2.5 (4)
1,2 0,3 0.587 0.588 2.8(2) 24 (2)
2,2 0.663 0.664 1.6 1.5
1,3 1.241 1.243 1.1 1.2
3,2 1.321 1.323 2503 2.0(3)
2,3 1.891 1.894 1.8(2) 1.7 (2)
1.4 2.466 2472 5.2(4) 5.2(4)
4,1 3,2 0.561 0.564 7.1(2) 6.7 (2)
5,1 0.663 0.664 4.0 3.7
4,2 1.214 1.218 7.0(1) 7.4 (1)
6,1 1.321 1.322 1.1 (2) 9.6 3)
5,2 1.862 1.867 3.02) 2.9(2)
43 2.407 2418 1.8 4) 21 4)
0,4 14 0.640 0.642 1.0 7.7(1)
0,5 1.222 1.227 1.9 2.0
2,4 1.274 1.277 1.2(3) 9.0 4)
1,5 1.846 1.853 23(2) 1.6 (2)
0,6 2.427 2.437 1.5 (3) 1.6 3)
3,3 24 0.563 0.569 14 (1) 1.1 1)
4,3 0.637 0.639 36 3.1
34 1.189 1.198 14 1.5
5,3 1.267 1.271 1.2 Q2) 9.1 (3)
44 1.806 1.820 6.4 (2) 5.5(2)
3, 2.353 2.376 6.7 (4) 8.2 (4)

S Primes denote the final quantum state. ® The number in
parentheses is the negative of the power of ten, e.g., 7.1 (1) =
7.1 X107,

function and, for the semiclassical calculations, approximate mean
trajectories. A comparison between the semiclassical w's and I's
obtained as above and labeled wgc and Igc with those obtained
from exact mean trajectories (i.e., trajectories of the perturbed
system with “quantized” actions®® J; = 2x(#, + !/,),i = 1, 2) and
labeled wZ- and IE is given in Table IV for both dipole functions.
In Table V we compare, for selected transitions from Tables II
and I, the quantities w’sc and I'sc, as obtained from a different
correspondence rule and with approximate initial conditions, to
wscy Jsc, wg, and Io. The correspondence rule used is an extension
of one derived by Naccacke® for a harmonic oscillator and is
discussed in section VI.

Only limited data for the Henon—Heiles system were calculated
and are presented in Table VI whose format is that of Table II.
For states labeled (#,,m,), n, is the principal quantum number and
n, cosresponds, in zeroth order, to the angular momentum /; states
labeled (ry,myk) with ny = 3k (k = 1, 2, 3, ...) correspond, in zeroth
order, 10 ¥, in eq IV.1 and have (/)q = 0 but (P)q#0. In
Table VI transitions from four selected initial states to all higher
energy states for which n, increases by <2 are considered. The
semiclassical results were obtained from approximate mean tra-

(39) The exact mean trajectories were obtained by the method described
in ref 6.
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TABLE IlII: Frequencies and Intensities for the Incommensurate
System with u=x - 0.75y + 0.1(x* + y*) - 0.20xy

n.n, n',n'y wse wq Isc Iq

0,0 1,0 0.692 0.691 76(1)  1.7(D
0.1 1.283 1.283 24() 24 (1)
2,0 1.379 1.379 7.33) 643
1,1 1.963 1.963 45(3) 46(3)
3,0 2.064 2.064 50(5) 34
0.2 2.552 2.552 22(3) 20(3)
2,1 2.639 2.639 1.8(4) 1.5@)
1,2 3.220 3.221 9.6 (5) 8.2(5)
0,3 3.808 3.809 4.1(6) 3.2(6)

3,0 2,1 0.574 0575 9.9(1) 9.9(1)
4,0 0.681 0.681 3.5 34
3.1 1.246 1.247 28(1)y  29(1)
5,0 1.358 1.358 66 (2) 6.2(2)
2,2 1.818 1.820 1.6 (4) 1.2(4)
4,1 1.914 1.915 1.5 (2) 1.5 (2)
6.0 2.031 2.031 8614 15@)
3,2 2.476 2479 1.4 (3) 1.4 (3)
5.1 2.577 2.579 1.7 (3) 1.6 3)
4,2 3.129 3.133 374 3.2(4)
3,3 a 3.695 a 1.6 (6)

4,1 6,0 0.118 0.116 1.7 (2) 1.6 2)
3,2 0.561 0.564 3.1 () 3.0
5,1 0.663 0.664 5.2 4.9
4,2 1.214 1.218 6.6 (1) 6.8(1)
6,1 1.321 1.322 L1({1) 91
33 1.171 1.780 304 35@
5,2 1.862 1.867 3.1(Q2)  3.1(2)
7.1 1.975 1.977 2.03) 1.6 (3)
4,3 2407 2418 28(3) 33Q)
6,2 2.504 2.510 59@3) 54Q)
53 3.037 3.051 1.3 (3) 1.33)
44 a 3.544 a 1.2 (6)

@ Intensity too weak to yield position; Igg < 107¢.

jectories with Cartesian initial conditions determined® by the full
Hamiltonian H and the mean quantum numbers (#),;). Sem-
iclassical intensities for transitions involving (n,,n,%) states were
determined via eq IV.2. The initial conditions used here are such
that trajectories with 71, = %/, being related by time reversal, yield
identical Fourier transforms of u; therefore only trajectories with
n, = 0 need be considered. Furthermore, the evaluation of the
average value of /, (/) for the trajectories used in the spectral
analysis provides a convenient way of detecting different types
of classical motion, knowledge of which is essential in the ap-
plication of the semiclassical method. Trajectories for which (/) m;
~ n, are always of the precessing’ type while those with (/)(n;
~ 0 are always of the librating’ type.

