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Avoided crossings influence spectra and intramolecular redistribution of energy. A semiclassical theory
of these avoided crossings shows that when primitive semiclassical eigenvalues are plotted vs a parameter
in the Hamiltonian they cross instead of avoiding each other. The trajectories for each are connected by a
classically forbidden path. To obtain the avoided crossing behavior, a uniform semiclassical theory of
avoided crossings is presented in this article for the case where that behavior is generated by a classical
resonance. A low order perturbation theory expression is used as the basis for a functional form for the
treatment. The parameters in the expression are evaluated from canonical invariants (phase integrals)
obtained from classical trajectory data. The results are compared with quantum mechanical results for
the splitting, and reasonable agreement is obtained. Other advantages of the uniform method are

described.

1. INTRODUCTION

Potential energy curves (or surfaces) that approach each
other closely in a narrow region without intersecting are a
familiar feature in the description of collision processes with-
in the Born-Oppenheimer approximation. The existence of
such “avoided crossings™ (or “‘anticrossings”) for a certain
parameter (e.g., the internuclear distance in atom-atom
scattering) signals regions where couplings neglected in the
Born-Oppenheimer approximation become appreciable.'
The behavior of a variety of atomic and molecular processes,
such as charge transfer,? mutual neutralization,’ and predis-
sociation® are dominated by these regions.

Recently, avoided crossings have received additional
attention in connection with the study of coupled anhar-
monic vibrations.3-'* In that context, avoided crossings oc-
cur in plots of eigenvalues of the relevant Hamiltonian vs a
perturbation parameter coupling the vibrations. As noted
elsewhere, there is a connection between these avoided cross-
ings and the existence of an “isolated resonance” in the clas-
sical mechanics of anharmonic systems, in that an isolated
resonance can, in quantum mechanics, produce an isolated
avoided crossing.>”''-'* Whether it produces a large splitting

or not depends on the “width” of the resonance zone, e.g.,

whether that classical width in action-variable space is large
enough to contain the pair of quantum states, as we shall see.
Isolated avoided crossings are of interest for several reasons:
They produce local changes in the spectrum, extensive
changes in the wave functions, and in the energy distribution
among participating oscillators. When their widths overlap
sufficiently, they can lead to the onset of a type of “chaos” in
the wave functions and in the spectra,”'"** just as “‘overlap-
ping” classical resonances are implicated in producing, in
Chirikov theory,'® the onset of classical chaos. This distinc-
tion between overlapping and isolated avoided crossings
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(namely, that only the former has been related to chaos) is
sometimes overlooked, for example. '®

The study of classical chaos (associated with irregular
spectra) and classical quasiperiodicity (associated with regu-
lar spectra) in anharmonically coupled oscillators has been
of considerable interest in recent years (cf. Refs. 11,15, and
17-22 for reviews). The corresponding study in quantum
mechanics of coupled oscillators, the sources of regular pro-
gressions in the spectrum, and of irregularities, of ““regular”
contour patterns of plots of wave functions vs highly “irreg-
ular” ones, is of similar interest. The present article is part of
a series aimed at providing a semiclassical theory of “quasi-
periodic” anharmonically coupled vibrations in molecules
and in the present case, of their avoided crossings.

Recently, Noid et al.'? investigated quantal, classical,
and semiclassical behavior of two anharmonically coupled
oscillators at an isolated avoided crossing. In the quantum

_ mechanics, the avoided crossing arose from a term in the

Hamiltonian which produced a classical resonance. How-
ever, the “primitive semiclassical” eigenvalue plots, ob-
tained by quantizing the action integrals of the classical tra-
jectories, passed through the intersection instead of avoiding
each other. The splitting is due, thereby, to a classically for-
bidden process. To obtain an “avoidance,” a uniform semi-
classical approximation, alluded to there, is desirable and is
given in the present article.

The outline of the present article is as follows: to moti-
vate a functional form chosen for the present uniform ap-
proximation we first derive in Sec. II a low-order classical
perturbation expression for the energy that takes into ac-
count the classical internal resonance, Eq. (2.27). We then
show in Sec. III how to evaluate the parameters in this equa-
tion using canonical invariants (phase integrals) obtained
from classical trajectory data. The uniform semiclassical
quantization of this classical Hamiltonian demonstrates
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how a classical resonance produces an avoided crossing. The
expressions are given in Sec. IV. Remarks on the relation
between widths of classical resonances and the splittings of
avoided crossings are given in Sec. V. In Sec. VI numerical
results are given on splittings, and primitive and uniform
semiclassical eigenvalues are compared. A discussion and
concluding remarks are given in Secs. VII and VIII, respec-
tively.

Il. CONSTRUCTION OF THE RESONANCE
HAMILTONIAN

The semiclassical study of coupled oscillator systems
has proceeded along two different lines. One of these is the
numerical evaluation of phase integrals §pdq using classical
trajectories.'""* The second consists of attempts to express
the Hamiltonian in terms of good, or nearly so, action varia-
bles using perturbation or perturbation-iteration meth-
ods.!"182425 An advantage of this second method is that the
resulting analytic form may reveal information about the
dependence of energy levels on the various parameters of the
problem. (One disadvantage is that it diverges.>®) In the pres-

ent section, we use the perturbative method to obtain an-

analytical functional form [Eq. (2.27)], to treat the avoided
. crossing behavior. ,

To illustrate this procedure, we write the Hamiltonian

. of two coupled harmonic oscillators considered in Ref. 12 as

H=Ho(lx,1y]+€V(Ix,Iy! ¢xt¢y)! (2'1)

where I = (I, I,) are action-like variables, canonically con-
jugateto the angles @, @, . These variables are related to the
“customary action-angle variables (J;, w;) (i=xy) by
I, =J,/2m and @; = 27rw;. The unperturbed Hamiltonian is

Hy= 1 =all, + 3], 2.2)

where ° = (@2, @) are the unperturbed angular frequen-
cies. eV is a nonlinear coupling. Later, we shall designate
theseunperturbed I ’s and @'s appearing in Egs. (2.1)and (2.2)
by O superscripts. Progressively better action-angle variables
(no superscript labels) can be constructed by a sequence of
canonical transformations®*?*?” and the resulting Hamil-
tonian can be quantized by semiclassical quantization rules.
The construction of successive canonical transformations
"becomes very inefficient, or indeed may fail, when the per-
turbed frequencies w, = 8H /I, satisfy a “resonance condi-
tion”

Y mo()=0

=Xy

(2.3)

_J
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with {m, } denoting integers. (The exact w,’s in a quasiperio-
dic motion depend on the action variables 1.} Small, or van-
ishing, denominators containing the resonance condition
will occur in the explicit construction and thus cause diffi-
culty (the small divisor problem?*?%) in the perturbation the-
ory.

