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We consider the distinguishing features of two main types of classical anharmonic motion
in molecules, their quantum parallels, and conditions that classical chaos also be sufficient
for “ quantum chaos”. Implications are considered for experimental reaction rates,
R.R.K.M. theory, spectra and a possible type of system for intramolecular laser-selective
chemistry. A theory of intramolecular energy transfer between two ligands of a heavy atom
is described for a system which may contain many coordinates. It is partly statistical and,
for the modes of each ligand which communicate through the heavy atom, dynamical.

1. INTRODUCTION

Quasiperiodic and chaotic motion in molecules, and more generally in anharmonic
systems, has been the subject of considerable interest in recent years, and of many
conferences and reviews [see e.g. ref. (1)-(14)). From a chemist’s viewpoint several
main questions are the following: (1) What are the main distinguishing features of
the different types of classical mechanical anharmonic motion (quasiperiodic versus
chaotic)? (2) What is known about the corresponding quantum-mechanical be-
haviour? Does classical *“ chaos > imply a quantum ‘‘ chaos ”’? How might one
define the latter? (3) Do quasiperiodic and chaotic behaviour always differ in their
collision-free intramolecular energy redistribution, or is some other aspect of the
anharmonic motion equally or more important? (4) What implications do the
theoretical anharmonic studies have for experimental data, e.g. for the rates of uni-
molecular processes, for spectra and for intramolecular laser-selective chemistry?
How would one differentiate experimentally between the various types of behaviour,
taking state preparation into account? (5) What does statistical (e.g. R.R.K.M))
behaviour imply in terms of the underlying dynamics?

We address these questions in sections 2-5 from a unified viewpoint. We
consider a possible type of system for intramolecular laser-selective chemistry (section
6) and present a theory of intramolecular energy transfer between two parts of a
molecule joined by a heavy atom (section 7). A criterion for overlapping avoided
crossings, and conditions that classical chaos imply * quantum chaos * are given in
section 3. Some of the material is presented here to set the background on some
points about which there has been some confusion or misunderstanding in the liter-
ature. We have recently reviewed the literature on quasiperiodic versus chaotic
motion.! Extensive references are given there and we shall sometimes refer to that
and other reviews instead of to the original articles.
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2. CLASSICAL QUASIPERIODIC VERSUS CHAOTIC MOTION 1-*

Quasiperiodic motion implies classically that for a system of N coordinates the
system moves on an N-dimensional surface in 2N-dimensional phase space (or less
than N dimensions if the motion is degenerate). The surface (a torus) is determined
by N constants of the motion (the action variables) and the trajectory uniformly
covers that surface. The time dependence of any coordinate can be expressed as a
Fourier series in the N phases (the angle variables) and thereby in terms of N funda-
mental frequencies (less if degenerate), plus combinations and overtones. The power
spectrum of any dynamical variable can be obtained by computing its autocorrelation
function using a classical trajectory;! the above frequencies appear as sharp lines.

Mathematically, classical quasiperiodic motion for a system of N coordinates exists
if there are N integrals of the motion whose Poisson brackets with each other vanish.
If this applies to all initial conditions the system is * integrable.” In general, most
dynamical systems are not integrable, but for a large fraction of the initial conditions
at small perturbations from an integrable system these N commuting integrals of the
motion do exist, according to the KAM (Kolmogorov, Arnold, Moser) theorem. The
resulting quasiperiodic motion for such an initial condition then exists stably for
infinite time for these initial conditions.

In a classical quasiperiodic trajectory there can, in the absence of internal reson-
ances, be very unequal distributions of energy among the various modes of vibration
for infinite time, a point to which we shall return later. Internal resonances (par-
ticularly, but not restricted to, 1: 1 resonances) cause extensive periodic sharing of
the energy among the participating zeroth-order (harmonic) modes. Isolated reson-
ances provide another example of quasiperiodic motion and have been so treated in the
literature.

Usually, as the energy of the system increases, or as the perturbation from an
integrable system (one with N actions) increases, an increasing fraction of the trajec-
tories becomes chaotic. In classically chaotic motion all of the N action variables no
longer exist, although some may, and correspondingly instead of having a sharp-lined
power spectrum the spectrum becomes *‘ grassy”. (It may become ‘‘ broadened”,
but there are not enough cycles of the trajectory to make it a continuum.) Each
trajectory becomes very sensitive to its initial condition, and initially neighbouring
trajectories separate in phase space exponentially with time. In contrast, neighbour-
ing quasiperiodic trajectories separate linearly in time.