Data for the Fermi resonance system are presented in Tables
VII-IX which are analogous to Tables II-1V, respectively. The

(40) In polar coordinates the effective potential at © = 0 for the Henon-
Heiles Hamiltonian is

Vi) = YR/ + o) - ar' /3

The cbvious choice for the initial value of 7 (i.c., at the minimum of V) failed
to yicld trajectories sufficiently similar to the corresponding exact trajectories.
Therefore, beginning at the inner turning point 7 where VreJ = y) = E =
(A, + 1)w, we used a linear interpolation to find the value r = /° such that
the difference between A; and (/) yy is minimized; (/); is the average of |
as obtained from a relatively short trajectory. The corresponding Cartesian
initial conditions are (for © = 0, A, = 0),

=P P=0
e = P2 = [2E - Y = YRy /PR + o /D))
Pyo = (”2 +y0p‘0)/x0 = ﬂ!/’D

Initial conditions for i, = 0 states (librating trajectories) were chosen (for ©

= 0) to be

R=pm0  pd=RELS 0= 2E(I-fIN

where f, = 0.99 in order to avoid periodic trajectories along the x axis.”
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TABLE 1V: Comparison of Frequencies and Intensities from
Approximate and Exact Trajectories of the Incommensurate
System

nn, n'n', wse wie  wq Isc IS¢ lq
@u=x+y

4,1 3,2 0561 0.564 0564 7.1(2) 69(2) 6.7(2)
51 0.663 0.663 0.664 4.0 3.7 3.7
42 1214 1.218 1218 7.0(1) 7.2() 74(1)
6.1 1.321 1323 1322 1.1(2) %3(3) 96Q3)
5,2 1.862 1.868 1.867 3.0(3) 2.8(2) 29(2)
43 2404 2420 2418 18(4) 234 214

33 24 0.563 0.569 0.569 1.4(1) 1.2(1) L1(1)
43 0637 0.639 0.639 3.6 34 3.1
34  1.189 1.198 1.198 14 1.5 1.5
53 1.267 1.271 1.271 1.5(2) 8.8@(3) 9.1(3)
44 1.806 1.820 1.820 6.7 (2) 5.3 (2) 5.5(2)
3,5 2353 2377 2376 6.7(4) 8.0(4) 8.2(4)

by p=x-0.75p + 0.1(x* + y*) - 0.2xy

4,1 6,0 0.118 0.115 0.116 L.7(Q2) 1.5() 1.6(2)
3,2 0561 0.564 0564 3.1(1) 2.9(1) 3.0()
5,1  0.663 0.663 0.664 5.2 4.9 49
42 1214 1.218 1.218 66 (1) 6.6(1) 6.8(1)
6,1 1.321 1.323 1.322 1.1(1) 8.9(Q) 9.1(2)
33 1771 1.780 1.780 3.1@4) 32@) 354
52 1.862 1.868 1.867 3.1(2) 3.1 Q) 3.1(2)
7,1 1.975 1.977 1977 2.03) 1.7@3) 1.6(3)
4,3 2407 2420 2418 2.8(3) 34(3) 33(@)
6,2 2504 2511 2510 59@3) S§.3(@3) 54(Q3)
5,3 3.037 3.053 3.051 1.3(3) 13(3) 133

quantum number labeling scheme is that of NKM.? Transitions
for which the principal quantum number n, increases by <3 for
a lincar dipole (Table VII) and a nonlinear dipole (Table VIII)
are considered. The semiclassical results were obtained from
approximate mean trajectories with Cartesian initial conditions
determined*! by the zeroth order Hamiltonian Hy and the mean
quantum numbers (#;,/;). A comparison between semiclassical
results obtained as above with those obtained from exact mean
trajectories*? is given in Table IX for both dipole functions.

In Table X is presented a small sample of the perturbation
theory (QP) results: the superscripts (1) and (2) on Igp denote
first- and second-order intensities. The QP results are compared
to exact (Q) results for transitions from the ground state and one
higher energy state for each of the incommensurate and Fermi
resonance systems with a nonlinear dipole function.

(41) Initial conditions for the Fermi resanance system were chosen in terms
of the parabolic coordinates (£,) and momenta (py,p,) introduced in ref 8.
The initial values of the coordinates were taken to be the positions of the
minima of the effective potentials in £ and 7 [eq 2.7 and 2.8 of ref 8]:

£ =9 = QE/30)'?

where E = (A + 3/2)w = H, is the total energy. For an 4, > 0 case the initial
momenta are

pe = [K° - % + 2VE]?
po = [-K° - o™ + 297E]'?

where the value K° of the separation constant K [eq 2.7 and 2.8 of ref 8] is
determined numerically by requiring®

F &K de = I = 2e(n + )

with ny = A - 2, and n, = [ - 1. Transforming (£%1°pp,0) to the
Cartesian system yields (x°)°p,".p,%). For A, < 0 cases the roles of £ and
n are interchanged in the above procedure; A, = 0 cases are not considered
for reasons discussed in the text.

(42) The exact mean trajectorics were obtained by quantizing the x - p,
surface of section and the total action of one cycle of the motion. For details
of this procedure see ref 6-8. The exact eigentrajectories corresponding to
the (3,-1) and (6,-2) states were also obtained in this way: the associated
semiclassical eigenvalues are Egc = 3.185 and 5.262, respectively, which agree
well with the quantum values Eq = 3.185 and 5.268. This method, which
requires only one surface of section, is simpler than, and just as accurate as,
the two-surface-of-section method used previously® for a slightly different
Fermi resonance system.
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|
TABLE V: Comparison of Semiclassical Results Obtained :
from Different Correspondence Rules for the ;
Incommensurate System

nn, n'n'y, wee® wsc® wq  Isc® I'sc® o |
@u=x+y !

0,0 2,0 1.379 1380 1.379 6.0@) 4.8(4) 4.74) |
0,2 2552 2.554 2552 8.6(5) 7.8(5) 8.0(5) .

1,0 30 1373 1.373 1373 1.5(3) 143) 153) |
1,2 2528 2530 2529 83(5) 7.3(5) 7.8(5) |

0,1 21 1356 1.357 1.356 7.3(@) 5.7(4) 54(4) |
0,3 2525 2.526 2.526 2.6(4) 24(4) 26(4) |

1,1 3,0 1.348 1.348 1349 16(3) 1.73) L7(3) !
1,3 2498 2.500 2.501 24 (4) 24 (4) 25@4) !

O u=x-0.75y + 0.1(x* + y*)-0.2xy i

0,0 2,0 1.379 1.380 1.379 7.3(3) 6.5(3) 64 (3) |
3.0 2.064 2066 2064 5.0(5) 3.7(5) 34(5) ;

0,2 2552 2.554 2.552 22(3) 20(3) 2.0(3):

2,1 2639 2641 2639 1.8(4) 1.6(@) 15(4) !

1,2 3.220 3.224 3.221 9.6(5) 8.1(5) 8.2(S5) !

