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ON THE THEORY OF ELECTRON, H-ATOM
AND PROTON TRANSFERS
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The initial part of this article discusses some recent
experiments on electron transfer reactions and comments
on the related theory, including the frequency of solvent
fluctuations. Also described are recent advances with
Babamov and Lopex on the dynamics of H-atom transfer
reactions. We then outline the application of the basic idea
to H and H* transfers in complex systems and in condensed
. phases (fast H-coordinates, slow remaining coordinates).
Similarities and differences between electron transfers and
Hor H' transfers are next described. The relation of the
present theory of such transfers to conventional transition
state theory is discussed.
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I. Outline

There have been a number of recent results i »r electron transfer
reactions (describad in Sec. II) and a recent deve opment in the theory
of light atom transfer (e.g., H, D) reactions by B..bamov and Lopez in
our group (described in Sec. IIIS for collinear systoms such as I + HI
— IH + 1. The latter theory is based on a ''Born-Oppenheimer' sepa-
ration in which the I's are the slow particles and H the fast ones. We
then indicate in Sec. III how this concept is extended to more com- .
plicated processes, such as those occurring in condensed phases. We
also note the breakdown of simple Franck-Condon calculations when
applied to atom transfers. In Sec. IV some similarities and differ-
ences in the transfer of electrons between reactants, as compared
with the transfer of light nuclei such as H and H*, are described. The
relation of the theory of all three to conventional transition state
theory is discussed.

II. Recent Developments in Electron Transfers

This part of the paper discusses some recent work in this field.
The topics we consider are

1. electronic matrix elements in electron transfers; nonadiabaticity
vs adiabaticity; .
2. absolute rate calculations of electron transfer rate constants;

3. solvent effects, both when solvent relaxation is rate controlling
and when it is not; an expression for the rate of formation of sol-
vent fluctuations for facilitating electron transfer is given;

4. comparison of heterogeneous (electrochemical) and homogeneous
rate constants;

5. distance effect on electron transfer rates; and

8. other aspects including orbital and orientation effect on electron
transfer rates (preliminary calculations), photoelectric emission
experiments, and application of the quadratic free energy expres-
gion to the other classes of reactions.

1. Electron Transfer Matrix Elements
Second order bimolecular rate constants kpj have been expressed
in terms of first order constants k(R) at a reactants' separation dis-

tance R by integrating over all R using the pair distribution function
g(R), e.g., refs. (1-4):

ko = [ k(RIG(R) 4 R® dR (1
0

g(R) can be expressed in terms of some "work'' term wr(R) to bring
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the reactants r to a separation distance R:

g(r) = exp[—wr(R)/kT] . (2

Equation (1) is an approximation which tacitly assumes (4, 5) that R
itself is not the reaction coordinate. With this approximation eq. (1)
can be deduced from Ref. (5).

A first order nonadiabatic electron transfer rate constant k__(R)
has been written in the form (1, 6) na

kna(R) = - JHal 2 Pr_p{l6 (8- E) (3)

where Py.i 18 the Franck-Condon overlap factor Kyglvp |’ of the wave-
functions for nuclear motion of reactants and solvent (in state i) and
of products and solvents (in state f), pl‘fl is the Boltzmann distribution
function for finding the system in the i’'th initial state of the entire
system containing the reactants, and the Dirac delta function

5(Ef - Ei) ensures that there is conservation of energy during the elec-
tron transfer act. Because of the 'continuum' of final states {, the.
summation over f becomes an integral and the delta function dis-
appears on integration. ~

We note that the maximum value that the double sum in eq. (3)
can have is when there is extensive overlap of each ¢4 with a cor-
responding y¢ (hence, no Franck-Condon barrier), so that for every 1
Pf. i is unity for some f. The double sum is then found to be
(.‘{ppendix A), approximately 1/hw, where w/27 is a typical relevant
vibration frequency. Thus,

KMX(R) & 2 M e . (4

if k2% exceeds 10" s7* the nonadiabatic approximation (and hence
eq. 4) breaks down, and the reaction is adiabatic under such con-

ditions of no Franck-Condon barrier.