Nevertheless, chaotic behaviour of an individual trajectory need not be the same as
microcanonically averaged behaviour. In a two-oscillator system, in particular, it is
confined between adjacent tori which have persisted.

Chirikov’s approach to the onset of chaotic motion is the following, and involves
an “ overlap of resonances”.” A particular trajectory for some initial condition
(specific actions) has a commensurable set of frequencies (a resonance) and nearby
tori have almost commensurable frequencies near this ratio, and are within the *“ width
of this resonance *’ in action space: two or more of the independent angle variables
(phases) in these trajectories can become correlated. Nearby there is another
periodic trajectory with a different commensurability and so the centre of a different
resonance. Around it are tori with near-commensurability almost equal to this new
commensurability and this resonance has its own *‘ resonance width”. Although
each resonance is not in itself chaotic (one can define actions for any trajectory in this
width), an overlap of these widths in phase space initiates the onset of chaos, according
to Chirikov, a chaos which under stronger perturbations or higher energies becomes

increasingly widespread.
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In addition to quasiperiodic! and chaotic '* motion another type of motion has
been found recently in hard-walled * rational billiards ” problems.!* The system is
unusual in that it lies on a special two-dimensional surface in four-dimensional phase
space, termed a * multiply handled sphere,” which is not a torus. The action
integrals do not exist, and the surface has been termed pseudointegrable.!* It is
apparently not known whether any such surface applies to any molecular system.
Initially neighbouring trajectories would presumably separate rapidly when one pro-
ceeded along a handle and the other, on the other side of a bifurcation, along the main
sphere. Such ** bifurcations > would presumably cause irregularities in the classical
power spectrum of a trajectory on that surface. Thus this special case has some
properties of a chaotic system (even * overlapping avoided crossings ), although the
trajectory lies on a surface of the same dimensionality as a torus. We omit consider-
ation of this special case.

3. QUANTUM BEHAVIOUR

The semiclassical quantum analogue of quasiperiodic motion is now well under-
stood. [It is reviewed in ref. (1), (6) and (11).] As long as action variables exist for
the trajectory, one can introduce an Einstein-Brillouin-Keller semiclassical quantiz-
ation of them (a WKB approximation for solving the Schrédinger equation). Keller
showed how to do this for non-separable systems with hard-walled potentials ' and
more recently Eastes 7 and Noid !® showed how to determine action integrals from
quasiperiodic classical trajectories from non-separable systems with smoothly varying
potentials. Previously, the only such systems successfully treated had been those in
which one can separate variables or in which one can apply classical canonical
perturbation theory to obtain the actions. A variety of perturbative or perturbative-
iterative methods have since been presented. [For reviews see ref. (1), (6) and (11).]

When trajectory or perturbative methods are applied in their simplest form, one
has a ** primitive ”* semiclassical quantization. This quantization is satisfactory in
most instances when the motion is quasiperiodic. Systems with and without internal
resonances have now been quantized in this way. However, when the quantized
trajectory occurs near a separatrix, i.e. near a surface which separates tori describing
two different types of motion, a uniform semiclassical quantization is needed. Ex-
amples include the one-dimensional double-well problem,!? the pendulum problem,
the Hénon-Heiles system (the border between librating and precessing trajectories),?
local-mode-normal-mode description of triatomic molecules ABA,?! group local-mode
treatment of polyatomic molecules ABC in which A and C are each a set of atoms and
B is heavy,? and avoided crossings (*‘ anti-crossings ") in quantum mechanics.2? All
of these problems are either or have been approximately reduced to that of one
dimension.

Some of the properties of the classical quasiperiodic trajectories have parallels in
those of the corresponding quantum-mechanical states:! the spectrum, which was
relatively simple for the classical quasiperiodic system, is comparatively simple in the
quantum-mechanical system. (Of course, when there are a number of coordinates
there can be many regular sequences of overtones and combinations. Unravelling
the spectrum may then become impractical.) One difference from a classical mechani-
cal spectrum is that the latter is obtained from a trajectory at some given energy, and
so the classical overtones are exact multiples of the fundamentals at that energy. In
the quantum case each spectral line involves a transition between two energies, and so
is at best only centred on some energy. Since this mean energy increases with each
overtone, the exact multiple relation is lost. Nevertheless there is a regular progression
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of spectral lines (overtones and combinations) with gradually changing spacing.
Taking this effect into account in the comparison between classical and quantum
spectra, so that the individual spectral lines are always compared at a mean action
corresponding to the mean quantum number, there was good agreement not only of
the positions of the spectral lines but also of their intensities for the cases studied in
ref. (24).