0,3 3.808 3.816 3.809 4.1(6) 3.3(6) 3.2(6) |

3,0 5.0 1358 1.358 1.358 6.6 (2) 6.5(2) 6.2(2) |
22 1.818 1.819 1.820 16@) 1.3@) 1.2@) |

6,0 2031 2.031 2.031 86@) 794 75@)

3,2 2476 2479 2479 14(3) 1.2(3) 1403

5.1 2577 2577 2579 17(3) 1.6(3) 1.6(3)

42 3129 3.133 3.133 3.7@) 3.2@) 3.2@4)

@ Obtained from trajectories with mean actions. ® Obtained ;
from trajectories with actions determined via eq VI.1. :

In Table XI we compare exact and approximate values of the !
{u)'s for ten selected states of the incommensurate system, ranging
from the ground state (0,0) to a highly vibrationally excited state |
(3,4). For both dipole functions the following notation is used ,
to indicate the different methods of evaluating the averages. The !
quantities SC= and SC denote the dipole average obtained from |
exact and approximate eigentrajectories, respectively, corre-
sponding to the states listed in column 1. The quantities QP®)
and QP denote the average obtained from perturbation theory
via the first- and second-order wave functions. The exact value, |
denoted Q, is provided by the quantum variational calculation. :
For the same ten states various evaluations of the mean square
deviation of g, (s2) — ()2, are compared, in Table X1I, for the
linear dipole function, using the labels SC*, SC, and Q defined E
above; the label MC denotes the microcanonical ensemble average |
of this quantity as obtained by a Monte Carlo method. :

V1. Discussion

In this section we compare in (a) the semiclassical and exact ;
quantum results for the frequencies and intensitics for all threc |
systems, discuss in (b) the quantum perturbation theory results
for all three systems, evaluate in (c) methods of calculating dipole
moment averages and the associated mean square deviation for
the incommensurate system, and compare in (d) ®sc and Jsc (eq;
111.1) to wsc and Igc. i

(a) Semiclassical. (i) Incommensurate System. The results:
in Tables II and I1I show excellent agreement (to three decimal
places) between the semiclassical and exact quantum frequencies
for the lower-order transitions from the lower-energy states. With!
increase in the transition frequency and/or initial state energy,
wsc consistently underestimates wq, but the upper bound on this:
discrepancy is ~1% for the transitions considered here. The:
intensities Jgc are found to agree with Ig to ~20% or better in
all but three of the transitions listed in Tables IT and 1II.

We compare, in Table IV, w§ and I$ to wq and /g for tran-:
sitions out of higher-energy states. These transitions are spe-,
cifically considered since deviations between approximate and exact |
trajectories are found to increase with increasing energy. For all
but the (4,1) — (5,3) transition in (b), w§t agrees with wq to within
+0.001, an improvement over wsc. The intensities /% agree with!|
Iq to ~5% or better for all but two transitions [(3,3) — (3,5) in
(a) and (4,1) — (3,3) in (b)] for which the discrepancies are
~10%. Again, this is some improvement over Isc which is typ-
ically in error by $20%.
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TABLE Vi: Frequencies and Intensities for the Henon-Heiles
System with py=x + y

n.n, n'.n', wge wq Isc Iq
009 1.1 0991 0.991 4.9(1) 5.0(1)
2,0 1.956 1.957 1.5(3) ¢
2:2  1.987 1.987 1.6 (3) 1.4 (3)
1,1 2,0 0970 0.966 5.2 (1) 5.1 (1)
2,2 0.995 0.995 9.9 (1) 9.9 (1)
2-2 a 0995 a ¢
3,1 a 1936 a4 ¢
3-1 b 1.936 b 1.7 (3)
33-7 1995, 1992 21(3)a 20(3)
33/ 1.995,¢ 199 21(3)a 21(3)
33-7 33 ab 0.003 ab c
40¢ a.a 0.888 a,a c
4,2 0913, 0916 2.7()a 3.2(1)
4-2 0913, 0916 2.7(1),a 3.2(1)
44 1.004,¢ 1.004 95(1),a 9.3(1
4~4 1.004,¢ 1004 95(1),a 93D
5.1 1.830,2a 1.835 1.53)a 1403)
s—1 1.830,¢ 1.835 15@3)a 1403)
53- abf 1.885 ab.f c
53 ab,f 1.889 a.b,f ¢
5,5 2.012,¢a 2009 6.5@3)e 63(3)
5~5 2021, 2009 65()a 63(03)
42 44 0.091 0.088 1.1 (1) 11Q)
4-4 a 0.088 a ¢
5.1 0.917 0.918 1.1 1.1
5-1 b 0918 b ¢
53-7 0.976,a 0968 1. o 1.0
537 0976, 0983 1.0° 9.4 (1)
5,5 a 1.093 a ¢
5~5 1.103 1.093 6.2(4) 7.9 @)
6,0  1.835 1.839 7.4 (3) 76 (3)
6,2 a 1.886 a ¢
6~2 b 1.886 b 26 (4)
6.4 1.958 1.955 1.7(2) 1.5 (2)
6-4 a 1.995 a ¢
6,6~ 2.104,a 2.100 55 (6).a 4.4 (6)

66/ 2104, 2101 S55(6),a 6.0(6)

% Intensity too weak to yield posmon Igc < 107°. ©Mean
trajectory is of the librating type. % <107, d Imtlal state
corresponds to a librating !rajectory Final state corresponds
to a librating trajectory. Jsc to be determined from eq 1V.2;
the two /g¢ entries correspond to 141* and 1B1* in that equation
and the two wgg entries to the corresponding frequencies.

TABLE VII: Frequencies and Intensities for the Fermi
Resonance System with u=x + y

n,n, A, wse wqQ Isc I
2.1 3.1 0.672 0.678 1.7 LS
4.1 1.339 1.347 23 (1) 231
51 2.000 2.013 3.24) 2.1 (4)
2,-1 3~1 0.714 0.714 84 (1) 1.2
4,-1 1.432 1437 29 3.0(1)
5-1 2.154 2.161 14 4) 1.6 (5)
3.1 4,1 0.667 0.669 2.3 2.0
51 1.329 1.335 29() 2.8 (1)
6,1 1.985 1.996 4.8 (4) 3.7(4)
6.2 2,106 2.105 1.0(4) 6.8(5)
TABLE VIII: Frequencies and Intensities for the Fermi
Resonance System with u = —y + 0.04xy + 0.004y°
n,n, n',.n', wgc wQ lsc ]Q
3.1 4,1 0.667 0.669 2.1 1.8
5,1 a 1.335 a ¢
: 6,1 1.985 1.996 583) 45013)
6.2 2.106 2.105 2.7 4) 1.8 (4)
3~1 4-1 0.718 0.723 1.2 1.5
5~1 a 1.447 a ¢
6.-2 b 2.084 b 1.9 4)
6.~1 2.162 2.174 1.0 (3) 1.3 (3)
9 Intensity too weak to yield position; Igc < 10-e. ® Approx-

imate trujectory is inverted with respect to exact trajectory.
¢ ]Q <10,
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TABLE IX: Comparison of Frequencies and Intensities
from Approximate and Exact Trajectories of the Fermi
Resonance System