Some recent calculations of H,, for the Fe(H,O):'*’ * reaction
have been reported by Newton and co-workers (3, 7, 8). Previously,
in calculations on t!.is reaction a value of H, of 2.7 cm= at R = 1. 3A
had been obtained, ut a later calculation showed that for a more
elaborate wavefunct on H,, at 7. 3A was 9 cm™', while with a more
favorable geometry ‘or overlap it became 26 cm™' (8). The rpy
which maximized 1 * integrand in eq. (1) was roughly 5.3A, and here
the full calculation ave H,,~ 120 to 130 cm~! (8). An H,, of only
~ 60 cm-! would ha: e been sufficient to make kjji** reach %he adiabatic
value (~ 10'3 871) hz | there been no Franck-Condon barrier. However,
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the actual reaction is not quite adiabatic: adiabati. ity also depends on
the slopes of the reactants' and products' potentiii energy curves for
the prevailing Franck-Condon barrier (7). (Cf. L ndau-Zener theory
for curve crossing problems.) The net result is t at the reaction
deviates from adiabaticity, in these available cale lations, by a factor
of about 1/5 (7). An important feature of attaining 1 substantial H in
such calculations wis the mutual penetration of the two aquo ions li e.,
r = 5. 3A) or a suitable orientation. (However, the H,,'s may be in-
accurate, because of the sensitivity of the tails of the wavefunctions
to aplgroximations. )

or reactants such as ruthenium bipyridyls or iron phenanthro-
lines, even some delocalization of the electron of the metal cation
over the aromatic rings is expected to lead to a substantial H,,.
Indeed, reactions of these compounds with other reactants, when
accompanied by large negative AG’'s are diffusion-controlled, and so
can't be far {rom adiabatic: If they were highly nonadiabatic they
could never be diffusion-controlled.

2. Absolute Rate Calculations

The factors which influence the reaction rate constant include
(i) the changes, as a result of electron transfer, within the innermost
coordination shell of each reactant, (ii) the changes outside of this
shell, (iil) the standard free energy of reaction which is zero for
self-exchange reactions), (iv) the frequency of ''collisions', and (v)
the electronic matrix element, when the reaction is predominantly
nonadiabatic. The 'collision frequency' includes, in the electron
transfer case, the range of R's over which electron transfer can
occur significantly (more precisely which contribute to the integral in
eq. (1)(4)). We comment in Appendix B on the first factor.

Recently, there have been determinations of the metal-ligand
bond lengths of electron transfer reactants in,solution using EXAFS.
This technique not only extends the X-ray data from the solid state to
solutions but also increases consjderably the number of systems for
which the bond length changes Aq® are known. An extensive table is
given by Brunschwig et al, (9). For a number of systems Aq;’ is verg
small: Fe(CN)3-» - (0. 0TA), Fe(phen)}*:* (0.00), Co(bpy)2*: 3+ (-0.02),
Ru(NH,£*»°* (8. 03). For such systems, the contribution of the inner-
most coordination shell to the reorganization energy is very small
indeed, and is dominated by lhe solvent contribution from outsid% that
shell. For a number of other systems, there is a substantial Aq’, and
then the innermost coordination shell is a major contributor to the
reaction harrier: Fe(H,0):* ** (0.13), Co(NH )3+, 3+ (0. 22),
Co(phen)#*» ** (0.19), and Cr(H,0), '™ (0.32 for five ligands and 0. 09
for one) 19). Nuclear tunneling factors usually contribute only
between a factor of 1 to 7 in the self-exchange rate constants (10, 11).
The results for the absolute rates, obtained with expressions which
are substantially the same as those which we gave earlier (5,12),

ielded reasonable agreement with the experimental rate constants
13), considering that an error in the calculated free energy of
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activation of 1. 4 kcal mol~! ylelds an error of a factor of ten in the
rate constant. Adiabaticity was assumed.

