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A simple approximate statistical formula for densities of vibrational states of given symmetry is presented.
The formula becomes increasingly exact at higher vibrational energies. Application to Coriolis and anharmonic

effects is discussed.

1. Introduction

The symmetry of a vibrational quantum state affects its
coupling to other vibrational states via anharmonic and
Coriolis forces, and thereby can influence intramolecular
relaxzation. In recent experiments on vibronic excitation
of molecules, specific vibrational modes of given symmetry
have been excited in an electronically excited state and
their spectroscopic behavior has been investigated. Coriolis
coupling between degenerate or nearly degenerate states™
and between nondegenerate states®® has been invoked.

It is of interest to know the density of vibrational states
of the desired symmetry for such coupling to a particular
vibrational state. For example, a statistical theory of
density of states of a given symmetry has been used as a
possible explanation of the disappearance, via Coriolis
coupling, of certain spectral lines.>® This statistical ap-
proach involved direct counting of combination and ov-
ertone states having the specified symmetry. In the course
of our study we noticed a striking regularity in this
counting of states. We present here a simple statistical
approximation for the density of states of any specified
symmetry species, eq 2. We first illustrate it for several
molecules of different symmetry types (section 2) and then
give an approximate derivation in section 3. Equation 2
becomes increasingly exact with increasing vibrational
energy. Applications are noted in section 4.

2. Results

All exact results were determined by precise computer
counting of harmonic states. The number of states of a
given symmetry species was determined by allowing any
combination of overtones (and fundamentals). All quan-
tum states were considered with equal a priori probability
and standard rules were used to determine the symmetry
species of the various resultant states.? Degeneracy was
allowed for, but all energy splittings due to perturbations
were ignored and energies were assigned their unperturbed
values. The sum of the number of states of each symmetry
species with this counting method represents the total
number of states at any energy. A check of values was
performed by comparing this total number of states to the
semiclassical Whitten—Rabinovitch approximation.'® At
the energies investigated the total density of states (re-
moving scatter and oscillations) was negligibly different
from the Whitten—Rabinovitch estimate.

Tables I-III list the results for several representative
molecules for various energies ¢ in excess of the zero-point
energy. The values reported are the actual number N 4y
of harmonic states of each symmetry species I' (equiva-
lently, of each irreducible representation) with excess en-
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TABLE I: Numbers and Ratio of States of Benzene for
Each Representation at Various Excess Energies?

¢ = 2004
cm™! €= 4009 cm™! e=6013cm™

24y- 24y- 244-

I N(r) (r) N(@r) (r) N(r) (r)
a,g 99 1.39 10759 1.03 508350 1.00
8, 67 0.94 10304 0.99 504 540 1.00
b,g 47 0.66 10122 0.97 503872 1.00
b, 71 1.00 10499 1.01 507273 1.00
a;y 73 1.03 10387 1.00 506161 1.00
a5y 81 1.14 10533 1.01 507 388 1.00
by 71 1.00 10425 1.00 506 267 1.00
b 62 0.87 10292 0.99 505311 1.00
e,g 236 3.32 41210 3.96 2022314 4.00
e, 330 4.64 42124 4.04 2025738 4.00

e, 262 3.69 41440 3.98 2023098 4.00
e,u 306 4.31 41836 4.02 2027070 4.00

@ The symbols are defined in the text: +(I') equals
N(r)IN. The zero-point energy is 20 034 cm™'. The
number 24 is introduced to make clearer the relations
among the v's.

TABLE II: Numbers and Ratio of States of Methane for
Each Representation at Various Excess Energies®

¢ = 9883

cm™! €e=19766cm™! ¢= 29648 cm™

24~- 24 ~- 24+-

r NQ@) () N(r) (1) N(P) (r)
a, 83 1.52 3131 1.12 41114 1.05
a, 38 0.70 2545 0.91 37687 0.96
e 236 4.33 11326 4.06 157536 4.02
t, 408 7.49 24063 8.64 346749 8.85
t, 543 9.96 25812 9.26 356985 9.11

@ See footnote to Table I. Zero-point energy is 9882
cm™t,

TABLE III: Numbers and Ratio of States of
Formaldehyde at Various Excess Energies®

¢e=11293 c = 22586
cm™! em™! ¢=45157 cm™!