There is also a correspondence of the ‘“ shape’ of the wavefunction and the
corresponding semiclassical trajectory (i.e. the one whose actions match the quantum
numbers via a semiclassical relation).! They display regular (rather than chaotic)
contour patterns. Indeed, semiclassically calculated wavefunctions are expected to
compare well with the quantum-mechanical ones, if any needed uniform approximation
is introduced. Correspondingly, there is also a correspondence of the so-called
Poincaré surfaces of section with Wigner distribution functions (calculated in a par-
ticular way).?* One thus expects that, apart from tunnelling and interference contri-
butions to any particular problem, there will be a close correspondence between various
reduced properties calculated by averaging using a wavefunction or by phase averaging
over the corresponding classical torus.

Quantum-mechanically an integrable system could be defined, by analogy with the
classical definition 1° of commuting Poisson brackets, as a system for which the
operators for the N integrals of the motion of an N-coordinate system commute with
each other. A consequence of this definition is that there are sequences of quantum
numbers (n,, * * *,ny), just as there are individual actions (Jy, * * *,Jy), which describe
the state of the system, rather than just one quantum number ordering the states.
Correspondingly there are expected to be *“ regular patterns  in the wavefunctions
and regular progressions of spectral lines. It is quite likely, by analogy with the
KAM theorem, that this behaviour continues to be true (at least approximately now)
for small perturbations from an integrable system. However, only in the limit i = 0
may it be exactly the case.

In summary there is a close relation between quantum states and the related quasi-
periodic trajectories, when the latter exist. The former have * regular wave
patterns ” and *‘ regular spectra.”

Since quasiperiodic motion for the general case, i.e. the case which is not integrable,
has not been precisely defined for quantum systems, but only by semiclassical corres-
pondence, it is not surprising that no generally accepted definition of quantum chaos
exists. By analogy with the corresponding classical case one could compare two wave-
packets initially neighbouring in some phase-space sense and examine the nature of
their separation in time, exponential or linear, of values of some phase space operator
in the two packets. In contrast to classical mechanics, however, the two packets
would no longer each be at specified energies, and the results might depend on their
width and on the states chosen for the packet, there being at least several quantum
states rather than just one. A number of investigators, including Heller, Brumer and
Shapiro, Weissman and Jortner, and Pechukas, have discussed the evaluation of wave-
packets from various viewpoints [partly reviewed in ref. (1)].

Another criterion for distinguishing which quantum states are analogous to
quasiperiodic and chaotic trajectories would be the spectrum—whether or not
irregularities exist.!! Recently we described a way that irregularities can occur [ref.
(1) and references cited therein]. States can mix wave patterns via avoided crossings
of eigenvalues. Avoided crossings belonging to a certain sequence would show a
regular progression of the spacings. (A single classical resonance can embrace within
its width many, few, or no pairs of states which show avoided crossings.) Like an
isolated classical resonance,’ an avoided crossing would not in itself constitute chaos.!
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We next consider overlapping avoided crossings. A criterion for this overlap is
obtained below.

Each avoided crossing has some ““ width ™ over which the two wavefunctions are
changing rapidly in the plots of the two eigenvalues versus a perturbation parameter A.
One can define a ** width  for an avoided crossing in the following way. The two-
state pair of eigenvalues are, using degenerate perturbation theory, given by

E, =¥H, + Hy £ VI(Hn — H,,)* + 4|H,*1 (3.1)

where H,, and H,, depend on A and where, for the purposes of the present illustration
only, Hy, is constant. The difference of the slopes of the two crossing >’ eigenvalue
plots in the vicinity of the avoided crossing (i.e. at a value of A where H,, = H,,) is
denoted by s:

S = a(Hu - sz)/al at Hll = sz. (3.2)