Although we have considered the rate constants themselves in
this section, the most widely used application of the electron transfer
theory we've described continues to be the 'cross-relation' (14),

kg ~ (kukzzkxzfu)% ' (5)

relating the rate constants of cross-reactions to those of self-
exchange reactions. A sampling of recent tests is given elsewhere
(15). Tests involving cross reactions of inorganic reagents with
cytochrome ¢ was given by Sutin (16).

3. Solvent Effects .

Several systems have been studied in which the 1/Dgp - 1/Dg sol-
vent effect (17) applies to electron transfer rate constants. These
include the work on aromatic anions-aromatic molecules (18), bis-
arene chromium '*»° reaction (19), the tris-hexafluoroacetylace-
tonato Ru't» #* one (20), and various intervalence-transfer optical
systems, e.g., (21»23$. On the other hand, there was no correlation
in the case of the ferrocene-ferrocenium ion® '* reaction (24) or in
the case of the spectrum of compound 1l below (23). .

The solvent effect represented by 1/Dgy, - 1/Dg I8 nonspecific and
would be expected to break down when (i) Rpe elec?ronic overlap is no
longer weak, or (ii) the solvent enters the the inner coordination
shell, if any, or (iil) there is a specific solvent effect. An example
of (i) is found in the pyrazine bridge system (compound II below).
Results on charge transfer spectra have been reported (23) for I and

II:
I (NH,),RJ“—@ —@ — Ru(NH,),I

In: (N1t REE—N(" ) N—Ru(NH,), B

\—~/

The results for I si1owed the expected (25) theoretical dependence of
spectral absorptic 1 maximum on (1/Dgy - 1/Dg), with a slope which
agreed with the th cretical value (Do Rnd Dg are the optical and
static dielectric ¢ mstants). Compound 1l showed no dependence--
reflecting a stron: rather than weak electronic interaction of the two
Ru's via the pyra: .ne bridge. .
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Kosower and Huppert recently studied solvent offects on fluores-
cence quenching when the latter wasg caused by intr amolecular charge
transfer (26). They considered an amino napthales esulphonic acid
derivative and a cyanodimethylamino benzene. In sach case they
found that the fluorescent lifetimes in a variety of .;olvents equaled
the 'constant charge' longest dielectric relaxation time 7/ = (D {)/Ds)r
for each solvent, where 7 is the usual ('constant field') relaxal on
time. For water, whent ~ 8 P8, 7'~ 0.2 ps. These results are
striking in showing guite directlr how experimental reaction rate con-
stants can be related to bulk dielectric properties, in the present
case when the reaction is 'barrierless’.

One can use this result to calculate the rate constant for forma-
tion of polarization fluctuations in a solvent: Suppose that 1! ig the
relaxation time in the sense of being the reciprocal of a rate constant
(27) rather than being a 'half-life’. Let the fluctuation be such that
its free energy of formation ig AG". The relaxation time for decay of
the fluctuation is (Dgp/Dg)7 corresponding to a first order rate con-
stant of (Ds/Dop ). q‘hus, By microscopic reversibility the rate
constant for forming the solvent fluctuation is

k = (Dy/Dyr)e”8GVRT (®

The value of AG* for fluctuations in the solvent outside the innermost
ccordination shell has been given previously (17) in terms of

1/Dgp- 1/Dg. 7’ has also been used in reaction rates for other types
of reactions, e.g., (29).

4. Electrochemical Rate Constants

A recent survey of the comparison between homogeneous self-
exchange rate constants key and electrochemical rate constants kel
has been given by several authors ( 29, 30). The slope of the log ke|
v8 10g kex is approximately 3, as predicted for the case where the
reactant center-reactant center distance in the homo eneous case is
twice the reactant center-electrode surface distance (14). The very
fast reactions showed enhanced deviations. The electrochemical rate
constants in general tended to be somewhat slower than expected from
the simple theory (roughly a factor of 10 in the region where the log-
log plot had a slope of 1). The reason may lie in a somewhat larger
reactant-metal distance, resulting in a somewhat larger solvent
reorganization energy and, possibly, in an extra nonadiabaticity.