To treat a Hamiltonian involving an isolated reso-
nance?’ it is convenient to use the double Fourier series of the
Hamiltonian in the two angles ¢,, @,,

H= 5 H, L Liexplilsos + L)1

Near a resonance, the terms with (/,, /,) that fulfill the reso-
nance condition (2.3) have the slowest variation with time.
Under such conditions, one may restrict attention to H, and
to that part of e¥in Eq. (2.1) that depends on the angles in the
combination

(2.4)

a=m.@, +me, (2.5)
with (m,, m,) obtained from Eq. (2.3). The resulting Hamil-
tonian, known as the “resonance Hamiltonian,” Hy,'>*%* is
given explicitly as*

N=ow
Hy= S Hyll,. I)expiNa, (2.6)

N= -

where H, is the Fourier coefficient

21 27
Hy =(2fr)'2_[ 'f de, do,
(+] (1]

xexP( - iNa,H(Ix’ Iy' Pxr q’y)' (2'7)
This method of secular perturbations was applied by Born in
his studies in old quantum theory.?’ In this procedure, one
makes a transformation to “fast” and *‘slow” phases (a is the
slow phase), and eliminates the fast phase by averaging over
it. Consequently, the action conjugate to the fast phase be-
comes a constant of the motion.
We apply this method to the avoided crossing problem
studied by Noid et al.'> They examined the energy levels of
two coupled harmonic oscillators using the Hamiltonian

H =Yp? +p} + o¥%* + 0y’)
— a(x® +*) + Axy? — bxy? (2.8)

with @} = 30) = 3. The energy Jevels were computed quan-
tum mechanically and semiclassically as a function of A at

" fixed a and b. Because of the zeroth order commensurability

of the unperturbed frequencies o2 and ), a nearly exact 3:1
resonance occured for some (I,,I,) interval at relatively
small 1. We examine the energy levels of this Hamiltonian
using its resonance Hamiltonian Hp.

H can be expressed in terms of the action-angle-like variables (f;, @,) of the unperturbed problem using the transforma-

tion
x= (N,/wg)"zsi'n Pxy Px = (leWg)”zcos Pxr
and*similarly for y. H becomes

(2.9)

}}l/ =3 +1I, - % [(27,/3P7%( — sin 3@, + 3sin@,) + (27,0} — sin 3p, + 3sing,)]

- -%(I,I,’,)"’sin o.(—sin 3p, +3sing,) + %_1,‘1,(1 — c0s 20, )(1 — cos 2@}
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The commensurability or “resonance condition”
0, =3, (2.10)

for some A and I (the @’s are the actual frequencies) indicates
that one should make a canonical transformation®' to a set of
slow and fast angles. We use the generating function

F2(¢x' Py Ia! I) = (¢x - 3¢y + 11')1,,/2 + ]¢y
and find from

a =0F,/dl,, 1, =dF,/dgp,, etc.,

=@, -3p,+7 O=¢,

I,=21, I=3I +1,. (2.12)
The } and the 7 in Eq. (2.11) are introduced so as to obtain the
+ cos 2a in Eq. (2.27) later, without requiring a second
transformation.

The Fourier components H associated with the slow
phase a can be found from Eq. (2.6) as

27 2
H,y, = (2m)? f f dp, dp, H(l,.1,, ., ®,)

(2.11)

Xexp[ — iN (@, — 3p, + 7/2]. (2.13)
One obtains
H, = (31, +1,+ %1,1,)%,
{
b
- m‘lnyS)llz(sN.—Z + 5/\'.2)‘ (214)

The resonance Hamiltonian is, from Eq. (2.7),

N=ow
Hy= Y HyexpiNa
* N= -
4L+ Arg - 21,1305 2.
3 23

(2.15)

The resulting expression does not contain any terms
due to the other perturbation — a(x® +)’), and without
them the avoided crossings would occur only at 4 = 0. The
effect of that particular perturbation, calculated by second
order canonical perturbation theory,?” is E %

w152 (17 I3
EM= — = = 4+ 2z

o} )
Thus, a resonance Hamiltonian that includes the effects of
all three perturbations to their lowest orders is

A b
Hy=3 41+ ZLI, - —
a PT3T af

150* ( 1% 2)
Xcos 2a 2 ( 21 +1;)
The above deviation of Eq. (2.17) is somewhat piece-
meal but with some physical insight. A systematic but more
cumbersome derivation of the same expression is obtained
using Birkhoff—-Gustavson perturbation theory.?**? That
formalism collects various perturbations in powers of co-
ordinates and momenta_rather than in powers of a single
perturbation parameter and is therefore suited to our prob-
lem of multiple perturbations. It is given and applied in Ap-
pendix A.

(2.16)

(I 13)'"

2.17)
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b/

FIG. 1. Typical /, vs @, plots. Curves (a) and [¢) are rotational, {d) is libra-
tional, and (b) and (c} are the two branches of the separatrix.

One point is worth noting: The Birkhoff~-Gustavson
derivation of Eq. (2.17) reveals that the I, , 7, appearing there
are no longer the original variables /2, I but are related to
them by the successive canonical transformations. From
Appendix A, Eq. (A18), we see that the first generating func-
tion of this succession of generating functions, relating old
and new Cartesian variables, is

2 a & _ . :

FiaP)= 3 Pugy — 5 Yok 2Py +3Pgi) (218)
k=1 k=1 N

which, to lowest order in a, gives the relation between the

“old” and the “new” action-angle variables as

2 572 . R
I =19 — (—3—) all$y'%sin’ @},
’ ‘l)k : .
+(2.19)

(219)"%a(2 + sin® @ )see @ .
Consequently, I% vs @3 graphs, obtained ,frox{x trajectories,
are distorted from the 7, vs @, curves obtained from pertur-
bation theory. This difference can be seen, for example, by
examining symmetric separatrix in the present Fig. 1 and
comparing it with Fig. 9 of Ref. 12. -

However, since the phase integral ’ﬁp-d’iq is a canonical
invariant,*® we have O

$pdq = $1°d¢’ = $1.de, (2.20)
where the cyclic integral follows some path C. In the first
integral we choose C tobe y = constangg,and._hgnqe'ig the
second, @ % = constant, then in the third we deform the path
(without cutting new caustics of the trajectory when they are
not too distorted by the perturbation) so'that C is ‘alor}g ?,
= constant. We have T

$p.dx = $1%dp% = $1,dp, = $l,da, ~~  (221)
where in the last equality we used Eq. (2.12).>* We make use
of this result in the next section, where we evaluate $p, dx or
$1%p? from trajectory data and introduce Eq. (2.28) be-
low for I, into $1,da. In all our subsequent work, we use

0 o-s/}
tan @, =tan @ ; — w;
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canonical invariants such as Eq. (2.20), rather than individ-
ual points on trajectories, to evaluate parameters, since the
actions and angles we are using are distorted from the zeroth
order actions by the perturbations, as seen in the canonical
transformation formulas.

In terms of / and I, the resonance Hamiltonian is

Hy =1+AL(20—31,)/12 — % (U, 13/3)%cos 2a

15a2( 9 1% )
- 22 (s, + 212+ ==}, 2.22
4 IR T 222

where I, and I, are given by Eq. (2.12).

In resonant Hamiltonians such as Eq. (2.22) it is cus-
tomary'® {e.g., Ref. 35) to replace the coefficient of the tri-
gonometric term by its value at the resonance center. In the
present case, we can show (see Appendix B) that the values of
I, and I, at the resonant center are their average values
I., 1, between the pair of states that undergo the avoided
crossing. Using these (constant) average actions, replacing
Hy by E, and defining '

A= %1(2& + 1350744 + 13523, (2.23)

g=4b(T.T12/3)""*(4A + 1352%) 7", (2.24)

C = 16(I — 15a*1%/4)(4A + 13523, (2.25)

D= 16(42 + 135a%) ", ' (2.26)
Eq. {2.22) can be rearranged to give

IX — 28I, +2gcos2a +DE—C=0 (2.27)
which has two solutions at any energy E,

I""=84 [C+B?—DE~2gcos2a]'?  (2.28)

In Egs. (2.23)2.26) a term 12 /324 in Eq. (2.22), which is
729 times smaller than the 97 2 /4, was neglected. This neg-
lect does not affect the functional form of Eq. (2.27).