The * half-width ” w, in A-space, of the avoided crossing is the distance in A, from the
crossing-point, needed for 4|H,|* to be comparable to (Hy, — H,,)*>. Hence

wx 2|Hy,l/s. (3.3)

2|H,,| is the splitting of the two states at the A where Hy; = Hyp,. With the half-width
defined as in eqn (3.3) one sees that overlap of two avoided crossings A and B occurs
when the distance between their respective centres A/ satisfies

AL < w, + W 34

and when they simultaneously have a state in common. One can extend the argu-
ments to a multi-parameter space. The avoiding curves become a special case of the
well known conical intersection.'®

One view of * quantum chaos >’ !''is that it corresponds not to an isolated avoided
crossing but to overlapping avoided crossings. The latter would yield irregularities -
in the spectrum and a complex contour pattern for the wavefunction of a quantum
state, reflecting the involvement in several regularly patterned wavefunctions in this
state.! The generation of statistical (“ scrambled ”’) wavefunctions by overlapping
avoided crossings,?® and the properties of the former, have both been discussed
recently.?’

“ Quantum chaos ”* does not 2#-% automatically follow when the corresponding
classical trajectories are chaotic. If, for the particular actions of interest, the width
of the classical resonance is less than A, it has little consequence quantum-
mechanically. (More precisely, the splitting at the avoided crossing becomes very
small.)®® If it is much larger than A this classical resonance can support a number
of the pairwise avoided crossings, each arising in a sequence of eigenvalues. If the
overlap of two classical resonance widths is so small that it does not contain even a
single quantum state, this overlap of the classical resonances is of little consequence
quantum-mechanically. If there is a quantum state in this classical overlap width,
it participates in the two overlapping classical resonances and hence in both sets of
avoided crossings, and eqn (3.4) is fulfilled. That is, it participates in overlapping
avoided crossings.

The conditions that classical chaos (assumed to involve overlapping resonances)
also yields quantum chaos (assumed to involve overlapping avoided crossings) are
that (i) the width of a Chirikov resonance exceeds 4, i.e. that it contains at least one
quantum state, 2~ (ii) that the overlap width of the two overlapping resonances also
contains at least one quantum state, and (iii) that the centre of the resonance be close
to a quantum state.?%:%
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The half-width of the resonance is, in the notation of section 6, 24/(4/<2), where
A and Q are properties of the resonant Hamiltonian and where the width of the angle
space is 27 (using the action-angle variables introduced in section 6). Thus the
first condition for *“ quantum chaos ” is *

[4/(4/]h > 1. (3.5

The second condition can be written as follows: If AJ;; is any projection of the
overlapping resonance zone on any two-dimensional action space (J,J,) then we
require that there be at least one system of orthogonal axes in action space such that

AJ,lh > 1, for all i,j pairs. (3.6)

[See also ref. (9) and (30).] One system which has been extensively studied is the
99.state Hénon-Heiles system, an anharmonic coupled oscillator system with Cj,
symmetry and nearly 1:1 resonant. It becomes classically chaotic in part at the
higher energies. In contrast, it has regular sequences of eigenvalue with slowly
varying spacings,?! its wavefunctions show regular patterns of their contour plots,3?
and its eigenvalues are semiclassically very well approximated by those of an integrable
Hamiltonian.2>® (This second Hamiltonian is a perturbation approximation to the
former, and so has well defined action variables.) Incidentally most semiclassical
quasiperiodic states in this system show extensive redistribution of energy; they
correspond to precessing trajectories. We conclude that the 99-state system is
quantum-mechanically * regular .1

For this same system the Poincaré surface of section of a particular chaotic
trajectory resembled in coverage the Wigner distribution function of a quantum state
at the same energy.?® However, one cannot conclude that the latter quantum state is
chaotic. Because there are only two coordinates the same chaotic trajectory is
trapped between two residual tori, each of which would also be expected to have
Poincaré surface of sections of rather similar shape to the Wigner distribution func-
tion. We are currently investigating this possibility.

4. INTRAMOLECULAR ENERGY REDISTRIBUTION

We have already noted that one can have extensive classical-mechanical intra-
molecular energy redistribution even in a quasiperiodic system, when there is an
internal resonance, but that the redistribution is quasiperiodic rather than chaotic.
The precessing trajectories in the Hénon-Heiles system provide an example. Simi-
larly, in quantum systems where there is a low order (e.g. 1: 1, 2: 1, etc.) degeneracy
or near-degeneracy (as in Fermi resonance) there is an extensive energy sharing ** or,
if one introduces a suitable wavepacket, energy redistribution among zeroth-order
modes.