The slope of the log k 1 Vs the activation overpotential plot has
been determined for a numeber of organic reactants by Savéant and
co-workers (31). The results show a curvature, as expected from
theory.
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5. Distance Effects in Electron Transfer Rates

At large separation distances the overlap of the electronic
orbitals of the reactants becomes very small and the electronic H,,
matrix element thereby also becomes small, varying roughly expo-
nentially with separation distance R, and the reaction is now non-
adiabatic. We have

ka:e-aR . | )]

In frozen media the closer reactants react first and then the more
distant ones. There results a peculiar kinetics for such second order
reactions, the amount reacted now varying with log t (3 2-34). From
such studies values of a have been estimated. For reagtions between
aromatic molecules and #romatic anions it is about 1. 1A (33), and
between pyrene* and tetramethylene phenylene diamine it is about

1. 15A7! ?34). Intramolecular electron transfer studies are desirable
and are in progress in several laboratories on the effect of separation
distance R on the rate.

We consider next a biological system, cytochrome c-cytochrome
c peroxidase. A recent approximate estimate of the edge-to-edge
distance between the hemes is about 16, 5A (35). The rate constant
for electron transfer is known to be at least as fast as 10! s-* (36)."
The maximum k expected if @ were 1. 1A-! would be 10"
exp(-18.1), i.e., ~ 10° 8=!, which, thus far, is consistent with the
above existing minimum value of k.

A solvational distance effect, expected from the solvent reor-
gantzati?;'ntheory (17), has been used to interpret some experimental
results . *

6. Other Aspects

Recent interesting photoelectric emission experiments and
interpretation have been performed by Delahay and his group (38). He
has been able to interpret the results in terms of concepts closely
related to those used for thermal electron transfers and described
earlier: contributions from the inner coordination shell and from the
solvent outside it.

One continuing interest has been the investigation of highly exo-
thermic reactions ::nd a possible 'inverted' effect on the rate. We
have discussed rec »nt results elsewhere (39). A detailed calculation
was presented (40) for the highly exothermic reaction of electroni-
cally-excited Ru(b ):1';* with various metal bipyridyls. The absence
of any large inver! -d effect in these reactions was clarified in part.
However, not inch lad was the role, if any, of high frequency CH
vibrations in acce] .ing some of the excess energy of reaction by pro-
ducing excited CH ‘ibrational states, and thereby reducing the
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effective -AG’ acting on the other coordinates. Ind ed, it would be
useful to repeat these and related experiments us. g deuterated
systems, which would have less ability to accept tt » excess energy
of reaction and so might show a larger tendency to 'inverted'
behavior if CH vibrations play a role.

Orientational or geometrical effects on electro: transfer rates
are known. It may be recalled that in the electron transfer reaction
between hexahelicene and its anion, the d¢ pair reacted four times
more slowly than the dd pair, which itself was diffusion controlled
(41). Orientational effects for spheroidal shaped molecules have been
examined theoretically by Siders and Cave in our group using a simple
model (constant potential energy inside the spheroid) which will be
described elsewhere. Appropriate orientations produce a more
favorable H,,. Larsson has discussed from a molecular orbital
viewpoint oréital effects on electron transfer rates (42).

Reviews or adaptations of electron transfer theory to organic
systems has been described by Eberson (43) and by Kochi (44). The
quadratic relation between the free energy of activation and that of
reaction, first obtained for electron transfer reactions (17), has now
been applied to a variety of nonelectron transfer organic systems,
most recently by Murdoch (45). '

III. Atom and Proton Transfers

We describe here some recent developments in light atom trans-
fers for collinear collisions, and then extend the basic idea to actual
systems.