Instead of using the perturbation equations (2.23)-
(2.26) to evaluate the parameters in Eq. (2.27) we show in the
next section how they may be evaluated directly from the
classical trajectory data. Some comparison with the pertur-
bation expressions is given later.

We shall later need integrals of 7, over a*°:

f Ida=pr+2a T HENa+ ] (229)

when a — 2¢ > 0. The function E is the complete elliptic inte-

gral of the second kind and

a=C—DE + B (2.30)

Ill. EVALUATION OF PARAMETERS IN EQ. (2.27) FROM
CLASSICAL TRAJECTORY DATA

In this section, we first consider the primitive semiclas-
sical quantization (Sec. A), and then evaluate the parameters
in Eq. (2.27) in Sec. B.

A. Primitive semiclassical quantization
We begin by noting that since Hy, is independent of 6,

 its canonically conjugate momentum [ is a constant of the
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motion. Its semiclassical eigenvalues are
I=3I,+1,=n+2, ' 3.1)

where we have used units of # = 1 and introduced an integer

n given by

(3.2)

The quantum number n is actually the principal quantum
number for the motion. It can be evaluated either by evaluat-
ing the phase integrals §p,dx and $p, dy separately to ob-
tain n, and n, or by integrating the phase along the trajec-
tory over one or more near cycles and using the
“trajectory-closure” methods (in which one joins along a
surface of section the end points of a near-cycle trajectory).>’
We now have

$ip.dx + p,dy) = 2m(n + 2).
trajectory
The2in Egs. (3.1} and (3.3) arises from a sum of the constants

n=3n,+n,

(3.3)

_in3(n, +4)and(n, +4). It can also be seen to arise by noting

that a trajectory touches the caustics eight times during the
near cycle—six times because of the three x cycles and two
times because of the y cycle in the overall near cycle (cf. Fig. 6
of Ref. 12). Since each time the trajectory touches a caustic,
there is a loss of phase in the primitive semiclassical wave
function by 7/2, the total loss of phase due to touching the
caustics in 4. This loss corresponds to the 2 added to the
main quantum number # in Eq. (3.3) when the condition of
single valuedness of the semiclassical wave function is im-
posed.

The primitive semiclassical quantization of the a coor-
dinate is given, using Eq. (2.12), as Eq. (3.4) when o has the
full (0,7) range.*®

'f Lda= [ 1dp,=2nin, +1,
0 -

where the I, — @, phase integral has been evaluated at
e, =0

Using Eqs. (2.28) and (3.4) it can be shown {Appendix C)
that the two primitive semiclassical eigenvalues cross, rather
than avoid each other.

(3.4)

B. Evaluation of the parameters in the resonance
equation (2.27) from trajectory data

We consider a series of trajectory calculations per-
formed at a given /. To find ¢ at the crossing point (or indeed
any A ) and at the given /, the separatrix of the motion at that
A and I will be used. The separatrix is that trajectory which
separates the two kinds of motion possible in the (I,2)
plane, namely “rotation” and “libration,” as seen in Fig. 1,
and indeed also separates the rotational trajectories above
the separatrix from the rotational trajectories below it.

On the separatrix ([, — f)* vanishes at @ =0 and
a = m. Thereby, the energy of the separatrix at any A is seen
from Eq. (2.27)tobe

E; =(C+B8*—24)/D. (3.5)
At that energy, Eq. (2.28) yields the two branches of the
separatrix:

102 =8+ 24" %in a. (3.6)
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The separatrix is “self-crossing” ata =0 and 7. A Poincaré

taking a cut through the trajectory on the plane y = 0. This
choice of @, corresponds to 2a =@, + 7, and the two
branches (3.6) are transformed to Eq. (3.7), on using Eq.
(2.12)for I,. '

10 =B/2 + ¢"cos(@./2) (3.7)
resulting in a surface of section plot similar to the curves (b),
(c) of Fig. 1. The-area enclosed between the two branches is

s= [0 -12)de
0

= [ 1y -121dp. =80 3.8
Hence, ¢ can be determined from
g=S%/64. 3.9)

This equation applies, incidentally, regardless of whether 4
is at the avoided crossing or not. In trajectory calculations, S
can be determined as follows: when the separatrix has been
found, a Poincaré surface of section in the (p,,X) plane is
drawn (for an example, see Fig. 8 of Ref. 12). The area §
enclosed by the branches of the separatrix is the difference
between areas of the two elliptic curves [using Eq. (2.21)}.%°

We next determine 5. From Eqs. (2.28) and (2.21) we
have

267 = [ [198)+ 12UE ) da = [ 12+ 12,
(3.10)

where the two @, integrals can also be obtained from the
$p, dx phase integrals for the pair of trajectories [Eq. (2.21)].
‘The integrals are calculated at the same 1 and at the same E,
e.g.an Einthevicinity of E " and E 2 Attheavoided cross-
ing Eqs. (3.10) and (3.4) yield

B=n"+n? + 1 (at the avoided crossing), (3.11)

where ' are the x-quantum numbers (integers) of the
primitive semiclassical pair of states involved in the crossing.
To obtain C and D at any 4 we can use two integrals
derived from Eq. (3.4), knowing ¢ and § at that A, for two
values of E and hence of #,:

J—vlada=ﬂrrif [C+B?*—DE —2gcos 2a2)'*da
0 0

=2m[n, +1]. (3.12)
When the system is not at an avoided crossing, the twon,'s
can be simply chosen tobe the . 's of the pair of states under
consideration. Equation (3.12) applies regardless of whether
or not one uses eigentrajectories (i.e., trajectories with in-
teger n'?). E'"? are primitive semiclassical energies of the
two states. The integral (3.12) is expressed in terms of an
elliptic integral, as in Eq. (2.29), thereby leading to two tran-
scendental equations for C and D in terms of the known
quantities B, g, n¢*, and E 1121 In an iterative scheme, a first
approximation for C and D may be obtained by neglecting ¢:

[2n, +1)2—28[2n +1] + DE —C=0. (3.13)
The two equations in Eqg. (3.12) for E M and E @ are not

distinct at the A where there is an avoided crossing, as was
shown in Appendix C. In this case one applies Eq. {3.12) or

surface of section in the (I, @,) plane can be obtained by .
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(3.13) using data at noninteger #,’s. For example, Eq. (3.13)
yields for D,

Do — 8(d2E /dn?)™". (3.14)
With that value of D, Eq. (3.13) yields a zeroth order value
for C. These values can be refined by iteration, using the
rigorous expression (3.12) to give improved values of Cand D
due to the neglect of g was less than 1% at b = 0.005 and
around 6% at b = 0.02.%° An error of this size in D causes a
similar error in the calculation of splitting at the avoided
crossing, which is minor.

In evaluating C and D from Eq. (3.13) or (3.14) it is
desirable to use trajectories which are not too close to the
separatrix, for then the correction due to the ¢ term in Eq.
(3.12) is less.