n,n, n’,,n', wse wg’é wQ Isc Ige IQ
@up=x+y
3,1 4,1 0.667 0.670 0.669 2.3 1.9 2.0
5,1 1.329 1.336 1,335 29(1) 2.7(1) 28()
6,1 1.985 1.996 1.996 4.8(4) 3.6(4) 3.714)
6,2 2.106 2.108 2.105 1.0(4) 8.2(5) 6.8(5)
3-1 4-1 0718 0.722 0.723 1.2 1.6 1.5
5~1 1.439 1.447 1447 34(1) 35() 3.5()
6,-2 b 2.077 2.084 b 1.9(5) 2.2(6)
6,—1 2.162 2174 2.174 22(4) 2.8(4) 26 4)
(b) u=-y + 0.04xy + 0004y
3,1 4,1 0.667 0.670 0.669 1.8 1.8
5.1 a a 1.335 a a c
6,1 1.985 1.996 1.996 S58(3) 44(3) 4.5(@)
6,2 2,106 2.108 2.105 2.7(4) 28@4) 1.8(4)
3-1 4,1 0.718 0.722 0.723 1.2 1.6 1.5
5-1 a a 1447 a a ¢
6-2 b 2.077 2.084 b 46(4) 19@4)
6~1 2162 2174 2174 1.03) 14(3) 1.33)

% Intensity too weak to yield position; /g < 10, ® Approx-
imate trajectory is inverted with respect to exact trajectory.
fIg< 10°¢.

TABLE X: Comparison of Quantum Perturbation
and Exact Results

n,n, n'un'y wQp | wq 1§ lgg Iq
(a) Incommensurate System®

0,0 1,0 0692 0691 178(Q) 727¢() 1.7Q1)
0,1 1.283 1.283  24(1) 23(1) 24Q0)
2,0 1.380 1.379 6.7 (3) 70(3) 6.4(3)
1,1 1.965 1.963 5.2 (3) §53(3) 46(3)
3,0 2.066 2064 25(7) 27@) 34(05)
0,2 2,555 2.552  2.2(@3) 22(3) 20(3)
2,1 2.643 2.639 28@4) 2.7 (§) 1.5 @4)
1,2 3.226 3.221 8.2 (5) 1.04) 8.2(5)
0,3 3.815 3.809 2.2(5) 74 6) 3.2(6)

4,1 6,0 0.113 0.116 2.4 (3) 1.1 (2) 1.6 (2)
3,2 0.569 0.564 35 (1) 42(1) 3.0(1)
5.1 0.669 0.664 9.0 6.3 4.9
4,2 1.231 1.218 1.8 1.1 6.8 (1)
6,1 1.335 1322 1.0Q1) 5.2(2) 9.1(2)
3,3 1.798 1.780 $5.0(2) 34Q2) 351
5,2 1.890 1.867 1.1(1) 44 (2) 3.1()
71 1.998 1.977 83(1) 14 (1) 1.6 3)
4,3 2450 2418 22(2) 45@) 33Q@3)
6,2 2.545 2,510 8.3(2) 142) 5403
53 3.098 3.051 3.2(2) 1.5 (2) 1.3 3)
4,4 3.657 3544 1.5(7) 7.2(1 1.2 (6)

(b) Fermi Resonance System?

0,0 1,0 0698 0.698 7.1(1) 7.0
2,1 1.372 1372 0.0 c
21 1.421 1.421 0.0 ¢
3,1 2.050 2,050 0.0 6.0 (4)
3-1 2.135 2.135 0.0 324

5.1 5,0 0.101 0.102 0.0 c
5-1 0.195 0.197 0.0 [

6,1 0.661 0.661 3.0 2.8
6,2 0.769 0.770 2.2(1) 1.9(1)
6-2 0.832 0.833 68(3) 50@3)
6.—1 0.921 0.924 1.2@4) 4.6 (5)
7.1 1.319 1.318 0.0 c

7,2 1.441 1.442 0.0 c

7,-2 1.541 1.542 0.0 c

7~1 1.650 1.653 0.0 ¢

8,1 1.972 1.97 0.0 9.8 (3)
8,2 2.105 2.105 0.0 4.3 @)
8,0 2.198 2.199 0.0 1.8 4)
8-2 2267 2.268 0.0 1.5 (5)
8,~1 2.380 2.384 0.0 c

A p=x— 075y+01(x’ +y)—0.2xy. ®u=-y+0.04xy +
0.04y°. €lg <107 '3 not evaluated for Fermi resonance
system,
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TABLE XI: Dipole Moment Averages for Selected States of Incommensurate System

ws b

n.n, SCex sC QP! QP Q scex sC QpP(" QP Q
0,0 ¢ 0.126 0.122 0.123 0.124 P 0.240 0.234 0.236 0.237
1,0 ¢ 0.220 0.210 0.216 0.216 c 0.484 0.470 0.477 0.478
0.1 ¢ 0.295 0.279 0.287 0.290 ¢ 0.499 0.477 0.486 0.490
1,1 c 0.397 0.367 0.399 0.389 ¢ 0.764 0.731 0.754 0.744
1,2 ¢ 0.584 0.524 0.616 0.569 ¢ 1.06 1.02 1.08 1.03
4,1 ¢ 0.720 0.629 0.962 0.699 ¢ 1.61 1.71 1.87 1.55
51 0.812 0.841 0.717 1.28 0.809 1.82 1.92 2.16 245 1.83
4,2 0.910 0.948 0.786 1.51 0.907 1.89 2,01 2.28 2.72 1.89
4,3 1.13 1.20 0.943 2.26 1.13 2.29 247 3.03 4.08 2.26
34 1.23 1.32 1.01 2.38 1.23 2.32 2.57 3.07 4.24 2.32

Susx+y. ®p=x-0.15y + 0.1(x* +y*)—0.2xy. © No attempt made to determine exact eigentrajectory.

The quantaties w’sc and I'sc in Table V were obtained from
trajectories with “quantum numbers”

nf=my= [(n+ A) /())& =Y

This correspondence identity has been shown® to yield exact
agreement between semiclassical and quantum matrix elements
of up to, and including, the fourth power of the position or mo-
mentum operators for a 1D harmonic oscillator. In the classical
limit A,/n; < 1, m, approaches the mean A, from below. Since
the largest differences between m; and #; occur for small 7 and
large A, we therefore consider in Table V transitions with A, 2
2 from states with low vibrational excitation. (Transitions with
A, = 1 are not considered since m; = A, if A, = 1.) It is in this
energy regime that the incommensurate system is closest to two
uncoupled harmonic oscillators for which eq VL1 is exact.
Furthermore, the approximate trajectories used to obtain wse, Iso,
«’sc, and I'sc are most accurate at these low energics. The
agreement between I'sc and I is good in all cases. For 15 of the
20 transitions considered, I'sc is an improvement over Isc. Of
the remaining five transitions, two have values of I'sc which display
the same accuracy as Isc and three have values of I'sc which are
only slightly less accurate than Jgc. For transitions with A, =2
(i = 1, 2) the accuracy of w’sc and wsc is comparable. For the
only transition with A, = 3, i.e., the (0,0) — (0,3) transition in
part (b) of Table V, w’sc overestimates wq by 0.007 and wsc is
clearly more accurate. We note that wgc is exact for a Morse
oscillator.*

Equation VL1 has also been applied to two Morse oscillator
systems®** and, based on numerical agreement with quantum
results, is found to provide more accurate semiclassical intensities
than the use of mean quantum numbers. The analytical basis for
this improvement is established in ref 43.