In the transfer of an H between two heavy atoms, e.g.,
]
I+Hl — IH+1 (8)

one expects that the H atom coordinate can be treated as 'fast' and
the motion of the I's as 'slow'. (L. e., one has a Born-Oppenheimer
type of approximation.) In the the theory one would solve for the
vibrational eigenvalue of the light particle (H), at fixed positions of
the heavy particles I and then allow the I's to move in the presence of
this effective potential created by the averaged motion of the H. To
treat this in a practical way, Babamov and I used polar coordinates
(R, 6) in the usual mass-weighted skewed-axes coordinate space (46),
The radial coordinate R corresponds approximately to the I-I motion
and the angular coordinate 6 to the H motion.

Reaction (8) is a symmetric reaction, and was treated by
Babamov in terms of symmetric (8) and antisymmetric (a) wave-
functions for the vibrational motion of the H in the presence of the I's
(46). Since the H is initially localized on one of the I's, one can
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expect that the probability of reaction will depend both on the 8- and
a- solutions. E.g., when R is large, an H-wavefunction localized
near one I is approximately yg + ¥3, and when localized near the
other it is approximately 4)8 2

The approach of the two I's under the influence of the symmetric
state H-motion can be treated quantum mechanically, and similarly
for the approach when the H-motion is in an antisymmetric vibra-
tional state. One finds that the reaction probability p for a system in
an initial HI vibrational state i to yield a final vibrational state i of
the product IH is, approximately, (46)

P, = 8in’(, -n) (9)

where 1, (1js) is the so-called phase shift for the I-I1 motion when the
I's approach under an effective a- (s-) state of the H. By calculating
these phase shifts, p was calculated and compared with the exact
(many coupled states) quantum mechanical value for p, for the
assumed potential energy surface. The results are given in Fig. 1,
taken from a paper with Babamov and Lopez (47). The circles denote
the exact quantum values (48) and the solid line is that calculated

10 -
»
P
o . X
0.6 -
[ ]
- ®
[ ]
0.2- !
f.
) 3.5 3.6 3.7

TOTAL ENERGY (Kcal)

Fig. 1 Rea :tion probability for reaction (€) when the
rea tants are in their lowest vibrational state,
plo: ed versus total energy.
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from eq (9), when the translational energy of rel: ive motion of the I
and HI is varied. Under the conditions investigal d, pf.-i i8 negli-
gible except for f = i, 1. e., when the vibrational « vantum number of
the HI product equals that of the HI reactant.

The spike in Fig. 1 is due to a "resonance': the effective poten-
tial in the s- state of the H- motion forms a well {or the I-I motion at
smaller I-I distances, due to the delocalization of the H. This well
creates a quasi-bound level, i. e., a''resonance' at some energy of
the I-I motion and creates the spike. Equation (9) also has an approx-
imate version (46) where

M-y e Y, (10)

Q, being the usual tunneling integral for the H-motion at the distance
R, of closest approach and ¥ a known constant. In this approximate
form eq. (9) was applied by Bondi et al. to calculate rate constants
for collinear collisions, with quite good agreement with exact numer-
ical quantum values (49, 50).

The comparison in Fig. 1 shows that the behavior of the H atom
transfer for this system is well understood, both qualitatively and
quantitatively. For application to more complex systems, e.g., in
solution, we note first that such systems will typically not be exactly
"in resonance' as in eq. (9), when interactions with the environment
are taken into account. Thus, for this reason a study was initiated of
a nonsymmetric reaction

A+HB - AH+ B (11)

with A # B (47). The reaction probability now depends on the energy
defect AE between the effective potential energies of the (A, HB) and
(AH, B) configurations (potential energy plus vibrational energy of the
H motion) in the activated complex region (AE = 0 in reaction (9)). In
ref. (47a) an expression was given for the reaction probability which,
in the threshold energy region (the region important for rate con-
stants), can be written as (4'7b)

Py = pfs.yim exP['ﬁ(AEu)zl ’ (12)

where p?z in is the same as for the symmetric reaction (AE = 0).
AEjf is the AE for the ("'diabatic", i.e., localized) (47) vibrational
state i of (A, HB) and for state { of (AH, B), near the turning point
of the R-motion, and B is a known constant. When B is sufficiently
large the exponential behaves like the delta function that occurs in
electron transfer reactions. AEjr was assumed small relative to
vibrational spacings of Ej.

