Volume 101, number 6

CHEMICAL PHYSICS LETTERS

4 November 1983

DYNAMICS OF HYDROGEN ATOM AND PROTON TRANSFER REACTIONS.
SIMPLIFIED ANALYTIC TWO-STATE FORMULAE™®

Vasil K. BABAMOV ¥

Centro de Graduados, Instituto Tecnologico de Tijuana, Apdo Postal 1166, Tijuana, B.C., Mexico

and
Vicente LOPEZ # and R.A. MARCUS

Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA

Received 10 August 1983

Analytical formulae for the threshold region of the reaction probability curve for a nearly degenerate H-atom transfer
are given and shown to yield good agreement with exact results for a two-state model system. Application to H and H*

transfer in complex systems is discussed.

1. Introduction

The exchange dynamics of hydrogen atom and
proton transfer reactions between two heavy particles
has been studied recently [1—13]*. For the case of ex-
act degeneracy of the reactant and product vibrational
states which occurs in symmetric exchange reactions a
new kind of vibrationally adiabatic approximation in
reactive collisions was introduced [1] and used to de-
rive analytical formulae for the reaction probability
[1]. Subsequent accurate numerical calculations [6,7]
on symmetric H-atom exchange demonstrated both the
high degree of vibrational adiabaticity of the symmetric
H-transfer reactions postulated inref. [1] and the high ac-
curacy®* of the analytical formulae. The vibrationally
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adiabatic analysisin ref. [1] has been extensively applied
in exploring various aspects of the dynamics of H-atom
transfer reactions [6-—10] as well as to indicate the pos-
sibility of forming molecules on repulsive potential ener-
gy surfaces [14—16].

The symmetric exchange treatment [1] was recently
extended [11] to the closely related problem of the dy-
namics of H-atom exchange between two nearly degen-
erate vnbratxonal states in an asymmetric reaction AH
+B - A +HBY It was shown [11] that for this case
the reaction dynamics can be represented in terms of
two suijtably distorted nearly degenerate vibrational
states between which the exchange occurs. The result-
ing two coupled differential equations [1], which sim-
ulate the dynamics, were solved numerically [12] for
a model BrH + C1 = Br + HCl reaction and were shown
to yield results in good agreement with accurate multi-
channel calculations [12] for the same problem.

A perturbative (DWBA) approximate treatment of
the two coupled equations valid in the reaction thresh-
old region was also developed [11]. For reactions with
some (at least few kcal/mol) activation energy the thresh-
old region determines the kinetics of low and moder-
ate temperature reactions. In section 2 we calculate a

* The Sato parameters, listed as 0.02, 0.02, and 0.00 in ref,
[11], refer to HBr, HCl, and BrCl, respectively.
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Boltzmann-weighted reaction probability Py (T’) ob-
tained from the DWBA results in ref. [11] and com-
pare it with the one obtained from accurate numerical
solution of the two-state approximation for the BrH
+ Cl model system. A Py ;(T) is useful for testing these
DWBA results since it is more representative than

P (E) of the accuracy which they can be expected to
yleld when used for calculations of reaction rates in
actual physical processes.

An outline of a possible application of the formulae
developed here and in ref. [11] to reactions of H and
H transfer between two complex molecules and to
reactions in condensed phases is given in section 3. Vi-
brational adiabaticity is discussed in section 4. An ap-
proximate analytical expression for the reaction prob-
ability Py;(E), accurate over the whole energy range
where the two-state approximation is valid, is given in
a later paper [13].

2. Test of the relevant aspects of the “exponentiated”
DWBA formula for evaluating reaction rates

It was shown earlier that the treatment of the reac-
tive exchange dynamics in a collinear AH + B~ A + HB
reaction can, in the presence of an HB vibrational state
nearly degenerate with the initial AH one, be represent-
ed approximately by a pair of coupled ordinary differ-
ential equations [1,11]

[-7d2/dp? + (p) - E + Qy) w;(p)=i4; dy;(p)/dp,

[- 3 d2/dp? + ¢(p) - E +Qj] w;(p)=i4;; dg;(p)/dp,

(1)
where the notation is that of refs. [1,11] (with 4 re-
placing P), p being the slow coordinate defined there,
and where the negligible “centrifugal’ diagonal term
—1/p? on the left-hand side of both equations has been
omitted.