We note in passing that the perturbation expressions
(2.23)2.26) yield g/D and C /D ratios which are indepen-
dent of A, and so this feature could be used to obtain these
constants away from the crossing, knowing their values at
the crossing.

IV. UNIFORM SEMICLASSICAL QUANTIZATION

We denote the two dimensional primitive semiclassical
wave function of our system in the (/;, 1,, @, @,) action-
angle variables by ¥ '(¢). Single valuedness of the quantum
mechanical or semiclassical wave function yields the follow-
ing periodicity result:

V'@, + 2mk, @, + 2ml) = ¥'(@x, ;) (4.1)
The primitive semiclassical wavefunction is equal to,*' apart

_ from a preexponential factor {the van Vleck determinant),

¥'(@x ¢,)~eXPli Uv‘(lx — Ndo, + Jv’(ly - Q)d%]]‘
4.2)

The I's in Eq. (4.2) ensure that the semiclassical wave
function satisfies the correct periodicity property in Eq.
(4.1): an increase of phase of @, by 2, for example, increases
the phase of ¥’ by é(I, — L)dg,, and since $1 dp, equals
2m{n, + 1) in the present case, with n, being an integer, the
phaseof ¥’ in Eq. (4.2) changes by 27n,,. Hence, this ¥ * given
by Eq. (4.2) satisfies Eq. (4.1).

We next make the following substitution in Eq. (2.27):

1 4 1 d
[t @ 4y, I—— P 4.3
i gy tho4 i 9, +2 (4.3)

The } permits this substitution, in conjunction with the wave
function (4.2), to yield, on differentiation, the original classi-
cal Eq. (2.27) in terms of and J,.

If we make the canonical transformation (2.12), the pe-
riodicity condition (4.1) yields

Via + (k- 3)m0 + 27l) = ¥(a.b), 4.4)
where ¥ is numerically equal to ¥’ at any point in angle
space. Since J is a constant of the motion and 6 a cyclic
variable, this total wave function ¥ can immediately be fac-
torized as

. ¥(a,f)=Ya)G(6) (4.5)
Further, one can replace k — 3/, an integer, by another in-
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teger m. Thus

Yla + mn) = Ha). {4.6)
All such functions automatically satisfy

Yla + 7) = Yla) (4.7)

regardless of the value of m. We will use this periodicity
condition in solving the Schrédinger equation correspond-
ing to our resonance Hamiltonian obtained from Egs. (2.27)
and (4.3).

The primitive semiclassical form of ¥ (a,8) is obtained
by expressing the 1,, I,,, @, and ¢, in Eq. (4.2)in terms of the
a and @ variables. Using Eq. (2.12) one finds (apart from the
van Vleck preexponential factor)

W(a,0)~exp[i[r(1a — 1)da + fo(l —2)do ] + :%]
(4.8)

Since 7 is a constant of the motion, one sees from a
comparison with Eq. (4.5) that

¢(a)~exp[ir(1a - l)da].

[The constant phase factor of + in/2 in Eqg. (4.8) can be
omitted without loss of generality.]

To obtain the semiclassical energy levels in the form of a
uniform approximation, Eq. (2.27) is next converted into a
differential equation by replacing the actions by differential
operators. The resulting differential equation is one dimen-
sional because / can be replaced by its constant value (3.1).
The choice*!

1 d

T i da +1
is consistent with the wave function (4.9), because one ob-
tains the original classical equation (2.27) upon introducing
Eq. (4.10) into Eq. (2.27) and operating on the wave function
(4.9). . '

The replacement transforms Eq. (2.27) into a Schré-
dinger equation for ¥{a):

(4.9)

(4.10)

3% g2 L a—2gcos2ap=0 (4.11)
da? da

with

A=C—-DE+28. (4.12)
If we solve Eq. {4.11) for an auxiliary function F(a),

F(a) = expli(l — Blal¥ia) (4.13)

instead of ¢, we find that Eq. (4.11) transforms into a Math-
ieu equation***’

2
ﬁ_f + (a, — 2q cos 2a)F =0, (4.14)
da

where
av>-=C——DE+/32. (4.15)

One sees from Eq. (4.13) that F is a complex exponential
function of & multiplied by another function of @ which has
period 7. Indeed, this condition is also the usual condition
onMathieu functions of fractional order, so that our desired
function F is such a function.
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In common with other problems that involve nonlinear
resonances, we have obtained a pendulum (“hindered ro-
tor,” “restricted rotator”) Hamiltonian,'* apart, in Eq.
(4.11), from the term containing dy//da. In physical prob-
lems involving hindered rotors,** 2¢ is the barrier height for
internal rotation.

The solution of Eq. (4.14) can be expressed in terms of
the Floquet solution

F.la) = &"P|a), (4.16)

where P (@) has the period 7 and v, the characteristic expo-
nent {or the order of the solutions of the Mathieu equation),
will be determined below. In terms of this Floquet solution,
the wave function y{a) can be rewritten as

Yla) = explilv + B — 1)a]P ().

In order to determine v in terms of $7, dg, phase integrals,
we increase @, by 27 while leaving @, the same. The semi-
classical wave function (4.2) changes then as

4.17)

2 .
Vg, + 27, @)= CXP["J; I, - i)d%]%” @xs @)
(4.18)

When @, increases by 27 at constant @, & undergoes the
concurrent change of 7. Equation (4.7) yields

Ha + m) = explilv + B — 1)7l¥la). (4.19)

Similarly, G (@) in Eq. (4.5) stays constant since 8 = @, [Eq.
(2.12)] and @, is being held constant. Thus ¥ (& + ,0)obeys

¥(a + m8) = explilv + B — 1)7]¥ (a,0). (4.20)
By comparing Egs. (4.18) and (4.20) we obtain
27
(v+Blr=| ILdp,. 4.21)
0

If we recall that the phase integral is 2m(n, + }), then
v=2n,+1-4 4.22)

The characteristic exponent in v is fractional in general.
Expansions of the characteristic value (eigenvalue) a, of Eq.
(4.14)in terms of ¢ and v exist for noninteger v. (We used that
in page 20 of Ref. 42.) When v is an integer 7, it is convenient
to associate v = r with the characteristic value a,(g) and
v= —rwith b,(g).

Uniform semiclassical eigenvalues E are then found
from the a, ‘s using Eq. (4.15). Thereby the relation

E=(C—a,+BYD"' (4.23)

completes the quantization scheme. The values of the pa-
rameters C, D, g, and S are evaluated as in Sec. III B. The
a,’sin Sec. VI were determined from expansions*? in powers
of ¢ where ¢ was small and by interpolation from tables*
when g was large.

A pair of states with quantum numbers n"’ and #{?' ap-
proach each other in energy most closely when +*" and v, as
calculated from Eq. (4.22), are integers such that

W= — o, (4.24
This condition is fulfilled whenever
B=n"4+n?4+1. (4.25)

Comparison of Eq. (4.25) with Eq. (3.11) shows that the cor-
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responding minimum splittings in energy are the splittings at
the avoided crossing. They can be calculated by

AE=E" —E®=(a, —b,)/D. {4.26)
In particular, for small ¢,

4E,=(a,— b//D=29/D + O(¢’),

AE, = (a, — b))/D =¢*/2D + O(¢"), (4.27)

AE,=(ay— b3)/D = ¢*/32D + O(¢’).

In the present case, these are the splittings for the pair of
states (n,, n,) = [(1,0),(0,3)], {(2,0),(0,6)], and [(3,0),(0,9)}, re-
spectively.