To apply (12) to an H-transfer in complex systems, we proceed
as follows: We classify all coordinates as either fast or slow, the
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latter including reaction coordinate. The 'fast' coordinates are taken
to be the H being transferred and any other nearby H's, for example
any attached to CH,'s, NH,'s, etc. which merely change slightly their
equilibrium position or vibration frequencies, as well as any which
may simultaneously transfer from one molecule to an adjacent one.
Holding all remaining nuclei fixed, the energy defect is now written as
AEi(((q), where | now denotes the ldiabatic) vibrational state of all

fast coordinates in the reactants. f is that in the products, and q
denotes the totality of all slow coordinates. One of these q's is .
designated as the reaction coordinate qR, e.g., the AB distance in
reaction (11), and the remaining q's are denoted by q’. The reaction
probability depends on the energy defect in the transition state region
AEif(q;) (namely, at the turning point of the R-motion); the reaction
probability also depends on the initial energy along qg, ER(qR), and on
the initial state i of the M's. If we denote this reaction probability

by p;_;, the rate constant k is given by (51)

k = 2{‘, J+--J PPy da'dEp/h (13)

where pf;‘.(ER) dq’ dagdpg/h is the equilibrium probability at the given

temperature of finding the slow coordinates in the volume element dq’,
the fast coordinates in a collective quantum state i, and the system in
a phase space volume element dqrdpg for the reaction coordinate.
The integration is over all ¢’ andRER, and the sum is over all initial
states i.

The detailed theory thus includes a calculation of the effective
potential energies for the qg motion, as a function of 4, and of using
a suitable expression for the reaction probability p. Should any of the
q’'s in eq. (13) be, instead, high frequency motions, a quantum treat-
ment for their motion can be used.

When there are additional H's as in nearby CH,'s, NH,'s, etc.,
expression for pfs}_'f“ in (47) i8 modified; Franck-Condon factors for

these additional H's could be added as a first approximation. (When
there is a concerted transfer of H's, still further modification of (47)
is needed, of course.)

Purely to illustrate eqs. (12) and (13) we ﬁive a calculation for a
very simple mode! in which the eifect of the q"'s on E; and Ef is
quadratic:

k
E(q") = Ej+ - (a'-q')’ (19)
E/fq) = Eg+ I:f- (q"- q‘po)' - (15)
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(For notational brevtt); we have only used one te: n; k ig actually a
square matrix, one q' - qr, s a column vector a id the other a row
vector.) Ineq. (14) Ej is the value of E; at som:« value of q¢’, q' =

qro, etc. If the additional contribution of the q’ oordinates to the

potential energy is written as Vy(q') in the react: nts' configuration,
the integral over q’ becomes

(BB -V (@AT -E@AT
= ¢ ¢ 99" (16
VR ~E{( VKT ‘

3
fe-ﬁ (AEjp) pﬁ? dq'=

Zi_‘, fe dq
where Ej(q’) is given as a function of q’ by eq. (14). For various
models of Vi(q') eq. (16) can be integrated. The presence of the
ﬁ(AEé_f) term produces the type of reorganization which appeared in
electron transfer reactions (5, 12,17, when AEjs depends on q’. Ifit
were independent of q’, the right hand side of eq. (16) would become
(sqig;;ply exp[-ﬁ(AEu)z] and the result would reduce to that in ref.

We plan to implement eq. (13) elsewhere for Hand H' trans-
fer. We discuss its relation to standard expressions in Sec. IV.