Another example of equipartitioning of energy among zeroth-order (harmonic)
modes, when one such mode was excited, was for an integrable system, the Toda
lattice. Six-atom and fifteen-atom systems were investigated.**>” The vibration
frequencies were reported for the six-atom system 37 and several were commensurable.
Thus internal resonances, rather than quasiperiodic versus chaotic motion per se,
played a major role in the equipartitioning in that system, as well as in the precessing
trajectories of the Hénon-Heiles system.

This importance of internal resonances for energy redistribution is also seen in a
study of a seven-atom system C—C—C—M—C—C—C, where M is a heavy atom and

* Eqn (12) of ref. (28) actually gives the half-width and should be multiplied by a factor of 2.
t Eqn (3.6) replaces eqn (14) of ref. (28), which is correct only for a two-coordinate system.
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the oscillators are Morse oscillators.® When the energy of excitation of one of the
bonds is fairly high (0.3 of the bond dissociation energy) there is relatively little
transfer of energy from the first half of the molecule to the second, although there is
extensive energy transfer among the bonds of the first half themselves. When the
excitation energy is instead small, only 0.05 of the bond dissociation energy, there is
complete transfer. Finally, when the Morse oscillators are replaced by harmonic
ones, with 0.3 of the Morse bond dissociation energy, there is again complete transfer.
We have since determined the spectrum of each trajectory. The motion in all the
above cases is quasiperiodic.

The above effects can be explained in terms of internal resonances. When the
energy of the first part of the molecule is high, its frequencies are red-shifted from
those of the second part and there is comparatively little energy transfer. Because of
the quasiperiodicity the observed non-equilibrating behaviour should persist classically
for infinite time. Transfer is complete in the other two cases because of resonance.
It is essential for the effect that the two parts of the molecule be coupled by a small
perturbation. For example, when the mass of M in C—C—C—M—C—C—C is
reduced by a factor of two there is now extensive energy-sharing at the excitation
energy of 0.3 dissociation energy.® (The effect of C—M—C bond angle was also
studied; it changes the effective mass of M.) A close analogy is the coupled two-
pendulum problem. When the frequencies are not commensurate there is not com-
plete energy transfer. Theoretical studies of resonant effects in triatomic molecules
have been described recently.?!-39-%

We have noted that in both the quasiperiodic and chaotic cases there can be
extensive intramolecular energy transfer in the presence of internal resonances. (In
the quantum case, the collisional or optical excitation is a *‘ pulse ” and generates a
wavepacket which then shows little or extensive redistribution, depending on the
nature and energies of the states it embraces.) However, although the redistributed
energy may be equipartitioned, a single resonance is not ‘* microcanonical ’ and so
R.R.K.M. theory would not be automatically satisfied by it. This point is easily
established by an example of a 1: 1 resonance.*

Incidentally, classically the vibration phases of the isolated-molecule phase average
themselves in the non-degenerate case. In the case where any zeroth-order degenerate
vibrations are anharmonically coupled, they undergo a slow phase averaging also.
There is no need for collisions to cause this phase averaging. Although isolated
resonances do not create a microcanonical distribution even among participating
modes, the resonant coupling of the resonant modes with other modes could yield a
more microcanonical distribution. (The J,2 in the preceding footnote would no longer
be approximately constant.)

Thus R.R.K.M. behaviour is consistent with rather ‘‘ chaotic >’ quantum states.
What is not clear as yet is how chaotic the system has to be. Particularly interesting
is that highly specific excitation, namely of CH overtones in molecules, may have
produced largely statistical results [cf. discussion in ref. (1)}, but very few systems have
been studied thus far.

Excitation of molecules typically involves a ‘* pulse ”—such as an optical pulse or
acollision. The pulse will typically involve the excitation of a wavepacket, a group of
states. After some initial dephasing period the system will then behave as an ensemble
of systems, each disappearing according to its own rate law, and not be a single

* One can define™ an internal angular momentumJ,. At large values of J,, J,* is roughly constant.
The conjugate phase g is (slowly) varying and so phase-averages itself. There is a lower limit to the
action J, of the x mode, because Jo* # 0. Thus, J, and J, are not microcanonically distributed. The
actual distribution function is omitted here for brevity.
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exponential (* intermediate-level structure ), if the exact eigenfunctions are not
« scrambled.” However, when the density of states coupled to the excited initial
“ state ” is so high as to become essentially a continuum, one obtains a single exponen-
tial decay, at least with the usual assumptions of radiationless transition theory,
provided the pulse width is sufficiently large to embrace all zeroth-order coupled
states [e.g. ref. (42) and references cited therein].