I ON(P) 4v(r) N() 4y(r)  N@) (1)

a, 322 132 6508 1.16 2108380 1.08
a, 172 0.70 4724 0.84 179835 0.92
b, 215 0.88 5073 0.90 183701 0.94

b, 268 1.10 6098 1.09 206653 1.06

a See foolnote to Table I. Zero-point energy = 5644
em-'. The number multiplying v(1') is now 4 instead of
24.

ergy equal or less than . Also given is ¥(I'), namely, the
ratio N(I')/N, N being the total number of states with
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TABLE IV: Groups of Molecular Symmetries,
Rules, and R Values

R *
molecular multiplication averaged R};,
symmetry rules® overtone rules Ry
Group 1
O, Op, T, AXT= AV = A 1,1,3
Ty, Th EXE=2A+E E'ZA+E
ExT=2T ™ =
TxT= A+ E+ 3T
A+ E+ 2T
Group 2
Cs Com Cyn EXE=24+E A=z A 1,1, 0
D,, D,y Dyp, EVzA+E
Cs- Coh Cu»
Dv Deh- Sa
Group 3
C, Cor Cins EXE=4A AV = A 2,10
2d Do EVzZ2A+E
ahp V4

@ There are also the rules, A XA=A and A XE =E,
which are the same for groups 1, 2, and 3.

energy equal or less than e. Throughout, we suppress the
¢ in the notation for brevity. The sum of v(I') over all T
equals unity.

The results in Table I are for benzene, an exmaple of
the Dg, point group.! One sees that the populations of
the nondengenerate symmetry species rapidly become
equal as ¢ increases, as do those of the doubly degenerate
symmetry species. One also sees that the ratio of the
number of states for any nondegenerate symmetry species
to that for any double degenerate one rapidly converges
to 1:4.

The results in Table II are for methane,'? an example
of the T'; point group. As the energy increases, the ratio
of the number of states for any nondegenerate to the
doubly degenerate to any triply degenerate symmetry
species approaches 1:4:9. Higher energies are needed to
reach the limiting ratio than was needed in Table I, for
reasons evident from the derivation in section 3.13

The results in Table III are for a C,, molecule, form-
aldehyde, for which Coriolis coupling has been discussed,
e.g., ref 4, 5, and 7. Only nondegenerate symmetry species
occur and these populations become equal. We have also
studied molecules in the point groups Dy, Dgy, Dag, Cos»
and O, and in every case have found, as ¢ becomes large,

(1) Riedle, E.; Neusser, H. J.; Schalg, E. W. J. Phys. Chem. 1982, 86,

4847.
(2) Runnels, J. H. M.S. Thesis, California Institute of Technology,

1983.

(3) Riedle, E.; Neusser, H. J., Schlag, E. W. Faraday Discuss. Chem.
Soc., in press.

(4)dDai. H. L.; Korpa, C. L.; Kinsey, J. L.; Field, R. W, to be sub-
mitted.

(5) Tang, K. Y.; Fairchild, P. W_; Lee, E. K. C. J. Chem. Phys. 1971,
66, 3303.

(6) Forch, B. E.; Chen, K. T.; Saigusa, H.; Lim, E. C. J. Phys. Chem.
1983, 87, 2280. Chen, K. T.; Forch, B. E; Lim, E. C. Chem. Phys. Lett.
1983, 99, 98.

(7) Garland, N.L.; Lee, E. K. C. Faraday Discuss. Chem. Soc. in press.

(8) E.g., Mills, I. M. Pure Appl. Chem. 1968, 11, 325.

(9) Wilson, E. B.; Decius, J. C.; Cross, P. C. “Molecular Vibrations™;
McGraw-Hill: New York, 1955; pp 331 ff.

(10) Robinson, P. J.; Holbrook, K. A. “Unimolecular Reactions”™; Wi-
ley-Interscience: New York, 1972; pp 131 ff.

(11) Robey, M. J.; Schlag, E. W. J. Chem. Phys. 1977, 67, 2775.

(12) Gray, D. L.; Robiette, A. G. Mol. Phys. 1979, 37, 1901.

(13) The exact recursion relation for the representation of triply de-
generate overtones has a longer recutsion cycle. Further, the approxi-
mation used in section 3 (Table IV) for the triply degenerate overtone
rule is less accurate than the others at low energies, though it becomes
increasingly exact at high energies.
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that the numbers of states of each symmetry species with
the same degeneracy become equal, and that the ratio of
states of nondegenerate to doubly degenerate to triply
degenerate symmetry species approaches a constant value.