It was shown in ref, [11] that instead of solving eq.
(1) directly (e.g. ref. [17]) it is more appropriate to
utilize the diagonal elements in eq. (1) for generating
a pair of closely related but not exactly equivalent
coupled equations in the diabatic representation:

[-3 d2/dp? + V;(p) - E] ¥i(p) = V;;¥;(p),
[-% d2/dp? + V;;(0) - E1 ¥;(0)= Vy¥(p)  (2)
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(V V;; since the vibrational basis set is real. The
method used in the present study to obtain the matrix
elements V;;, V;;, and V; was an improved version
[13] of the methods in ref. [11]; however, use of the
latter would have made little difference in the thresh-
old region),

The coupled equations [eq. (2)] were solved in ref.
[11] in the tunneling region by means of a perturba-
tive (DWBA) treatment to give the following expres-
sion for the reactive transition probability (cf. eqs.

(5.5) and (3.9) of ref. [11]):

Py =(2nT)? = [exp(— A2/2aF))2 Py, (3a)
where

Py = [(2n/aF)V/2 V; exp (a3/24F)]2. (3b)
This Py, is the DWBA approximation to the reactive

transition probability for The corresponding symmetric
problem defined by the V-matrix elements V,i:

Vi=vi=3(Vy+ V. vyG#D) ()

in eq. (2), or alternatively in the adiabatic representa-
tion (eq. (1)) by

es=VitV) A;=0;=0, (5)
where the a refers to the plus sign and the s to the
minus. V in (3) is defined below. Eq. (3) was obtain-
ed by usmg the linear approximation for V,, and for

(l #7) as a function of p near the turning point,
i.e. by setting

dVyldp =(dV/dp),, =F,

dln Vii/dp = (d In V,]/dp)po =—-a, (6)

and by approximating the resonance defect V;(p)
Vi (p) by its value

A=V;(pg) — V;i(po) .(7)

at the classical turning point p for the p-motionona
potential V. (p) V is Vi (po)

Eq. (3) has the dlsadvantage typical of DWBA for-
mulae of yielding probabilities higher than unity at
high energies. To avoid this we can, in analogy to fre-
quent practice in using DWBA results for calculating
inelastic transition probabilities, limit the probability
by setting

max (Pg,p,) = 1. (8
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Fig. 1. Plot of Pgs versus total energy of the reactants for the
model system BrH + Cl — Br + HCL. The full line is the result
of the numerical solution of eq. (2) and the dashed line is the
approximation given by eq. (9).

A better approximation can be obtained by ‘‘exponen-
tiating” [11,18] the symmetric part of the P;;, namely
by writing*

Py(E) = exp(— A%/oF) sinzPsl’{r%‘ , 9

where P, is defined by eq. (3). At low values of
Py €q.(9) reduces to eq. (3a).

Eq. (9) gives excellent results around the reaction
-threshold, as seen in fig. 1, but not at energies much
higher than the threshold due to the approximations
of a linear Vi(p) and In V,,(p) (eq. (6)). Fortunately,
reaction rates for most reactions that have at least some
activation energy are determined at low to moderate
temperatures by the probabilities near the threshold.
In order to examine the utility of eq. (9), and of eq.
(3) plus (8), for calculating reaction rates for physical
processes which involve H-atom or proton transfer at
low and moderate temperatures it is convenient to test
its accuracy by calculating a dimensionless Boltzmann-
averaged reaction probability,

* Typically, the entire DWBA P,-- has been “‘exponentiated”™
rather than, as in the present case, only the symmetric part.
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Fig. 2. Plot of the log;o of the Boltzmann averaged reaction
probability Pgs (T') versus the inverse temperature. The full
line is obtained from the accurate numerical solution of eq.
(2), the circles are obtained using Px‘i(E ) in eq. (9) and the
triangles are obtained from eq. (8) plus eq. (3).

Pij(T) = fPij(E) exp(—E/kT) dE/KT. (10)

The P; (T) obtained using eq. (9) for P;(E) and the
one obtamed using eq. (3) plus (8), are presented in
fig. 2, together with the Py;(T) obtained from the nu-
merical solution of the coupled equations (2). The re-
sults are in excellent agreement. P; (T) above is related
to a “one-dimensional rate constant” k,j(T) by Py;(T)
= k1 i (T) hQ/KkT, where Q is the partition function of
the reactants

The linear restrictions (eq. (6)) which limit the
validity of eq. (9) to the threshold region can be re-
moved by using the exact two-state analog of Py,
given by eq. (4.10) of ref. [1]. We then have

Py = exp(— A2/aF)sin? (¢, — &,), (11)

where £ , are the elastic phase shifts of eq. (1) with
the matnx elements defined by eq. (5). However, ob-
taining accurate transition probabilities at higher ener-
gies also requires extending the procedures for evalu-
ating the matrix elements ¥;(p) in ref. [11] to smaller
p. Such extensions, as well as including the effect of
variation of the resonance defect V;; — V}; with p, are
discussed in detail elsewhere [13].
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3. Extension to more complex systems

The question is frequently raised as to whether
some of the “reorganization” of coordinates prior to
an electron transfer in solution also occurs for H and
for H* transfers. (An early review of electron transfer
theory is given in ref. [19].) We consider this point in
the following discussion.