5. MOLECULAR SPECTRA

The spectrum will depend on the nature of the underlying dynamical motion.
When that motion is the analogue of quasiperiodic, or if the wavefunctions are not too
“ scrambled ” (i.e. if a relevant state does not participate in many overlapping avoided
crossings) one expects regular sequences of spectral lines. (Even in the classical
chaotic case, however, there is expected to be some propensity for the positions of the
overtones.)

If wavefunctions were considerably scrambled Franck-Condon factorsin a vibronic
excitation would yield an appropriate * dispersed > absorption of fluorescence band:
many states of neighbouring energies would have comparable Franck-Condon factors.
The sharpness of the low-lying excitation spectral lines corresponding to low vib-
rational excitation in aromatics, and of the fluorescence, indicates little scrambling.
However, at higher energies the dispersed fluorescence in Parmenter’s,*® Levy’s * and
in Smalley’s 4 work suggests some scrambling.

6. INTRAMOLECULAR LASER-SELECTIVE CHEMISTRY

Some evidence that the intramolecular energy transfer between two ligands
attached to a heavy atom may be slow has been given by Rogers et al., based on an
interpretation of data of the chemical activation reaction of F with Sn(allyl),.*
The theoretical dynamics of energy interchange between two ligands in C—C—C—
Sn—C—C—C were considered recently.?® These various results suggest the possi-
bility of intramolecular laser-selective chemistry: one chooses a molecule in which
one reaction can occur in the vibrationally-excited ligand and a distinguishable kind of
reaction in the other ligand(s). The excitation could be induced by CH overtone
excitation, infrared multiphoton absorption, or chemical activation. From the
results we obtained earlier,® the kinetic-energy coupling between the two ligands
would be less the larger the mass of the metal atom and the more the ligand-metal-
ligand bond angle differs from 180°. Other things being equal, the greater the excess
energy per bond (in the quasiperiodic regime at least) the more the frequencies of the
excited part of the molecule are anharmonically red-shifted. Thus if that part of the
molecule and the remaining ligands are in resonance when each has zero energy, they
should become off-resonant with increasing excitation energy, and there should be less
energy transfer or (quantum-mechanically) a reduced rate of transfer.

The calculations we have described thus far have been in the quasiperiodic regime.
The onset of chaos would have several effects, one being to broaden the vibrational
spectrum of the excited ligand and increase the possibility of some resonance. How-
ever, further excitation in the chaotic regime would further red-shift the frequencies in
the excited part of the molecule and so would decrease the resonance (if they were in
resonance at low energy). Some calculations in this chaotic regime are being attemp-
ted, although numerical errors are large in this regime.

Since the excess energy per bond is an important factor in the effect, and since it is
not practical to make detailed calculations, it would be useful to combine a statistical
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theory with dynamical calculations so as to treat larger systems. Such a type of
theory is described in the next section.

7. THEORY OF INTRAMOLECULAR ENERGY TRANSFER
ACROSS A HEAVY ATOM

We consider that one ligand is excited by any one of several sources, such as those
described in section 6. We divide the excited ligand into two parts, one of which
(mode 1) is capable of promoting intramolecular resonant energy transfer to another
ligand of the heavy atom M. The case where there may be more than one such mode
is included later. The excitation energy is assumed to rapidly redistribute itself within
the excited ligand, and so a statistical approximation will be used to calculate the
chance that mode 1 has an approximate action J;. (J; here denotes the conventional
action divided by 2z. The angle conjugate to it has a range 0-27.)

To apply the resonance theory described by eqn (7.3)~(7.12) below it is necessary
to know what value to use for J; and, if the second ligand is at least thermally excited,
what to use for J,. We do this first for J;, and an analogous argument would be used
for J. 2.