V. WIDTHS OF RESONANCES AND SPLITTINGS OF
QUANTAL ENERGY LEVELS

In standard Chirikov resonance theory,'* a Hamilton-
jan containing a classical resonance can be expanded as a
quadratic function of I, around the resonance center [, as
{using the notation of Ref. 13)

H=Hyl) =2, — I, + A}, I})coska, (5.1)

k is an integer. The coefficient of the trigonometric term is

" evaluated at the center of the nonlinear resonance defined in
Appendix B. The vertical extrema of the separatrix of /, vsa
are + 2(4 /22)"/? thusleading toa full width Win I,, space of
4(A /2)"*. The maximum I, in Eq. (5.1) occurs at ka = m,
whereas that in Eq. (2.27) occurs at 2a = 0. This difference
can be removed by replacing the ka in Eq. (5.1) by ka + 7.
Further comparison then shows that 4, £, I, and k are
equal to 2g, 2, B, and 2. The classical resonance width
4(4 /02)"* then becomes

W= 4q"2 (5.2)

The difference in a-quantum numbers n,, for the pair of
states undergoing the avoided crossing, nl}' — n?, is seen
from the relation between I, and I, in Eq. (2.12) to be
2(n" — n). One might expect that whenever this difference
exceeds the resonance width W, i.e., whenever

|n{ — | >2¢'7, (5.3)

the splitting at the point of closest approach of quantum
mechanical energy levels of the two states undergoing the
avoided crossing is small. We give later in Table IV a com-
parison of both sides of Eq. (5.3), and also give the splitting.

VI. CALCULATIONS

In this section, we compare energy eigenvalues ob-
tained by quantum, primitive semiclassical, uniform semi-
classical, and perturbation methods. In particular, we use
the uniform expression Eq. (4.23) and show how it can be
used to improve the primitive semiclassical eigenvalues. In
all these calculations, we have taken @ = 0.02.

A. Quantum resuits

In their recent comparison of quantal, classical, and
semiclassical behavior at an avoided crossing, Noid et al.'?
examined perturbations of the (1, #,) = (1,0) and (0,3) pair
of levels which show an avoided crossing near 4 = 0.055
when b = 0.005. A plot of their quantum mechanical eigen-
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FIG. 2. Plot of cigenvalues of the pair of states (2,0} and (0,6} vs perturbation
parameter A for & = 0.005.

values vs A appears in Fig. 1 of Ref. 12. Plots for other condi-
tions are given in their Figs. 2 and 3.

We extended their calculations to several other pairs of
states that show avoided crossings. A 400 element basis set of
harmonic oscillator wavefunctions was used and the result-
ing matrices were diagonalized using the EISPACK matrix
diagonalization package. The eigenvalues E, in Table I so
obtained were accurate to one part in 10°. A plot of the pair
[(2,0),(0,6)] at b = 0.005 is given in Fig. 2 and, for compari-
son, the pair [(1,0),(0,3)] of Ref. 12 at b = 0.005 is given in
Fig. 3. For brevity, we have omitted a pair [(1 ,2),{0,5)] which
shows an avoided crossing near A= —0.11, a pair
[(1,1,(0,4)] which gave parallel (i, nonapproaching)
curves, both at b =0.005, and the pair [(2,0), (1,3)] which
shows an avoided crossing near 4 = 0.013.

8. Primitive semiclassical trajectory elgenvalues

Primitive semiclassical eigenvalues were obtained by
quantizing classical trajectories.”> Trajectories were ob-
tained by integrating the equations of motion for the Hamil-
tonian (2.8) using the DEROOT program.*’ Poincaré sur-
face of section results were recorded for p, vs x every time
the trajectory crossed the liney = 0 in a particular direction
(e.g., ¥ > 0). The evaluation of the area enclosed by the sur-

506

504

E 5021

S00F

498 N SR S T RN SHN T S
(ol e]] 002 003 004 005 006 007

FIG. 3. Same as Fig. 2, except for pair (1,0}, (0,3).
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TABLE 1. Comparison of quantum with primitive semiclassical trajectory and perturbation cigenvalues for the (2,0)(0,6) pair of states, & = 0.005, a = 0.02.

Eg* Eeyer® Epse®

A {2,09 (0, 6) (2,0) (0, 6) . (2,0) (0. 6)

0.06 8.0237 7.9981 8.0239 7.9983 8.0243 8.0014
0.07 8.0276 8.0086 8.0279 8.0087 8.0286 8.0123
0.08 8.0315 8.0189 8.0316 8.0191 8.0328 8.0231
0.10 8.0394 8.0392 8.0395 8.0394 8.0411 8.0448
0.12 8.0469 8.0593 8.0473 8.0594 8.0495 8.0665
0.14 8.0544 8.0788 8.0548 8.0784 8.0579 8.0881

* Full quantum calculation using a basis of 400 harmonic oscillator states.
b Primitive semiclassical calculation using trajectories.

< Primitive semiclassical calculation using perturbation theory.

4These labels are not meaningful in the avoided crossing region.

face of section can be evaluated more conveniently with the
aid of the action-angle plot 72 vs @ 2. When evaluating the
area $1%dg?, the variables involved were deduced from the
{x, p.) set by usual transformation (2.9), to which should be
added O superscripts. Similarly, we calculated the area
$19dg? for x = 0. These integrals are set equal to 27{n, + })
and 2m{n, + }), respectively, and the initial conditions of the
trajectory were varied until the n, and n, are the desired
integers. The results for the [(2,0),{0,6)] pair are given in Ta-
bleI. Ascan be seen from Table I, the primitive semiclassical
eigenvalues again agree very well with the quantum results
for all A except, of course, near the avoided crossing which
we did not examine for these data. This aspect had been
extensively investigated in Ref. 9 for the data shown in Figs.
1 and 3 there. As shown in that article, the primitive semi-
classical eigenvalues cross instead of avoiding each other.
The last column in Table I gives a comparison between
quantum and primitive semiclassical trajectory eigenvalues
and the primitive semiclassical perturbation eigenvalues ob-
tained from Eqgs. (2.23)-(2.26), (2.29), and (3.4), iterating the
latter to obtain the E ’s. Theoretical arguments given in Ap-
pendix C show that the primitive semiclassical eigenvalues
should cross instead of avoiding each other. When compared
with the quantum ones, the trajectory values are seen to be
superior to the perturbation ones.

C. Uniform semiclassical trajectory treatment

We next apply the uniform scheme of the Sec. IV to '

obtain the splitting at the avoided crossing. The characteris-
tic exponent (orders of the Mathieu function) for the pair of
states are obtained from Eqs. (4.22), (4.24), and (4.25). For
example, for the (1,0) and (0,3) states, denoted by (1) and (2},
respectively, one sees from Eq. {4.25) that 8 is 2 at the avoid-

TABLE IL. Splitting AE and other properties at an avoided crossing 4 = 4..

ed crossing, and hence from Eq. (4.22) that +'" and v equal
+ 1and — 1, respectively. Similarly, for the (2,0) and (0,6)
pair, they equal + 2and — 2, respectively. Thus, the differ-
ences (a, — b,)/D and (a, — b,)/D yield the splittings at the
respective avoided crossing for the two pairs. In the case of
D, the second derivative in Eq. (3.14) was calculated as fol-
lows for a (1,0}, (0,3n) pair. Typically, first derivatives were
calculated from E’s at n,’s equal to (n — 0.01 and #) and to
(n, n + 0.01) and averaged. They were also calculated from
n,'s equal to ( — 0.01,0) and to (0,0.01) and again averaged.
This pair of first derivatives then yielded a second derivative.
We had to use 7, ’s not near the separatrix, which occurred at
an n, intermediate between 0 and 2.