These results for specific molecules can be generalized
into three broad classes of molecular point groups listed
in Table IV. We shall show that the ratio of the numbers
of states of any nondegenerate to any doubly degenerate
to any triply degenerate symmetry species N(A4):N(E):N-
(T), is given by eq 1, with increasing accuracy as ¢ increases

N(A:N(E):N(T) = Ry/ns2Rg/ng3Rr/nr (1)

where R, Rg, and Ry are given in Table IV for the various
types of molecular symmetry point groups. n, is the total
number of nondegenerate symmetry species from a char-
acter table of the relevant point group; ng and nr are the
analogous quantities for the doubly and triply degenerate
symmetry species, respectively. Equation 1 is derived in
section 3, together with the values of the R’s listed in Table
IV. Using eq 1 we also show in section 3 that the density
of states p(I") for any particular symmetry species is given,
with increasing accuracy as ¢ increases, by

p(T) = pgrRr/ (R4 + 2Rg + 3RyInp 2

where p is the total density of states at the excess energy
¢ gris 1,2, or 3, Ry is R4, Rg, or Ry, and np is ny, ng, or
np, according as the I' belongs to a nondegenerate, doubly
degenerate, or triply degenerate symmetry species.
Equations 1 and 2 are the principal results of this paper.
Equations 1 and 2 assume that all np symmetry species
are accessible. If some symmetry speecies are not actes-
gible, n refers only to the accessible species. However,
for all real molecules we have studied thus far, all sym-
metry species in a point group have been accessible. When
the vibrations are anharmonic, the use of different sym-
metry types remains valid (ref 9, p 146).

In applications of eq 2 to molecules such as CH,0, which
have only nondengenerate representations, we have R, =
landRE=R1-= 0.

3. Derivation of Eq 1 and 2

To simplify the derivation of eq 1 and 2, two assump-
tions will be made:

The first assumption is that in building up various
combinations of overtones of the various fundamentals
there is randomization of the numbers of states between
symmetry species having the same degeneracy (e.g., among
the four E-symmetry species in Table I). The tendency
to randomization is indeed evident in the exact multipli-
cation rules given in ref 9.

The second assumption is that the energy is sufficently
high that frequently some degenerate fundamental has
several quanta in it. This causes representations of ov-
ertones of degenerate fundamentals to obey the averaged
overtone rules given in the third column of Table IV.

The first assumption is seen to be true in Tables I-III
within statistical deviations, for the three molecules given
there. Consistent with this assumption, we adopt a no-
tation such that all nondegenerate symmetry species are
grouped together and each is called A (which now includes
all A and B representations), each doubly degenerate
symmetry species is called E (i.e., irrespective of whether
it is ey, €s, €4, €tc.), and each triply degenerate one is
called 5" éach E label contains two states and T contains
three states. The first assumption simplifies the multi-
plication rules and, after examining Table X-12 of ref 9,
led to the three sets of groups in Table IV. Within each
set the now simplfied multiplication rules have become
similar. The overtone rules of ref 9 also became simple
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after introducing the two assumptions, and represent av-

erages, e.g, over the variable q in Table X-13, ref 9. (In.

the case of the overtone rule for a triply degenerate fun-
damental, the result in Table IV is an approximate average
over g and over even and odd v in ref 9 and becomes
increasingly exact as p in ref 9 becomes large.)

We illustrate the first assumption using a combination
level in Dgy, such as a,; + a; + 8, + a5, + ), + €5, + ¢,
+ ey, Because of the tfrgt assumption this representation
can be rewritten as 44 + 4E. Because we are mainly
interested in ratio of labels, we introduce an equivalency
symbol =;

4A+4E=A+E 3)

Thus, the representation of the cited combination level in
Dy, is, in this sense, equivalent to A + E. Its ratio of A
labels to E labels is 1:1.

The following derivation of eq 1 and 2 is first given for
group 1 type molecular point group symmetries in Table
IV. We order the vibrational fundamentals of a molecule
so that the first k of them are of the A type, the next m
are of the E type, and the final n are of the T type, k& +
2m + 3n being therefore the total number of normal
modes. We let A% signify that the ith nondegenerate
fundamental contains v; quanta, and use an analogous
notation for the other (£ and T) fundamentals. The
representation of any given vibrational excitation can be
written as

T'= A ... AREYa | EVsemTVkemer | TVkimen = CATely
: )

where I', denotes the product of the A factors, etc. We
evaluate Ty, T'z, and I'z separately. We shall assume in
the following that at least one v; in 'y and at least one in
T'r exceeds unity.