We first calculate the distribution function P(J,) for J;. We consider the excited
ligand as having an energy in the range (£, E + dE), and the approximate energy of
mode | as being E;,. Assuming a microcanonical distribution and counting quantum
states we have

P(J)dJ, = p'(E — E;)dJ,/p(E)A (7.1)

where p is the density of quantum states of the excited ligand, p’ is that for the part of
the ligand not including mode 1, and the phase-space volume element for a given dJ,
is 2n dJ,. It, divided by A, is the number of quantum states which it contains, i.e.
dJ,/A.

The mean of J,,J;, in this isolated ligand and the mean-square deviation are, of
course, {J,P(J,)dJ, and [(J, — J,)*P,dJ,, integrated over all energetically allowed J,.
If classical values are used for p’ and p, the 4 cancels.

We use as a value for J; some value in the above range, J; + +/[(AJ))*], e.g. J;, but
we recognize that there can be fluctuations in J; and in a more complete calculation
will include them. If the modes 1 and 2 are off-resonance for J, = J; they may be
closer to resonance for some J; in the above range. The value of J,, the resonant
centre J;*, the resonant width (defined below) and the above range of J, values defined
above all become important factors in the energy transfer.

We consider energy transfer between mode 1, of action J;, to an accepting mode
in another ligand of M, mode 2 with action J,. J; and J; are both conventional
actions divided by 2n. Extensive energy transfer can occur if J; and J, fall within the
“ width * of an intramolecular resonance. To find the conditions for such a transfer
we adapt the standard treatment 7 of an isolated non-linear resonance. The Hamil-
tonian for modes 1 and 2 and for the contribution of M is written as a sum

H = H(J,) + Hy)(J,) + Hy (7.2)

where Hy, contains, via kinetic- and possibly potential-energy coupling, momenta and/
or coordinates of modes 1 and 2. H\, is next expanded in a Fourier series of these
angle variables for those modes. The general term contains cosine and/or sine
functions of m,p; + m,p,, where m, and m, are integers and ¢; and ¢, are angle
variables conjugate to J; and J,.
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There is a resonance when the angular frequencies w, = 9H,/dJ, satisfy a relation
mw(Jy") — nyw,(J;") =0 (7.3)

at some value (J,",J,) of (J,,Jo). This value is the * resonance centre.” »n; and n,
are positive integers. The angle n,¢; — n,¢,, whose time derivative is approximately
the frequency mw,(J)) — mwy(J>), is slowly varying when J; and J; are sufficiently
in the neighbourhood of (J;",J/;%).

We consider the case where there is a resonant term in the expansion of Hy in the
double Fourier series in @, and ¢,, i.e. a term such as cos(n,¢; — n,9,), which we
denote by cos «. Coupling of modes 1 and 2 also occurs if there is cos 2a, sine terms,
etc., but for simplicity of presentation we consider this cos « term only. Its coefficient
will be a function of J, and J,, which we replace as usual by their values at the centre of
the resonance, J," and J,".

To treat the dynamical problem we proceed in a standard way, and introduce a
transformation into new action-angle variables (Js, «, J, 8) such that « is n,¢, — n,0;
and J is a constant of the motion. This change of variables is accomplished by a
generating function S, such as

S = Jo(mpy — ny02) + J(na9, + m@2). (7.4)
Since « = 8S/dJ, 0 = 8S/8J and J, = 8S/dp,, we have

«=me, — mg;,  0=np + ne; (7.5)

Ji = mJs + nyJ, J, = nJ — nyJy (7.6)

For molecules, H, and H, are typically approximately quadratic functions of J;
and J,. In any event, in standard resonance theory H — Hy would be expanded as a
quadratic function of J, — Ji; Ja, obtained in terms of J{ and J; from eqn (7.6), is
(nJi — nJ5)/(n + n%). We now have from eqn (7.2)

H = H,(J}) + H,(J5) — 3Q(J. — Jo)* + A(UL.JD)cos o« = & (7.7
where ¢ is the energy of these two modes and
—Q = n3d*H,/oJ} + n,0*H,/dJ%, evaluated at (J1,J3). (7.8)

As a special case
Q = yjoy + x303. (7.9)

Here xjw; and x3w5 are the anharmonicity constants. Eqn (7.9) assumes the
quadratic dependence of H, on J; to be good at all J; and to be independent of the
energy excess of the other modes of the excited ligand. (They may contribute to an
effective potential for mode 1.) Similar remarks apply to H, and J,.