The values of S, ¢, and D calculated at the avoided
crossing point are given in Table II, together with the split-
ting AEysc calculated from the values of @, — b, using Eq.
(4.26), and with the quantum values 4E,. '

D. Semiclassical perturbation treatment

In order to see the improvements provided by the uni-
form formula, we have made some comparisons between
primitive and uniform semiclassical results, using the per-
turbation expressions (2.23)-(2.26) for the parameters. To
obtain g in Eq. (2.24) one needs the average actions /, and /.
They are

I, = [I9+19]1/2 =4 + n' + 1),

(6.1)

I, =[N +19)72=4n +n +1).
¥ and v for the [(1,0),(0,3)] pair are the same as in Eq.
(4.22) with B now being found using the known values of the
perturbation parameters in Eq. (2.23).

States b S gld) D) AEyse AE,

(1, 0K0, 3) 0.005 273 0117 60  3.9x107? 3.3%10-?
2, 0X0, 6) 0.005 324 0.164 36  3.8X10™* 1.7x10~*
(1,040, 3) 0.03 481 0362 43  1.7x107? 1.9%10-?

*Estimated from d 2E/dn? using Eq. (3.14).
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TABLE IIL Comparison of primitive and uniform semiclassical cigenvalues (perturbation theory).

Efe Efse
b 4 {1,0) 0 3) (1,0 ©, 3
0.005 0.01 a . 4.987 5.003 4.987
0.03 5.007 4.999 5.008 4.999
0.05 5.012 5.011 5.009 5.009
0.055 5.013 5.014 5.012 5.012
0.060 5.015 5.016 5.013 5.014
0.080 . 5.020 5.028 5.019 5.029
0.03 0.01 a b 5.012 4.985
0.04 a b 5.021 . 4.99
0.07 5.014 5.016 5.008 5.033
0.10 5.023 5.036 5.018 5.048
0.13 5.031 5.054 5.027 5.063

“In these cases the smallest value of the integral (3.4) exceeded 37 and so a rotational-type integral could not be used. In all cases 7, > I /3 at places.
®In these cases, the largest value of theintegral (3.4) was less than 7, and soa rotatlonal type integral could not be used. 7, was greater than / /3 at many places

¢ These labels are not meaningful in the avoided crossing region.

In examining the I, vs ¢, plots from Egs. (2.17) and
{2.27) we found it convenient to plot @, as a function of I,
rather than the reverse. The primitive semiclassical énergies
are obtained from Eqgs. (2.29) and (3.4), and the uniform val-
ues are obtained from Eq. (4.23). The results are given in
Table III

The relation between semlclasslca] and quantum me-
chanical perturbation theory for the splitting of pairs of

_states [(v,, v,), (v, — 1, v, + 3)] was discussed in Ref. 12,
using first order degenerate perturbation theory. The
[(2,0),(0,6)] pair belongs instead to the class [(v,,v,),
(v, —2,v, + 6)] and requires second order perturbation
theory since the off-diagonal matrix elements directly con-
necting the two states are zero. We have treated this system,
and the results are more or less comparable to those obtained
from the uniform semiclassical perturbation theory. We
omit giving the details, since the main focus of the present
paper is to show how to convert the trajectory data to uni-
form semiclassical eigenvalues.

E. Comparison of widths and splittings

In Table IV we compare the two sides of Eq. (5.3) for a
series of pairs of states (m,0), (0,3m) for b = 0.005. Here
|nl" — n'?| equals m. (For simplicity we have used perturba-
tion theory to illustrate the comparison between widths and
m.) For the pairs of states (m,0) (0,3m) it is established by Eq.

(4.27) that their splittings vary as g™ when g is small. There-

TABLE IV. Comparison of resonance widths*® and energy splittings®.

fore the correlation between condition (5.3) and small level
splittings is evident. This connection can be corroborated
further by increasing b and thereby ¢ [Eq. (2.24)], and calcu-
lating the splitting of the quantum levels. The width of the
resonance and the splitting at avoided crossing both in-
crease, as can be seen both by perturbation theory and by the
data in Table II.

VIi. DISCUSSION

We have seen that in the uniform semiclassical theory
of avoided crossings the pair of states do indeed avoid each
other, whereas the primitive semiclassical ones cross. As dis-
cussed in Ref. 12, one of the principal approximations is the
replacement of the Fourier coefficient of cos 2a by its “‘aver-
age” or “resonance” value. It leads to poorer agreement
between quantum and semiclassical values for the case
where the splittings are associated with large changes of
quantum numbers. Other researchers in the field have en-
countered the same problem. In their recent work on the
local modes of ABA triatomic molecules***2 Sibert et al.
used that approximation to calculate splittings between pairs .
of local modes. Their semiclassical results agreed well with
quantum mechanical calculations when the splittings were
large. The discrepancies were considerable, however, for
small splittings, associated with large variations in |7, — /]|
(e.g.,the |4,0) £ |0,4) and |5,0) + |0,5) pairs of local modes
in Table II of Ref. 48).

A at avoided For b = 0.005 For b =0.03
Pair of states crossing | — n'¥) q 4 AE 9 w AE
(10) ©0,3) 0.0540 1 0.121 139 00041 0726 340 00227
(2,0, (0,6) 0.0945 2 0.214 1.85 6Xx10~* 1.284 4.53 0.0194
(3,0), {0,9) 1.1350 3 0.307 222 6X10™% 1.842 544  0.0071
{4,0), (0,12) 0.1755 4 0.400 253 I1X10 * 2400 6.20 0.0016
(5.0}, (0,15) 0.2160 S 0.493 281 2x107" 2958 6.88  0.0002

*Calculated from perturbation theory.

®Classical resonance width defined by Eq. (5.2). The right-hand side of Eq. {5.3)is W /2.
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We see from Tables II and III that the uniform semi-
classical theory supplements the primitive semiclassical the-
ory in two respects: (1) it produces the avoided crossing, (2) it
permits the calculation of eigenvalues in other cases where
primitive semiclassical theory fails (or perhaps requires an
alternative procedure). Interestingly enough, three of the
five cases in Table I1I [those under (1,0)] for which primitive
semiclassical perturbation eigenvalues were not obtained
were also not obtained from trajectories in Ref. 12 using the
simple quantization employed there.

We note in passing that uniform semiclassical theory
has been used, in conjunction with perturbation theory, to
treat the Hénon-Heiles problem.*® In that case, the linear
term in Eq. (2.27), which plays an important role in our sys-
tem was either absent or not discussed.