Finally, we comment briefly on a Franck-Condon type calculatio
for atom transfers. The profile of the potential energy surface vs the
coordinate of the H-atom in transit is typically a double well. The
latter has sometimes been approximated by two harmonic oscillator
potentials, each localized on one of the two wells. Franck-Condon
type arguments, e.g., use of eq. (3) involving the overlap of har-
monic oscillator vibrational wavefunctions, are then used. However,
such a procedure leads to orders of magnitude error in the absolute
rates (52, 53). Thus, a different approach is desirable for atom
transfers, such as that given in eq. (9) of the present paper for
resonant symmetric on-resonance reactions and eq. (12) for asym-
metric or off-resonant ones.

IV. Similarities and Differences Between
Electron and H-Transfers

The principal similarity of these two types of reactions is the
presence of fast and slow coordinates. In an electron transfer
reaction the motion of the electrons in the reactants, and that in the
surrounding solvent (appearing in the D)) are the fast coordinates.
The nuclei are the slow coordinates. Inan H atom or H* transfer,
the fast coordinates are those of all the relevant H's, including the H
or H*'s being transferred and all remaining nearby H or H's. The
slow coordinates are the rest of the coordinates (the q's in the pre-
vious section).
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This theory involving the assumption of both fast and slow coordi-
nates may be compared or contrasted with the conventional approach
in transition state theory. Here, it is often (though not always)
assumed that all coordinates but the reaction coordinate are the fast
coordinates. This approximation is made tacitly when one assumes
that at each qp the averaged motion of the other coordinates yields
eigenvalues E.li{(qR), which act as an effective potential for the motion
along qp. Such an approximation implies that all such coordinates
are 'fast', relative to the reaction coordinate. One then focuses
attention on these energy levels in the transition state region (at

dRr = q ¢) and calculates a rate constant. For H-transfers the tunne-
ling inlegral used is the same as the WKB tunneling integral in Q, in
eq. (10). What is new is eq. (9), the treatment using coupled H's
(nearby H's), the presenge of the y (probably of the order of unity) in
eq. (10), and the presence of the exp[-B(AEjf)?] in eq. (12). The
latter leads, as already noted, to a type of reorganizational term of
the environment, neglected in conventional transition state theory.
Another treatment of a reorganizational term, based on eq. (3) plus
added approximations, rather than on eqs. (12)-(13), has been given
by Dogonadze, Kuznetsov and Levich (53).

Equations (9), (10) and (12), when applied via eq. (13),appears to
provide a dynamical treatment more detailed and fundamental than
existing treatments of H and H* transfers. Having said this, one can-
not overemphasize the detailed insight which conventional transition
state theory has yielded for H and Ht-transfers including, in the
electrochemical case, the hydrogen evolution reaction. Equations (9),
(10), (12) and (13) are intended to be applied to such reactions.

While electron and H-atom (proton} transfers have much in com-
mon, as we have noted above, there are also a number of differences:

(i) The Born-Oppenheimer type separation of variables is more
accurate for electron-nuclei systems than for H atom-heavy nuclei
systems. Thereby, the reaction probability is not as sharply a
peaked function of the energy-defect AE in the transition state region.
In electron transfer reactions the important role of this energy defect
appears, in the case of the all-quantum treatment eq. (3), in the form
of the Dirac delta function 8(E¢- E;), while in a classical treatment it
appears in the assignment of the transition state to the intersection of
the reactants' and products' potential energy surfaces. In H transfers
it appears in the present paper via an energy defect AE, as in eq. (12).

(if) The H-at' m transfer does not entail a charge transfer, and
so does not involv the major solvent reorganization which accom-
panies electron tr nsfer. The Ht-transfer is frequently over a quite
short distance (e. ., a transfer between adjacent molecules) and so
it, too, is not exp cted under such conditions to yield a large solvent
reorganization en rgy. Of course, when the proton transfer proceeds

via an intervening water molecule AH%H?B and involves a
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concerted motion of the two H*'s, the effective tr insfer of charge is
over a larger distznce, and so would entail a son awhat larger reor-
ganization energy. Such a H,O bridge removes a: y need, incidentally,
for breaking any pre-existing H-bonds. However, in H* transfers
involving carbon acids and bases, unlike transfer: solely between N's
and O's, there may be some preliminary desolvation of the noncarbon
acid or base, creating thereby an added barrier to the reaction in the
form of a "work term' (55).