We denote H,(J) + Hy(J;) — ¢ by B. At the maximum of any curve in fig. 1,
1Q(J. — Jo)? equals B + A, while on the separatrix one sees that J, — Jx vanishes
when « = 4-7, i.e. when B = A. Thus the height of the maximum of the separatrix
is 24/(A/2) and the depth of the minimum is —24/(A4/Q).

Accordingly, if for any trajectory the maximum distance of J, from Jg satisfies

max|J, — Ja| < 24/(4/Q) (7.10)

the projection of the trajectory on the (J,«) plane in phase space will describe an
“ellipse ” infig. 1. There is a * phase locking” (the ¢, and g, are seen to be correlated,
because the range of « is now restricted), and J, — Jz oscillates about zero.
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In terms of energy redistribution one sees from eqn (7.6) that it is extensive when
J. — J& oscillates about zero. For example, using eqn (7.10) we find at a given J

max|J; — Ji| < 2m4/(4/Q) (7.11)
max|J/, — Ji| < 21,;4/(A/Q). (7.12)

Le. regardless of the initial values of J, and J, the modal actions J, and J, will oscillate
about J{ and Jj§, as long as J, and J, lie in the resonance widths, eqn (7.11)-(7.12).
If J§ and J§ are equal (as they are in intrinsic 1 : 1 near-resonant systems), there is an

JG.-J(;.

Y
NS

Fig. 1. Phase space plot of J, — Jx against « for various values of ¢ in eqn (7.7) and hence of
the B defined later in the text. The separatrix consists of the two curves passing through
« = -7 On the scparatrix B cquals the A in eqn (7.7).

L

equipartitioning. On the other hand if max|J/, — J§| lies outside the halfwidth
21n,4/(A/Q), there will be little or no tendency, classically, for such redistribution.

The time required for resonant transfer of energy between modes 1 and 2 is readily
obtained from eqn (7.7). Well within the separatrix cos « can be expanded about « =
0, yielding a harmonic-oscillator expression for the motion of «. The period is then
found to be 271/4/(4€). The time forJ. — Ja to go from its maximum positive value
to its maximum negative value is the half-period 7,

T = 7//(AQ). (7.13)

This is the typical time for the resonant intramolecular energy transfer when it is
classically allowed. The conditions for the validity of resonance theory (e.g. the
system must be sufficiently anharmonic) have been given by Chirikov [ref. (7), eqn
(3.23)].

There may be other pairs of modes which involve motion of the bonds of M, and
which may be resonant. They can readily be included when they are isolated reson-
ances. Currently we arc obtaining information about the various resonances from
power spectra of the bonds linking M with the ligands, using power spectra of
trajectorics 2* of the isolated ligands and of the molecule as a whole.

We turn next to quantum effects.  Each classical resonance can embrace none, onc
or a number of pairs of resonant quantum states of modes | and 2. Extensive energy
transfer among the two modes, and hence between the two ligands containing them,
can occur quantum-mechanically between such pairs of resonant states even when it is
classical forbidden, i.c. even when condition (7.10) is violated. The rate of transfer,
reflected in the splitting of the quantum-mechanical levels of modes 1 and 2, is then
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relatively low. This splitting can be calculated semiclassically ?* based, in the present
case, on eqn (7.7). The semiclassical results for the splitting in triatomic ABA
molecules agreed with quantum-mechanical results very well when the splitting was
large.?r However, when the splitting was small (corresponding to large values of
|J« — J&|) the error was considerable [e.g. the [5,0 > &+ (0,5 > and [4,0 > 4 [0,4)
cases in table II of ref. (21)]. In such cases a quantum-mechanical calculation would
be needed. The error in these small-splitting cases is presumably due to replacing the
J, and J, in A(J,,J;) by constants. In such cases it might be better to use quantum-
mechanical perturbation theory to calculate the splittings rather than a semiclassical
formula [eqn. (7.7)].

8. CONCLUSIONS AND SUMMARY

The nature of anharmonic motion in molecules, classical and quantum, is discussed,
and implications for a statistical theory (microcanonical) such as R.R.K.M., for uni-
molecular processes, are considered. An approximate statistical plus dynamical
theory for intramolecular energy transfer between ligands across a central metal atom
is given, with possible consequences for intramolecular laser-selective chemistry.
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