The primitive semiclassical eigenvalue plots cross and
can be regarded as the diabatic curves, while the uniform
semiclassical and quantum plots are the adiabatic curves. A
remarkable feature of the results, therefore, is that the diaba-
tic curves can be generated using the full Hamiltonian, pro-
vided one calculates them in a primitive semiclassical way.
Customarily, diabatic curves are obtained by neglecting

_some term or terms in the Hamiltonian. '

Vill. CONCLUDING REMARKS

In this article, we have shown that a classical resonance
leads to an avoided crossing and we have presented a uni-
form semiclassical theory of such avoided crossings. The
treatment involves obtaining a functional form for the Ha-
miltonian by means of low-order classical perturbation the-
ory and quantizing it. We used this functional form to deter-
mine the parameters of the uniform approximation from
trajectory data, and thus improve primitive semiclassical en-
ergy eigenvalues. The primitive eigenvalues crossed rather
than avoiding each other, whereas the uniform semiclassical
eigenvalues show the correct behavior. While the formalism
successfully describes the occurrence of avoided crossings
and individual eigenvalues, the accuracy of the splittings it
yields at the avoided crossings varies due to a central approx-
imation of the treatment, namely using an average value for
the Fourier coefficient of the trigonometric term. A close
examination of this replacement showed that it gives better
results the smaller the fractional differences in quantum
numbers. '

We also examined the correlation between the width of
the classical resonance in I, space and the splittings of the
quantum energy levels; and found that whenever the width
of the classical resonance was small, the energy level split-
tings of almost degenerate levels were exponentially small
also. These progressively smaller splittings across a sequence
of avoided crossings are a classically forbidden pheno-
menon, and might be termed, as has been done by Davis and
Heller, “dynamic tunneling.”*® It has been suggested to us
by Dr. J. N. L. Connor that in the /,, -a space in our particu-
lar case it corresponds more to a reflection in an *“over the
barrier” problem, which is, of course, still classically forbid-
den (cf. Ref. 48). Indeed, this is also largely the case, we find,
in the original (Cartesian) g-p space. An analysis of the phase
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integral solution to Eq. (2.27) will be published elsewhere. In
an interesting work on the different problem of local mode
splittings, Lawton and Child®' connected trajectories of lo-
cal modes by an approximate tunneling path, which joined
the cusps of box-like trajectories. This tunneling proceeded
along a real coordinate and with an imaginary momentum.

It should be noted that the avoided crossings dealt with
here mix nuclear wave functions, whereas at the better-
known avoided crossings in the collision problem it is the
electronic wave functions that interact strongly. An exten-
sion of the present treatment to such nonadiabatic collision
phenomena might make use of the classical analogs of elec-
tronic degrees of freedom.>?
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APPENDIX A: DERIVATION OF THE RESONANCE
HAMILTONIAN BY BIRKHOFF-GUSTAVSON
PERTURBATION THEORY

Birkhoff, in his treatment of nonseparable classical sys-
tems,*® gave a procedure to transform the original Hamil-
tonian into a normal form consisting of a power series of one-
dimensional uncoupled harmonic osclllator Hamiltonians.
This procedure was modified by Gustavson?? to include sys-
tems with commensurate frequencies. The resulting expres-
sions are particularly easy to quantize.?* In what follows, we
first summarize for the purpose of the present paper, the
method along the lines of Gustavson’s work.*?

Consider an n-dimensional system with a Hamiltonian

H(u) = HPup) + H™w,v)... (A1)
which is a power series in the coordinates ¥ = {u, ] and mo-
menta v = (v, }, and H" is a homogeneous polynomial of
degrees

HYup)= Y auvs=23,... (A2)
itj=s
In these expressions, i = 27 _ i, and u' denotes II} _, uk,
respectively.

If H? is positive definite, it can be canonically trans-
formed to the harmonic oscillator Hamiltonian

. ’ o

H¥%g)= 3 =i +4)
=]

According to Gustavson,? H (p,g) is in normal form if

= "E L — a =
: DH(p’q)'_k=|wk(pk an. o Ipy )H(p,q]
(A4)

(A3)

i.e., that the Poisson bracket of H with H ' vanishes.
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The transformation of the power-series Hamiltonian (A1) to normal form can be achieved by successive canonical
transformations of the so-called F, type.' To this effect, one defines generating functions

F§(Pg)= Y Pig. + W"(Pyg),
k=1

(AS)

where | P, ] are the new momenta and s> 3. The transformation equations are

awn
Q=9+ =35 '

awe
=P+ Z—,
P %

Hipg =T (PQ)= if “P,Q),

(A6)

where Qis the new coordinate. I"®(P,Q )is H !p,g) evaluated atp = P,g = Q. Beginning withs = 3, thecanonical transforma-
tions F'{? given by Eq. (A5) put all terms Eq. (A1) for H of degree s into normal form. W © and I"* are determined from Eqgs.

(A12) and (A13) below in the following manner.

The working equations arise from expanding the equality

+ —>9

W oW -
r(P, —):H(P )
9+ 755 E»

in a Taylor series around (P,g) and collecting terms of equal degree /. They are

rm(Psq} = H‘"(Pﬂ)y i<s,
DWYPg)=I"\Pgq)— H"Pg), i=s,

., PP TRVA
r(‘](P,q) = H(Q(P'q) + %( ’I—Iljv!) I( a;qV )

These terms are terms used to normalize terms in & of degree
5. In the last equation, the summation is over all combina-
tions {/, }, consistent with*?

1<},
(A92)

152, 533,

jisthesum 27 _ ,j,; / is fixed for a particular combination of
the j,’s, and is defined by*?

I=i—jis—2) {(A9b)
[Incidentally, it follows from Eq. (A9) that / < i. The condi-
tion s 3 arises since H ® is already in normal fona. For this
reason also, />2.] Because of these restrictions, the I"'"s in
the right-hand side of Eq. (A8c) always have / <s + 1. Fur-
thermore, H'WP,q) and I"'(P,g) denote H"p,q)[,.» and
I'%P,Q)\o - 4» respectively.

The canonical transformation of degree s leaves all
terms H of overall degree i/ <s [see Eq. (A2)] unchanged,
e.g., Bq. (A8a), since they are already in normal form. The
normal form is obtained in Eq. (A8b) by choosing I"* such
that the operator D ~' acting on the right-hand side gives a
finite result; thus an equation for W* is obtained. This gen-
erating function, in turn, leads to additional terms of degree
i>s. The new Hamiltonian, at this stage of the normaliza-
tion, is denoted by a subscript s and I';(P,Q).

LpQ)=ry+r¥+ri+.., (A10)

where I"Yis unaffected by s for all i < 5. All terms of I', up to
and including degree s are in normal form after the transfor-

(A7)
(A8a)
(A8b)
43'11'“ - [ ﬁ ( a;;"*’ )jv i’rm‘ y I>5 (A8c)
II aP% =t v II aq.
ve | vas |

I
mation generated by W, When using Eqs. (A8) (with s re-
placed everywhere by s+ 1) to normalize terms in
I,(P,Q)lo-, of degrees + 1, each term of the Hamiltonian
(A10), "', must be identified with the H ) on the right-hand
side of Eqgs. (AB). [Note, the I"* in Eq. (A8b) is now I"¥} "
and the H* " there is equal to I"¥* 1]

In order to solve for W* in Eq. (A8b), one makes a
canonical transformation to variables (7, £, ) such that*

P, =27"m, + i),

(A1)

g =2""%m, — i&).