Results for the Morse oscillator** and the incommensurate
system studied here suggest the use of a mean value corre-
spondence rule for frequencies and the above Naccache one for
intensities of / — 7’ transitions with small 7 in coupled, nonre-
sonant oscillator systems. Since the lower energy vibrational levels
of anharmonic oscillator systems are usually well described by
quadratic functions of the quantum numbers, energy level dif-
ferences will be approximately linear functions of the quantum
numbsers in this energy regime. Therefore a trajectory with mean
quantum numbers should accurately predict the transition fre-
quencies. On the other hand, eq VI.1 could be used to obtain the
corresponding and somewhat more accurate semiclassical inten-
sities than those given by the mean value rule. Note that for larger
7 and 7’ the value of m, (eq VI1.1) approaches A and hence the
frequency and intensity correspondence rules coalesce.

(if) Henon—Heiles System. In Table VI the semiclassical
frequencies wge agree with the exact frequencies wq to ~1% or
better for all transitions considered. For transitions from non-
degenerate states to (n,,n,%) pairs with n, = 3k, wsc is to be
compared to the average of the two associated wq’s for reasons
mentioned earlier in section IV. No reliable semiclassical fre-

i=1,2 (VL1)

(43) Wardlaw, D. M.; Naid, D. W.; Koszykowski, M. L.; Marcus, R. A,
manuscript in preparation.

quencies (or intensities) could be obtained for transitions between
two “precessing” states whose mean trajectory was of the librating
type, in agreement with the discussion (in section III) concerning
the applicability of the present semiclassical method via eq 1I1.3.
Otherwise the semiclassical intensities Jsc are found to agree with
Iq to ~20% or better. When both the initial and final states are
described by librating trajectories, Jsc is incorrect, e.g., (0,0) —
(2,0). This feature, which is displayed by other (n;,n,=0) —
(n’,,n’;=0) transitions not reported here, is explained by the nature
of the correct semiclassical “librating” states (see below).
Noteworthy is the success of eq 1V.2 for transitions involving
(m.m) states, as well as the fact that reliable semiclassical results
are obtained for transitions from a precessing (librating) state to
a librating (precessing) state for which the mean trajectory is of
the precessing type. This latter feature is probably explained by
noting that the correct semiclassical “librating” states are obtained
from three equivalent librating trajectories (related by successive
rotations of 120°) via a uniform approximation'” and, as such,
span the same region of configuration space as precessing tra-
jectories.

(iif) Fermi Resonance System. The semiclassical frequency
wsc usually underestimates wq by S1% for the transitions con-
sidered in Tables VII and VIII. The extent of agreement between
Isc and Iy is found to vary more strongly with the transition under
consideration than in the incommensurate and Henon-Heiles
systems. For example, in Table VII, Isc and Iq agree to two
figures for the (2,1) — (4,1) transition yet differ by ~30% for
the (2,-1) — (3,-1) transition. In genecral, although we find that
the approximate mean trajectories chosen for this system do not
provide as accurate semiclassical frequencies and intensities as
do those of the other two systems, they nevertheless provide
reasonable estimates of the exact results. However, semiclassical
results are only available for a limited number of transitions, those
in which the sign of #, remains unchanged. In order to understand
this limitation within the context of the present semiclassical
theory, we first note that the Fermi resonance system admits three
distinctly different shapes of xy trajectory plots, all of which are
depicted in the figures of ref 8. C-shaped trajectory plots cor-
respond to states with i, > 0, inverted C-shaped to n, < 0 states,
and the third shape to separatrix trajectories. Implicit in eq I11.3
is the idea that the angle variables of one (initial state) wave
function can be used to describe the other (final state) wave
function, an assumption not expected to hold for transitions be-
tween states described classically by trajectories of different shapes.
Attempts to obtain reliable values of wsc and Igc for such tran-
sitions were unsuccessful. Furthermore, since the correct semi-
classical characterization of the n, = 0 states via trajectories and
their relation, if any, to the separatrix trajectories are not known
at present,* transitions involving n, and/or n’ = 0 states are not
considered in the present paper.

We compare, in Table IX, wi: and J§; to wq and I, for selected
transitions. For all but the (3,1) — (6,2) transition in both (a)
and (b) w& is closer to wq than is wsc and in all cases /5t is an
improvement over Isc. Several features of the (3,-1) — (6,-2)

(44) Noid, D. W.; Marcus, R. A., unpublished results.
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TABLE XII: Transition-Intensity Sums for Selected States
of Incommensurate System

Isym= (- w? a

n,n, energy scex SC Q MC¢
0,0 0.995 b 1.12 1.11 1.33
1,0 1.687 b 2.60 2.56 2.27
0,1 2.278 b 1.96 1.92 3.09
1,1 2.958 b 3.51 3.40 4.04
1,2 4.216 b 4.50 4.27 5.85
4,1 4.975 b 8.39 7.98 7.02
5.1 5.639 9.54 10.1 9.55 8.05
4,2 6.193 8.99 9.80 8.99 8.99
4,3 7.393 10.0 114 10.0 10.9
3,4 7.952 9.49 10.9 9.39 11.9

-

9 u=x+y b Noattempt made to determine exact
cigentrajectory. € The error in cach MC entry is ~1%.

transition in Table IX are noteworthy. (1) w§ and J&, as ob-
tained from an exact mean trajectory*® with (#,,4,) = (4.5,-1.5),
differ significantly from the exact results wq and Ig. (2) An
attempt to obtain reliable intensity results from the exact eigen-
trajectories with (m,,1,) = (3,-1) and (6,-2) via eq IIL1 was also
unsuccessful. (3) To understand this anomalous case we examined
xy plots of the (4.5,~1.5) and (6,~2) exact trajectories and found
them to have shapes approaching those of separatrix trajectories.
(4) The discrepancy between the semiclassical and exact eigen-
values*? is much larger for the (6,~2) state than any other state
with n, < 6, a feature shared by the related Fermi resonance
system studied elsewhere.$ Since it has been noted* that a uniform
approximation is required for semiclassical states near the sep-
aratrix in this type of system, the above results indicate that the
primitive semiclassical calculation for this transition is inadequate.