We first note that the factor multiplying Py, in eq.
(3) can be shown [13] to have the form exp[— (r4)?],
where 7 is roughly the “duration” of the reactive col-
lision. (The units are such that # = 1.) This factor
exp[— (r4)?] serves as a counterpart to the well-known
Dirac delta function & (A) which appears in the Golden
Rule formula for electronic transitions, e.g. ref. [20],
including electron transfer reactions, e.g. refs. [19,21].
Because the ratio of the heavy to the light particles in
H or H* transfers is much closer to unity than it is in
electron transfers, this exp[— (74)2] is a much less
peaked function of the A than is 8 (A). Nevertheless, a
suitable fluctuation of other coordinates ¢, prior to
the H transfer, will reduce exp[— A2(g)/aF]. (The A
in eq. (7) can now depend on ¢.) For example, the
state-to-state contribution k;;(7) to the rate constant
is given by eq. (12), using arguments analogous to
those used in ref. [22],

k()= [ .../ Py(E,q) exp(~E/KT) dEdqQp/hQ.,
(12)
when the g coordinates are treated classically. j is the
quantum state of the H motion in the product that is
closest in energy to the initial (ith) quantum state of
the H motion in the reactants. In eq. (12) Py(E, ) is
given by eq. (9) and depends on ¢ mainly via A(g). E
includes not only the energy along the reaction coor-
dinate but also Vj;(p, ¢), which replaces the V;;(p)
present previously and is the effective potential energy
of the system when the reactants are in the /th quan-
tum state for the H motion. Q is the partition function
of the reactants, and @, is the momentum part of the
classical partition function of the ¢ degrees of freedom.
Fluctuations in the ¢ coordinates which serve to re-
duce the value of A(g) will increase Py;(E) and hence
be favored for enhancing the reaction rate provided
they do not increase V;;(p, q) too much. Typically,
one expects that eq. (12) for the reaction rate will be
dominated by the Py, factor in eq. (3), which is
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smaller for D than for H transfers. The expectation
that the exp[— (7A)2] term is reduced in importance
by a suitable and relatively minor fluctuation in coor-
dinates ¢ is indicated by the apparent absence of un-
usual isotope effects (D transfer faster than H transfer)
in the literature. If this were not the case it might be
possible to find a system in which the D-transfer rate
exceeded the H-transfer rate because, accidentally, A
was small for the deuterium case.

4, Discussion

The high degree of vibrational adiabaticity has been
one of the most striking features in accurate calculations
[6 7] of symmetric heavy-light-heavy (HLH) collinear
reactive collisions. From an experimentalist’s point of
view vibrational adiabaticity may simply mean that the
vibrational quantum number of the products equals
that of the reactants. It is manifested in the results of
the accurate numerical calculations by the absence of
vibrational excitation when there are higher vibrational
states open. When there are no excited vibrational states
open vibrational adiabaticity is manifested by the close
validity of the approximate formulae in ref. [1] derived
on the basis of vibrational adiabaticity. The vibrational
adiabaticity is also evident in the preservation of the vi-
brational action in classical trajectory calculations.

As noted in ref. [1], however, the dynamical nature
of the vibrational adiabaticity in symmetric HLH reac-
tions is radically different from that in the adiabatic
model used by a number of investigators [23,24] and
which was termed [24] vibrationally adiabatic. In that
vibrationally adiabatic model [23,24] the system moves
on a single effective potential energy surface. This mo-
tion was discussed in detail using natural collision coor-
dinates [25]. In the new type of vibrational adiabaticity
presented in ref. [1], the reaction is adiabatic in the
sense that the quantum state of reactants is coupled on-
ly to a quantum state of the products with the same
quantum number. However, two distinct quantum
states and two effective adiabatic potentials are needed*
to discuss the reaction.

Analogously, in the present case of a non-symmetric

* In the case of ref. [1], symmetric and antisymmetric states
were used for the reaction AH + A = A + HA and would al-
so be necessary for an exact resonance AH + B— A + HB
reaction.
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reaction the vibrational state of the reactants is nearly
degenerate with, and is coupled almost exclusively to,
a vibrational state of the products which has a different
quantum number. As a result the reaction is almost
completely vibrationally nonadiabatic, i.e. it leads to a
vibrational population inversion in the products. Both
the dynamics of H-atom transfer and the present treat-
ment are much more akin to those of the charge trans-
fer processes in atomic collisions than to the vibrational-
ly adiabatic treatment of chemical reactions in termsof
natural collision coordinates.
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