We have
Iy = A% ... AN 5)
From Table IV we know that A” = A for any v, 8o that
Iy,=sA..A=4A 6)

independently of k, using the multiplication rules for group
1 in Table IV,

Using the same method for combinations of overtones
of E-type fundamentals, I'; is given by

Tg = EWn ., Evm ™M
From Table IV one sees that
EP=A+E@>1)
From the multiplication rules in Table IV
(A+ENA+E) =A+E EA+E)=A+E (9

EE=E@=1) 8

Application of eq 8 and 9 to eq 7 yields!*
re=A+E (10)
as long as at least one v; > 1. For I'r we have
Ty = Tviemar ., Tohomen (11)

From the overtone rules in Table IVwe have V= A+ E

(14) The associative law converts a multiplication such as (E X E X
E) X (A + E)to (E X E) X (E X (4 + E)) and hence successive appli-
cations of eq 9 may be used to obtain eq 10.

Letters

+ 3T or T, according as v > 1 or v = 1. The multiplication
rules in Table IV yield

A+E+3THA+E+3T)=A+ E+3T

TUA+E+3T)=A+E +3T 12)
Application of eq 12 to 11 yields 13, as long as at least one
v; > 1.

'r=A+E+3T (13)

Equations 4, 6, 10, and 13 plus the multiplication rules in
Table IV then yield

TzAA+EA+E+37) =
SBA+3E+9T=A+E+ 3T (14)

The ratio of labels given by eq 14 is seen to be independent
of the specific vibrational excitation level. Therefore, the
ratio of the total number of A labels to E labels to T labels
is always 1:1:3. These numbers provide the R values listed
as in the last column of Table IV.

To obtain eq 1 we now note that the ratio of labels is
R4:Rg:Ry, and so the ratio of states is R4:2Rz:3R, when
degeneracy is included. Since there are n, symmetry
species of the A type which share this R4, nz which share
this 2R, and np sharing the 3Ry, eq 1 for ratios of numbers
of states of specific symmetry species immediately follows.

We turn next to group 2 in Table IV, for which R4 =
1 and Rg = 1. Since the multiplication and overtone rules
for group 2 are identical with those for group 1 except that
there are no triply degenerate symmetry species, one finds
that the representation of a combination of overtones is
now given by

F=A% . AnE" | Emo= A(A+E)=SA+E (15)

Once again, the ratio of A to E labels is independent of
the vibrational excitation, namely, 1:1. One thus has R,
= 1 and Rg = 1, as reported in the last column of Table
IV. Equation 1 again follows.

For group 3 one uses the same logic, except that now the
rules for the E representations are different, as seen in
Table IV. For the A overtones we have I', = A as before.
However, we have E* = 24 + E or E, according as v > 1
or v = 1. Use of multiplication rules in Table IV yields

QA+ EY2A+E)=24+E

EQA+E)=2A+E 16)
Application to eq 7 gives 24 + E for I'z. Hence
rsAQA+E)=2A+E an

Thus, the ratio of A labels to E labels is 2:1 for group 3
symmetries, independently of the vibrational excitation.
Hence, one obtains the R4 = 2, Rz = 1 in the last column
of Table IV and eq 1 follows.

To obtain eq 2 we note that the total number of states
N with excess energy equal to or less than e is n N(T',) +
ngN(T'g) + neN(T'7), where T, is a T of type A, etc.
Equation 1 can be rewritten as n,N(I'4) = cR,, ngN(T'g)
= 2¢Rg, and npN(I'7) = 3cRy, where c is constant, Sum-
ming yields N = ¢(R, + 2Rx + 3R7) and hence yields
N/(R4 + 2Rg + 3Ry) for ¢. One thus obtains (using the
definition of gr given earlier)

N(T) = NgrRr /(R4 + 2Rg + 3Rp)ny (18)

Differentiation of this equation with respect to ¢ yields eq
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2, since the R’s, nr's, and gp’s in eq 18 are independent of
[

4. Discussion

Coriolis Coupling. To illustrate an application of eq 2
we consider benzene and parallel type Coriolis coupling.
Riedle et al.!® measured the Doppler-free rotationally re-
solved two-photon spectrum of the 14} 13 bands of benzene
(n = 1, 2). They excited an electronic state of B,, sym-
metry and a vibrational state of b,, symmetry, and exam-
ined the fluorescence excitation spectrum of the Q branch.
Only the K = 0 levels remained when r = 2, plus some
residual structure from the K = 0 states. One of the
possible explanations involves Coriolis effects.!®

The by, vibrational state couples by parallel Coriolis
interactions to by, states,!3 giving new levels'® !/,(E, +
E,)  [(H,9)? + (AE/2)%]Y2. H, is the Coriolis interaction
energy and AE (= E, - E)) is the energy difference of the
by, and b,, states. When AE = 0 there is extensive transfer
of the oscillator strength from the by, level (50%), while
when |H,,/AE| « 1 there is little. There can be further
splitting due to Coriolis effects, yielding a further reduction
in intensity of K = 0 lines and still further irregularities
in the spectrum. If the by, states to which the original b,,
state is coupled have large nonradiative rates, the total
fluorescence intensity is also decreased,? in agreement with
the experiment.!?