(b) Perturbation Theory. Many of the conclusions described
below are illustrated by the limited data presented in Table X.
We first summarize our findings for the low-order quantum
perturbation treatment of the incommensurate and Henon—Heiles
system. Using standard third-order perturbation theory (section
IV) we found good agreement (i.c., £0.001) between wsc and wq
only for transitions of order <2 from the lowest energy states for
both systems. As the energy of the initial or final state increases
wqp consistently overestimates wq by as much as 3% for some of
the transitions studied. For example, third-order transitions from
the ground state of the incommensurate system display deviations,
wqp ~ Wo» of up to +0.006, whereas wgc — wq < -0.001. Like the
primitive semiclassical method, the third-order perturbation
treatment does not predict a splitting of the (n;,n,) states. The
first- and second-order perturbation theory intensities /{3 and 7§}
differ from each other by $5% or less and agree consistently with
Iq only for transitions of order <2 from the lowest energy states.
For low-order transitions (i.e., <1) from higher energy states I}
is more accurate than /§} but less accurate than sc. As the energy
of either the initial or final state increases, 7§} and I§}} begin to
differ substantially from each other (in some cases by more than
an order of magnitude) and to provide, in general, unreliable
estimates of . Nevertheless for (n,,0) — (r,,0) transitions in
the Henon~Heiles system quantum perturbation theory gives better
intensity results than the semiclassical method, although dete-
riorating as the energy of either state becomes large. For the
incommensurate system, a semiclassical treatment with approx-
imate mean trajectories is superior to the perturbation theory used
here.

When Sanders’ second-order perturbation theory for the Fermi
resonance system is used, the frequencies wqp agreed with wq to
~ 1% or better for all transitions studied; in many cases the error
was only +0.001. For transitions from each of the first six states
the perturbation intensities Jqp agreed with /g to ~10% or better.
For higher energy states this error increaseg and for some tran-
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sitions /qp differed substantially from Iq, e.g., for the (5,1) = (6,1)
transitions in Table Xb the differences ranged from 8% to 260%.
For certain transitions, as determined by the particular dipole
function under study, Sanders’ perturbation theory predicted a
matrix element of zero although the exact results indicated a small
but finite intensity. The semiclassical method, when applicable,
predicted a finite intensity for these transitions.

(c) Dipole Moment Averages. In general, the measurement
of vibrational intensities provides only the magnitude of the dipole
derivatives and their signs must be determined by independent
means (section I). One such means relies on the dependence of
the average value of the dipole moment function, {u) = (¥ju¥,),
on the vibrational state. That is, by comparing experimental
values of {u), as obtained by measuring the Stark effect for lines
in a vibration—rotation spectrum using ultrahigh-resolution infrared
nonlinear laser spectroscopy,*’ to calculated values for various sign
choices of the dipole derivatives, it is possible, in principle, to make
the correct sign assignment. Approximate values of (u), as ob-
tained by several different methods, are compared to the exact

. (Q) values in Table XI for the incommensurate system. It can

be seen that the perturbation results are superior to the semi-
classical results only for the lowest energy states for both dipole
functions. However, as the energy increases QP("? and QP begin
to diverge from each other and to provide unreliable estimates
of Q. On the other hand, SC continues to provide reliable esti-
mates of Q as the energy increases; in the worst case presented
here, SC overestimates Q by 11%. Such errors at high energy
could be reduced by the use of exact, rather than approximate,
eigentrajectories as is indicated by the excellent agreement between
SC= and Q for the states (5,1), (4,2), (4,3), and (3,4).

We next examine the quantity {(u?) — (x)? which, by com-
pleteness, is equal to the sum of the intensities for transitions to
all final states from a given initial state, i.e.

Lym = (W) - (u)2 = f.‘EI,“I(‘I'duI‘I’;)Iz (V1.2)
From Table XII it can be seen that the accuracy of the SC* and
SC evaluations of I, are comparable to those for (u) in Table
XI. We compare, in Table XII, the microcanonical (MC) values
of I, to the semiclassical and quantum results. One sees that
for states with ; > n, the MC values are S the Q and SC values
and that for all other states this relationship is reversed.

(d) Averaged Semiclassical Intensities. We also tested the
utility of eq IIL.1 by comparing, for all transitions in Tables II-IV
and VI-IX to which the semiclassical method applied, wsc and
Isc to @gc and Jsc, where all quantities were obtained from ap-
proximate trajectories. No data are presented here. In the
majority of cases considered wgc and &g agreed to within £0.001;
in the worst case there was a discrepancy of wgc — @s¢c = 0.006
or ~0.25%. In most cases Igc and Igc agreed to within ~20%,
with the best agreement (to within ~5%) found for the first-order
transitions in all three systems. Exceptions are some of the second-
and third-order transitions from states of low energy. In such
cases, because of the low vibrational excitation, the initial state
intensity Z; corresponding to the overtone is usually poorly resolved,
leading to inaccurate values of Isc. Although improved spectral
resolution, via longer trajectories, is possible for these cases, no
attempt was made to do so here. For almost all transitions
considered Isc was found to be closer to Iq than was Isc.

The above analysis indicates that, for the systems and transitions
studied, there is an almost linear variation of the semiclassical
frequencies and intensities between the initial and final states. For
several transitions in the incommensurate system this observation
was confirmed by obtaining frequencies and intensities from
trajectories with “quantum numbers” (m,,m,) determined by the
requirement that

(mQ) - m):(ma(N) ~ m) = (n'y = m):(n2 = n) (VL3)

(45) No reliable results for wge and Jgc are available for this transition
since the approximate mean trajectory is “inverted” with respect to the family
of n, < 0 trajectories, i.c., it has the shape of an n; > 0 trajectory, probably
because it lies near the separatrix.

(46) LaBoda, M. L.; Overend, J. Spectrochim. Acta, Part A 1976, 32,
1033.

(47) Luntz, A. C.; Swalen, J. D.; Brewer, R. G. Chem. Phys. Let1. 1972,
14,512,
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for ten equally spaced values of A between 0 and 1. Here (n',n%)
and (m,n,) are the quantum numbers of the final and initial states,
respectively; A = 1 corresponds to the final state and A = 0 to the
initial state; A = 1/2 corresponds to the mean trajectory used in
this study to obtain the semiclassical results.

VII. Conclusions

For the two-dimensional model systems and dipole moment
functions studied here, the semiclassical method provides a good
description of the frequencies and intensities of those transitions
to which it is applicable, as well as accurate values of dipole-
moment averages in vibrattionally excited states. We summarize
our findings by listing the advantages and limitations of the
semiclassical approach to vibrational spectra. Types of transitions
to which the method is inapplicable are discussed under the
heading of limitations.