(1ii) Electron transfers usually involve a weak overlap of the
electronic orbitals of the reactions, whereas H atom transfers or
transfers are expected to involve strong overlap. This difference
requires a more detailed electronic structure calculation of the
potential energy surface in the vicinity of the transition state for H-
and H+-transfers than was necessary for electron transfers.

(iv) In electron transfers there are usually only two electronic
states accessible--one for the reactants and one for the products--
because of the wide spacing of electronic energy levels. (Reactions at
metal electrodes are an exception, because of the many electronic
levels in a metal (1, 5). No inverted effect is predicted to occur
there, therefore (63). Again, in 2 homogeneous reaction an excited elec-
tronic state of the reaction products may also become accessible.) In
the case of H's or H*'s, however, there are frequently a substantial
;mmber of vibrational states of the H's accessible, rather than just
WO.

(v) In sufficiently exothermic H or H* transfer reactions the
reaction may be 'downhill' throughout, with no need for H-tunneling
(56). A corresponding phenomenon is unlikely for electron transfers,
except for 'strong overlap' reactions.

V. Summary *

In the present paper we have summarized some recent experi-
ments on electron transfer reactions, recent calculations based on
the equations of ref. 5, apart from inclusion of a relatively minor
nuclear tunneling factor or an 'electron transfer over a distance'
factor. These two factors affect the rate in opposite directions. The
calculation of the frequency of solvent fluctuations outside the inner-
most coordination shell of an ion was described in eq. (6).

We have also described a recent development in the dynamics
of H-atom transfers due to Babamov, Lopez and Marcus. We
have now outlined how to extend it to H or H* transfers in more com-
plicated systems and in condensed media. The treatment is based on
a Born-Oppenheimer type separation of fast coordinates (the nearby
H's, including the one or two being transferred) and slow coordinates
(all other coordinates). Similarities and differences with the theory
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of electron transfer are compared in Sec. IV, and both are compared
with conventional transition state theory.
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Appendix A. Derivation of Equation (4)

To obtain kI~ in eq. «3) we first set the Franck-Condon factor
Pt.i equal to its maximum value of unity. The sum over f is then
replaced by an integral over Eg: [ (df/dEf) dEf6 (Ey - Ef), where df/dE¢
is the density of final states. For a one-coordinate type problem
(e. g., a concerted combination of outward symmetric breathing vibra-
tion of one reactant with inward breathing vibration of the other inan
electron transfer), the density of final vibrational states is 1/fiw
where hw is the vibrational quantum. Integration then yields eq. (4).
Equation (3) assumes, of course, that the density of final states is
sufficiently large that it can be treated as a continuum. Typically,
the many degrees of freedom provide this continuum, but we have
used a pure vibrational model for purposes of deriving eq. (4).

Appendix B. Inner Coordination Shell Contribution
to the Energy Barrier

a

One interesting aspect of the calculations of the innermost coor-
dination shell involves the use of appropriate force constants: If a
detailed force constant analysis of the metal-ligand stretching vibra-
tions is made, there are diagonal and off-diagonal bond force con-
stants. Both terms contribute to the differences in the various nor-
mal mode metal-ligand stretching frequencies. In calculating the
contribution of the innermost shell to the energy barrier, all of these
constants are to be included. The calculation is made simpler, when
the normal modes remain intact upon electron transfer, by using
normal mode force constants (12). They are automatically diagonal
but contain both the diagonal and off-diagonal bond force constants as
contributing factor:.. Several recent calculations (57, 58) included
only the diagonal b«.nd force constants, as we and others have noted
(59{. This point of using the normal mode force constants was indeed
stressed earlier () and used in an early numerical calculation
éGO). Other treatn :nts used diagonal bond force constants (61). Hush

62) calculated potc itial energy surfaces for the innermost coordina-
tion shell, rather { :an using known vibration frequencies, and then
used the equivaler of a small displacement approximation.
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