The transfer of oscillator strength due to Coriolis cou-
pling is significant for states within an energy AE of about,
say, H,,. Hy, equals £2C¢KI, where C (= h%/2I,) is' 0.09
cm™, K and [ are the z rotational and z vibrational angular
momentum quantum numbers (K > 0), and { is a Coriolis
interaction constant. If the maximum { is'® about 0.8, Hy,
is about +0.15K! cm™ or less. (Any unfavorable vibrational
overlap!® decreases this {.) For comparison it may be noted

(15) An alternative mechanism which still distinguishes K = 0 states
is given by Callomon, J. H. Faraday Discuss. Chem. Soc., in press (dis-
cussion comment).

(16) E.g., Hougen, J. T. J. Chem. Phys. 1963, 38, 1167. Hougen, J. T.
In “Physical Chemistry. An Advanced Treatise™; Henderson, D.; Ed.;
Academic Press: New York, 1970; Vol. IV, p 346, Mills, L. M. In
“Molecular Spectroscopy: Modern Research™; Rao, K. N.; Mathews, C.
W.; Ed.; Academic Press: New York, 1972; pp 128 ff. Reference 9, p 367.

. 3(17) Riedle, E.; Neusser, H. J.; Schlag, E. W. J. Chem. Phys. 1981, 75,
4231.

(18) We used the larger ones calcualted in ref 11.

(19) E.g., for harmonic states one requires'® Ay, = -Av; = £1, Av, =
0. Sufficient anharmonicity would distribute the original vibrational
parentage of the harmonic states more widely over the anharmonic states,
and so the state-by-state requirement would then be less severe.
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that the separation of adjacent K states in the Q branch
is about 0.008K c¢m™!, according to available rotational
constants.'?

One sees that if there is sufficient parallel Coriolis
coupling (sufficient proximity of suitable by, states to the
original b, state) the fluorescence excitation spectrum will
contain the K = 0 lines, which are unaffected by parallel
Coriolis coupling, plus some residual irregular structure
from the K = 0 lines. To create this Coriolis coupling the
density of suitable vibrational states of the b, symmetry
species would have to be about 6 per cm™ (~1/H,;) when
K =1 = 1. The total density of b,, states (suitable and
unsuitable) is given by eq 2 and by the R values in Table
IV. It is approximately 1/24 the total density of states.
In order for the total density of by, states to reach 6 per
cm™!, the total density of states would therefore have to
be 144 per cm™. This density corresponds to an energy,
determined from the Whitten-Rabinovitch approximation
or from direct counting, of about 3370 cm™. This energy
also corresponds roughly to the energy where disappear-
ance of the K = 0 lines occurs in experimental measure-
ments by Riedle et al.,! and so one has a possible statis-
tical®? explanation of the results. However, consistency
of argument would require that one examine the effect of
perpendicular Coriolis interactions!® on the K = 0 state,
using assumptions analogous to those used above, and
vibrational overlap!®? aspects should also be explored.

Anhramonic Coupling. Other questions which can be
addressed by use of eq 2 involve other types of coupling.
For example, if a zeroth-order state (wavepacket) of some
given symmetry species is excited, one can use eq 2 to
calculate the density of vibrational states of the same
symmetry species with which the wavepacket can be as-
sociated.
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(20) E.g., if as a minimal requirement one added the supplementary
conditions on the b, states that v, = 0 and that v, = 1 or 2, the density
of such by, states at ¢ = 3370 cm™ is found by using eq 2 and calculating
p. One distributes among the remaining 28 modes an energy (3370-923)
cm™ when v, = 1, yielding p(b,,) = 0.65 per cm™, and an energy
(3370~1846) cm™ when v, = 2, yielding p(b,,) = 0.05 per cm™'. The total
density of; such by, states is about 0.7 per cm™! at 3370 cm™ instead of
6 per cm™.