(i) Advantages and Other Features. 1. A single trajectory is
found to be sufficient to describe transitions up to and including
third order. The trajectory to be used is determined by a cor-
respondence rule which, for nonseparable systems, is only ap-
proximate and is of necessity based on analytic results for 1D
systems. For all three 2D systems, a trajectory with mean
quantum numbers was found to provide reliable semiclassical
frequencies and intensities, the detailed accuracy of these results
depending on the system, the transition, and the use of approximate
vs. exact mean trajectories. For transitions from states of low
vibrational excitation in the incommensurate system more accurate
intensities were obtained with Naccache’s correspondence rule
(eq VL.1). This rule is also found to provide improved intensity
results for the Morse oscillator®*** and a forced harmonic os-
cillator*® but has not been tested for resonant systems.

2. Given a potential energy surface and dipole moment function,
selected individual transitions can be studied by integrating the
appropriate classical trajectories. In contrast, quantum methods
require either diagonalization of the entire Hamiltonian matrix
(variational calculation) or knowledge of a good zeroth order basis
set or some suitably modified form of the Hamiltonian (pertur-
bation theory). The usefulness of this feature has been reported
by Koszykowski et al.*’ in a study of the arrangement of water
molecules on a ruthenium surface. By comparing semiclassical
frequencies (obtained from single trajectories) for a particular
vibrational transition in each of two possible water molecule
arrangements to experimental frequencies, they reported the
resolution of an uncertainty in the orientation of one of the water
molecules in the adsorbed cluster.

3. The approximate trajectories®*4%4! are found to provide
estimates of frequencies, intensities, and dipole-moment averages
which may be sufficiently accurate for certain applications, and
are most accurate at lower energies. More accurate but more
expensive results can be obtained by using exact trajectories. The
advantage of the approximate trajectories lics in the easy deter-
mination of the initial conditions for given quantum numbers.
However, the choice of such approximate trajectories depends
strongly on the system under study. Furthermore, the suitability
of these trajectories should be established by any or all of the
following means: (a) configuration-space trajectory plots to de-
termine the trajectory shape, (b) evaluation of either the exact
classical actions via surfaces of section or the average and mean
square values of state-dependent dynamical quantities (e.g., the
zeroth order actions, JS and J2, in the incommensurate system and
! in the Henon-Heiles system) to determine the proximity of the
approximate trajectory to the associated exact trajectory, and (c)
back-integration to establish the accuracy of the Fourier transform
data. -

4, For transitions involving higher energy initial and/or final
states, standard perturbation theory (incommensurate and He-
non-Heiles systems) provides reasonable estimates for the
third-order frequencies but is unreliable for second-order intensities
which are known to be much more sensitive to the wave functions.

(48) Clark, A. P.; Dickinson, A. S. J. Phys. B 1971, 4, L112.
(49) Koszykowski, M. L., private communication.

The Journal of Physical Chemistry, Vol. 88, No. 3, 1984 545

Although Sanders’ second-order perturbation theory (Fermi
resonance system) is applicable over a wider encrgy range than
the standard theory and provides accurate frequency results, it
too becomes unreliable for intensities as the initial state energy
increases. The semiclassical method, with exact mean eigentra-
jectories if necessary, was found to provide far more accurate
results for such transitions, in agreement with the findings of a
study*® which compared semiclassical, perturbation, and exact
transition probabilities for a forced harmonic oscillator.

5. The convergence of quantum variational calculations, which
require copious quantities of computer time, falls off at high energy
whereas the only restriction on the semiclassical method is that
the motion be quasiperiodic. This advantage of the semiclassical
method has recently been exploited by Knudson et al.* in order
to obtain directional absorption spectra for highly excited states
of the hydrogen atom in a strong magnetic field. Furthermore,
the quantum situation worsens dramatically as the number of
degrees of freedom increases. On the other hand, the semiclassical
approach is readily extended to three or four dimensions, e.g., to
the vibrational degrees of freedom of a triatomic molecule or some
subset of vibrational modes for a larger polyatomic. Recently
developed methods®!-2 for plotting three-dimensional trajectories
make it possible to establish the shape of a multidimensional
trajectory and hence determine those transitions to which the
semiclassical method can be applied. Since many triatomics are
incommensurate systems, except in isolated nonlinear resonance
regions, the limitations imposed by resonant systems [see (ii)
below] should not be considered a major practical restriction on
the utility of the semiclassical method. .

6. The utility of the semiclassical method is independent of
the functional form of the dipole moment function. In contrast,
nonanalytic matrix elements in quantum calculations significantly
increase computation times.

7. The semiclassical method could be extended to vibrational
nonresonant Raman spectroscopy, namely, when the matrix ele-
ment (#%uyq)f) of the induced dipole moment ;4 for the |ii) —
|fi") transition can be replaced by (#1eselfi); A,B = X,Y,Z, and
a,p is an element of the polarizability tensor expressed in a
molecule-fixed coordinate system. The conditions for this re-
placement are'® (1) the frequency shifts wyz < wo where wg is
the frequency of the incident radiation, (2) wg; < wg = wo Where
wg is the frequency of the nearest electronic transition, and (3)
the lowest electronic level is nondegenerate. The semiclassical
calculation of Raman intensities would then be analogous to the
cvaluation of the dipole matrix elements studied here. An ex-
pression for a,p in terms of the nuclear coordinates would be
needed. '

(if) Limitations. 1. The application of the present semiclassical
method is limited, in general, to transitions between (a) states
having the same type of classical motion (i.c., states lying on the
same side of a separatrix in resonant systems) or (b) states for
which a uniform semiclassical approximation is not required. The
severity of this limitation depends on the system: for example,
it is worse for the Fermi resonance system studied here than for
the Henon—Heiles system. (In the latter system the semiclassical
method was found to describe some of the transitions involving
states for which a uniform approximation is required.) For
transitions not described by the semiclassical approach one might
use perturbation theory, being aware of its limitations: in the
Henon-Heiles system, standard perturbation theory provided
unreliable second-order intensities when higher energy states were
involved in transitions, and, in the Fermi resonance system,
Sanders’ low-order perturbation theory predicted zero intensity
for certain low intensity transitions. For resonant systems the
semiclassical and perturbative methods are thus complementary.

2. In order to apply the semiclassical method it is necessary
to identify the relevant peaks in the power spectrum of the dipole

(50) Knudson, S. K.; Noid, D. W.; Delos, J. B.; Garett, W. R. Chem. Phys.
Lett, to be submitted.

(51) Noid, D. W.; Wardlaw, D. M.; Koszykowski, M. L.; Marcus, R. A.
J. Phys. Chem. 1983, 87, 2733.