This changes the operator D into its diagonal form Din -
(€,7) space:

Dgm) =iYw, fk—a——ﬂk J .
RIS

Since monomials of the form
¢lm = l:["l::g :”‘

are eigenfunctions of D with eigenvalues

E;, = ikz @y (my — 1)
=]
they are eigenfunctions of D ~* also,
D-'®,, =E'P,.
Equation {A8b) can then be solved as

we=p —I(I'-(a) _1'1(:1), (A12)
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after expressing " and A in terms of the sum of mono- 2 .
mials in £ and 7 to yield "% and A"\ H=| Y ollpi +qi)—a 3 o %
To make the right-hand side of Eq. (A12) finite, I'* - o by
must be chosen such that it will cancel all terms in A * which A oy i (A16)
give a zero eigenvalue E,,. These are terms for which @x@y (wewy)
m, = I, (all k ), regardless of the values of w, , and, becauseof ~ where g, denotes x, o? denotes w2, etc.

the presence of a zero-order resonance, terms such that E,, Thus, in Eq. (A1) for H we have
is proportional to the resonance condition (2.3). Using these 2
two kinds of terms, both referred to as “null space terms,” HP=1Y oflpi +qi)
N'%, and the remainder of terms in H &), referred to as the p=1 R
“range space terms,” R ¥, we have H®= —ga 3 oY ql,
kel
g9 =N94RW, {Al13) and (A17)
_ 2,2 bxy’
HW=2 xy .
We now choose I (s) so that 20l (@ wg‘)"z
["'lsl=1'v(sl. (A14) Hm=H(6,= -_--=0.
The application of Eqs. (A8) to obtain W ' is as follows: @
It then follows that ) is converted to H f”. One then separates those terms in A o
5 L : which belong to N from those which belong to R ', and
W= _ DR, (A15)  then use Eq. (A15). This yields
. i re=o
Using /" and W' and the inverse of the canonical transfor- -
and (A18)

mation (All) one obtains I and WY, ie,
) = j 2 Y
g P1="T"m), etc o i W= = L 3 Wy P2 +IPd)
For Hamiltonian (2.8), replacing p, in (2.8) by 0} p, - 32
andg, by? '“g., toconvert to the notation in Eq. {A3)we  This ' is now I'{. We are next interested in finding ry:

obtain To find this 'Y, we evaluate Eq. (A8c),
) ]
2 WP\, H? aWU) (31"“’ )] 1 2 (8W“"’ )z FPH®P (3W"’ )z Fre ]
W = FFP, _ + — —
re=nea+ 3 (5 &> )-GO 720F) o)
aW(:“ aW(J) aZH(Z) aWB) aW(J) 321“(2)
(22N 5 g~ G % ) e
[( dq, dq, / dP,aP, ap, apP, / dq,9q,
which simplifies to the following, using Egs. (A15), (A16) and (A3):
1 2 an 2 aZH(Z) awm 2 321-(2)
r(dl P, - H“’ P. —_ ( ) —( ) ]: Al9
Pg) = HPa) + - z[ Y o (%) e (A19)
2 .
r{pg)=H"Pg - = ot lak + k) (A20)

For the present purposes we shall stop this iteration at s = 4. The procedure described in this appendix can readily be
programmed using a symbolic manipulation routine, and we have used the SMP language®* to check the present formulas.
This program can be used to obtain high-order normal forms of the Hamiltonian (2.8).

The Hamiltonian resulting from the W canonical transformation,

HeH®+ T4 31 (A21)
k=38 .
can be pl;t into normal form through terms of fourth degree by applying Eq. (A8) with s = 4. This normal form is
o ) 1502 . A
H -— % PZ 2y o (] PZ 2 _r
A Z 2 (Pi + Qi) 16 kwk( P+ Qi+ PRCHE)
X(P? + Q2P + 03) — b(w20d)""?[Qi24Q} — 3P3) — PPPT — 3Q3)])/8. (A22)
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Finally, a transformation into action-angle variables
o= (21,)""*sin Py P = (24,)' 2 cos @,

completes the derivation of the resonance Hamiltonian
(2.17).

APPENDIX B: AVERAGE QUANTUM NUMBERS FOR
USE IN THE RESONANT TERM

In their recent semiclassical study of intensities of vi-
brational spectra,®® Koszykowski ef a/. found that for transi-
tions between quantum states 1 and m, semiclassical transi-
tion frequencies and intensities agreed well with the
corresponding quantum results if they were evaluated at the
average action

I=\I, +1,), (B1)
corresponding to an “average quantum number” (n 4 m)/2.
This had been noted earlier by Naccache®® in the study of the
validity of classical mechanics in the derivation of quantum-
mechanical expressions. In particular, this semiclassical cor-
respondence principle leads to exact agreement in the case of
Morse oscillators. When studying avoided crossings, we are
again dealing with two weakly coupled states, coupled by an
internal perturbation rather than by the radiation field, and
wense the analogous approximation of replacing I, and /, in
the Fourier coefficient of cos 2a by their arithmetic aver-
ages. - .
Such a replacement is equivalent to the customary pro-
cedure®® of evaluating that Fourier coefficient at the center
of the nonlinear resonance zone. The “resonance center” for
a m,:m, resonance is the pair of actions I = (I';, I'}) such
that

m, 0, (I~ m,o,(I)=0. (B2)
When the perturbed angular frequencies w; = dH /91, are

obtained from Eq. (2.27), where the E is written below as H,
and where we neglect the cos 2a term:

o, (I)=3dHg/dl,
= (0HR/3I\01 /oI,) + (dH R /01, )/(01, /01, )
w,(I) =dHR/dI, {B3)
=(dH /9101 /1,) + (0H /31,91, /3L,).
The actions at the resonance center satisfy
30,(IN— o,(I=0. (B4)
The substitution of Egs. (B3) into Eq. (B4), and noting that /
is given by Eq. (2.12), gives
(OH /01, )301,/61, — 3, /dl,) = 0. (BS)
Using Eq. (2.12), one sees that 3H ; /31, vanishes at the reso-
nance center. Thereby, from Eq. (2.27) we have at the reso-
nant center
B=1,=2, ' (B6)
where the second equality arises from Eq. (2.12). From Eq.
{4.25) we have
B=nl+nd+1=I0+1I7. ‘ (B7)
Using the definition of the average action 7, , [Eq. (B1)), it is
seen that
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B=1, " (BY)
thereby showing the equality
I, = T, . (B9)

and hence that /', = 7,.

The replacement of the Fourier coefficient by its value
at the resonance center, like other averaging procedures, is
expected to be valid whenever variations in |I; — I']| whena
varies are small. For transitions.in which the quantum
numbers vary extensively, however, it will lead to substantial
errors. We illustrate this point in Table I.

APPENDIX C: CROSSING OF PRIMITIVE
SEMICLASSICAL EIGENVALUES

In this appendix we show that the two primitive semi-
classical energy eigenvalues, contained in the integral (3.12),
cross in the eigenvalue vs A plots. Integral (3.12) gives

Br+ T\, =2mny?+4), (Cl)

. where

T, =J-‘[C+ﬂ2 — DE"™ _ 2g cos 2a)'? da. (C2)
0

Thus the two distinct equations for the energies are given, in
implicit form, as

T,=2r(n'+}) —Bm,
_ {C3)
—T,=2w(nd +1) —Bm.
However, at the special value of
B=nY4+n® 41 (C4)
one finds from Eq. {C3) that T, equals 7. Since T'is 2 mono-
tonic function of E, [cf. Egs. (3.12), (2.29), and (3.30)] one

concludes that when T, = T, then E " and E ® areequal, i.e.,
the primitive semiclassical energies cross.
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