(52) Ashton, C. J.; Muckermann, J. T. J. Phys. Chem. 1983, 87, 2738.
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TABLE XIII: Convergence of Semiclassical Results
for Transitions from the (4,1) State of the Incommensurate
System®

nun,  wsc('h) wsc wsc(?) Igc('h)  Isg Isc(2)
3,2 0.561 0.561 0.561 6.9¢(2) 712 17.1(2)
5,1 0.663 0.663 0.663 4.0 4.0 3.9
4,2 1.214 1.214 1.214 6.9(1) 7.0(1) 7.0()
6,1 1.322 1.321 1.321 1.2(2) 1.1(2) 1.1(Q@Q)
5,2 1.861 1.862 1.861 3.1(2) 3.0(22) 29(2)
4,3 2.408 2407 2.407 21(4) 1.84) 19@4)
Su=x+y.

function. Methods of making this identification without explicit
knowledge of the quantum or semiclassical eigenvalue spectrum
will be considered in future work. For resonant systems, it is also
necessary to know the shapes of the trajectories associated with
the quantum states.

3. At present, the semiclassical assignment and prediction of
vibrational spectra is only understood for transitions occurring
in the classical “regular” regime.
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Appendix
An approximate evaluation of eq II1.2 is achieved by writing
u(t) as a finite, real Fourier series on the time interval (0,7):

p(t) =~ ap/2 + ji’,:[a,, cos (2wkt /T) + by sin (27kt /T)]
(A1)

where N is an integer whose value is defined below. For 1 <k
< N - 1 the coefficients are given by

o = % £ "8t u(s) cos (2rke/T)

by = % j; "t w(t) sin (ke T) (A2)
and fork =0
a0/2= 1t u(e) = (w)
by=0 (A3)

These coefficients are readily obtained from a fast Fourier
transform procedure by providing 2N values of u(¢) on (0,T) at
equally spaced time increments & = T/2(N - 1), where N = 2
and M is an integer. A useful relationship between the coefficients
(eq A2) and the first two moments of u is Parseval’s equality:

N-1
'/2:1:-'.(01‘2 + b2 = (u?) - (s)? (A4)

where (u?) = (1/T)f5dt p*(r). Equations A3 and A4 were
exploited as checks on the accuracy of the Fourier transformation.
For all spectra used in this study, agreement to four significant
figures between the right-hand sides of eq A3 and A4, as obtained
directly from the trajectories, and the corresponding left-hand
sides, as obtained from the fast Fourier transform routine, is found.

Inserting eq Al into eq I11.2, considering only terms describing
absorption (i.c., w > 0) and noting that all cross terms vanish in
the limit of large T yields?

sin? [(wy -~ w)T/2)
(wp — w)?T/2

where w; = 2xk/T. The resolution of /,(w) is w; = 27/ T and

1 . lN—l
L) =  lim ;3:_.(0&2 + 5% (A5)
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the maximum frequency is wy,, = wp., & w/8: for an accurate
spectrum the conditions w; << w << wyy, Must be satisfied. In the
T— o limit eq AS reduces to the well-known line spectrum /,(w)
=1/ 3 (a2 + b2)o(wy — w). In practice the limit 7" — o is
unattainable and /,(w) is given by eq AS. That is, each spectral
feature has a finite width, as determined by the superposition of
contributing terms, and the intensity (square modulus of matrix
element) of a transition is the area under the associated peak. As
an aside, we point out that an arbitrary trajectory displays all the
spectral features characteristic of the classical motion. However,
in this application of the spectral analysis method, only a single
spectral feature, as determined by the particular transition under
consideration, is relevant for any one trajectory involved in the
semiclassical description of that transition.

The area A(wp) under a peak centered on frequency wy is

A(wp) = f% /dw I(w)

l 2 1 sin? [(w; - w)T/2]
4 dw Z (dk + bhz) (mh — w)aT/Z
~ % T(a? + by (46)

The quantity B is the baseline width of the peak; in the second
line the integration limits have been extended to infinity; the prime
on the sum restricts the summation to terms in the neighborhood
of wy. The frequency wy of the transition is taken to be the location
of the peak maximum as determined by an interpolation, between
the two largest terms in the last line of eq A6, based on the relative
values of these two terms. An intensity is deemed to be converged
when additional contributions from the “wings” of a peak do not
alter the sum in the last line of eq A6. With the resolutions w;
(defined below) used in this study, intensities readily converged
to two significant figures; however, if two peaks overlap extensively,
the sum does not converge and a spectrum of greater resolution
is required. This method of obtaining intensities from I,(w) is
an improvement on one used previously>*? which requires longer
trajectories (i.e., greater resolution) to accurately determine peak
heights and hence, via a suitable test function, areas under peaks.
The frequencies wsc and intensities Igc in Tables II-IX were
obtained, as outlined above, from Fourier analysis of trajectories
with 8 = 0.2 =~ 0.037,, and T = 3276.6 =~ 520r,,, corresponding
to ws; = 0.0019 and wy,, = 15.7. Here 7, = 2x/w,, and we have
taken w,, = '/(ws + w,) = 1 for all three systems studied. To
test for convergence with respect to the resolution w; we used the
first half of a trajectory, i.e., T = 1638.3, to obtain another set
of frequencies wgc(1/2) and intensities Isc(l /2) with @, = 0.0038
and wp,, = 15.7. In addition, a limited number of trajectories
were executed with both the total time and step size doubled, i.e.,
T = 6553.2 and & = 0.4, to obtain wsc(2) and Isc(2) with w; =
0.0096 and wg,,, = 7.85. In Table XIII we first compare wgc to
wsc(1/2) and Isc to Isc(1/2) for transitions from state (4,1) of
the incommensurate systemn with g = x + y. These results, which
are typical of those obtained for all transitions studied, indicate
the good agreement between the two sets of data. That is, fre-
quencies agree to £0.001 in all cases and intensities to within £2
in the second significant figure in all but the following cases.
Poorer convergence of Ig(1/2) and Jgc was noted for low-intensity
higher-order transitions, e.g., the 2w, transition in Table XIII,
and for overlapping adjacent peaks Although in such cases these
difficulties can be eliminated by increasing the spectral resolution,
this was not done here and we simply took the results obtained
with w; = 0.0019 as being more accurate. In addition, varying
the number of Fourier transform points at fixed T by doubling
and halving  (and hence halving and doubling w,,,,} was found
to have no effect on the frequencies (to three decimal places) or

the intensities (to two significant figures) for either value of 7.

(53) Noid, D. W.; Koszykowski, M. L.; Marcus, R. A. J. Chem. Phys.
1983, 78, 4018.
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