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A simple and efficient computational method is introduced for visualizing the structure of three-dimensional
classical trajectories. Examples are presented for Hamiltonians with incommensurate frequencies, as well as
with 1:1 and 2:1 resonances. Results are also presented for several states of OCS, one of which shows an accidental
4:1 resonance. Implications of this method for path integral quantization and perturbation methods are discussed.

Preface

Henry Eyring was one of the pioneers in the recent
theory of chemical reaction rates. R.A.M. was fortunate
to know him for some three decades, and to see the joy-
ousness with which he approached his science and his
interactions with people. In recent years there has been
an increasing amount of interest in the field of intramo-
lecular dynamics and the anharmonic motion of vibrations,
subjects related to one of Henry's interests—the statistical
theory of mass spectral decomposition patterns. It is a
pleasure to dedicate this article to his memory.

Introduction

Nonlinear dynamics has been the subject of intense
study in recent years, and semiclassical methods have been
developed to treat bound and quasibound states of mul-
tidimensional nonseparable systems.'? Most studies have
focused on coupled two-oscillator systems. The two
principal methods used for describing the trajectories in
two-oscillator systems have been (1) plots of the trajectories
themselves in various coordinates and (2) plots of Poincaré
surfaces of section in various coordinates. It appeared at
first that both of these techniques would be difficult to
extend to three-oscillator systems. The surface of section
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technique has been extended to three-coordinate systems
for maps® and for trajectories,* and can similarly be ex-
tended to four coordinates. In the present paper we extend
the trajectory plots to three dimensions in a way which
permits visualization of shapes for use in semiclassical
quantization and for identification of resonances.
Examples of three-oscillator systems include nonrotating
linear and nonrotating nonlinear triatomic molecules, as
well as a time-independent form of a two-laser driven
oscillator. Although the 3-D Poincaré surface of section
technique* is useful in studying the dynamics, there is a
prerequisite for performing the semiclassical quantization:
suitable paths for evaluation of the phase integrals depend
on the shape of the trajectories, namely, on the caustics,
which are, in turn, affected by internal resonances. It is
highly desirable, therefore, to have a meaningful picture
of the several-dimensional trajectory itself, in particular
one which depicts the caustics. In this exploratory paper
a method is devised for this purpose. It is described in
section IT, and several applications are given in section IIL
The method is expected to be useful for quantization
methods which use the trajectories themselves. It should
also be useful for perturbation methods in which one
tacitly assumes the nature of the caustics, which them-
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selves depend on the presence and spatial structure of
resonant trajectories.

Methods
By solving Hamilton's equations
Q =aH/oP;  P;=-0H/dQ; (1)

with subroutine DEROOT,’ one can calculate, as described
below, the values of (@, Qa) for which @ is some constant
value. In this way, one can find data for a plane (€ =
constant) of a 3-D trajectory in (Q;, @, Q) space. Because
the display of these (Q;, Q) as points would require a large
number of such points to visualize the structure of a tra-
jectory, the values of (@), @) are binned in a two-dimen-
sional array. When a quasiperiodic trajectory is propa-
gated to increasingly longer times, the number of filled bins
in this (Q,, @) space begins to stabilize, i.e., the trajectory
enters no new bins. The technique is readily implemented:
DEROOT automatically determines values for which some
function G (defined by the user) is zero. For the R;=0
plots, we set G = @,. For our purposes, we consider 100
bins of @, and 100 bins of @,. In the plots we use one
symbol (+) to denote a filled bin in (@, Q) space, and
either use another symbol (0) [Figures 1-3], or a contour
where the potential energy equals the total energy [Figures
5-8], to indicate the classically forbidden region. In this
way, a cross section of the 3-D trajectory can be plotted.
This information on which bin is filled for any @ is stored
in an integer array with (10%)* numbers. (Even a mini-
computer can be used. If storage is a problem the infor-
mation can be packed into words.)

It is also useful to make a second type of plot, using the
approach of Ashton and Muckerman,” by constructing (Qy,
Q,) cross sections at different values of Q. In this case,
we set

G= ﬁ(@:; -c) @

and solve for the zeroes of this G using the DEROOT pro-
gram. As before, the information is stored in an integer
array, but now with (10%)® values when 100 Q4's are con-
sidered.

The collection of bins can be plotted in a 3-D perspective
by using the plotting package pi1sPLA® (we use below a
symbol 0 to denote a filled bin). To visualize the trajectory
we have found it useful to change the viewpoint by rotating
past the object in the @,Q, plane at a fixed distance and
height above it. These several views from different angles
will be termed a “fly-by™.

Model Hamiltonians and Results

Several model Hamiltonians are used below for illus-
tration, the first being

H =P+ P+ P + Q7 + w2 Q0% + wy' QY +
MQQy% = @) + MQaQs* - 2Q5") (3)

Trajectories for the case in which w;, ws, and w, are in-
commensurate are considered first, with @, = 0.7, @y = 1.3,
wy = 1.0, A=-0.1,and n = 0.1. The slice @, = 0 is plotted
in Figure 1 for the zeroth order state (1,0,1) in ref 4. The
trajectory is seen to be “boxlike”, as expected.

For the case w, = 1.4, w, = 0.7, and w3 = 1.0 the tra-
jectory exhibits a 2:1 Fermi resonance in the @, = 0 plane.

(6) L. F. Shampine and M. K. Gordon, *Computer Solution of Ordi-
nary Differential Equations: The Initial Value Problem”, W. A. Freeman,
San Francisco, 1975,

(7) C. J. Ashton and J. T Muckerman, J. Phys. Chem., this issue.

(8) The mspLa plotting package is prepared by Integrated Software
Systems Corporation, San Diego, CA 92121.
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Figure 1. View of the Q,, Q, plane at @, = 0 for an incommensurate
Hamiltonian. The labels X, Y, and Z correspond to Q4. Qa and Qy,
respeclively. In Figures 1-3 the inttial conditions were datermined from
the unperturbed Hamiltonian as follows: total energy E=E,+ E, +
Ej wih E, = (n,+ /) w, @ =0,and £, = (2%, i=1,2,3. Here
E = 3.2 and {n,,n0n3) = (1,0,1).

Flgure 2. Same as Figure 1, but with a Fermi resonance interaction;
E = 2.5, Initial actions were not chosen 1o correspond to integers.

This slice is shown in Figure 2 for arbitrary zeroth order
actions and is of a shape similar to those found for 2-D 2:1
resonant systems® (formed from librating figure eights).
Thus, the technique shows that the quantization method
used in those systems could be applied to the present
system.

In Figure 3 is shown a @, = 0 slice for the case w; = wa
= w, = 1. The trajectory, which has arbitrary zeroth order
actions, is of the librating type and is similar to those found
in the 1:1 2-D system.!® This trajectory also resembles
the local mode type found by Lawton and Child" in a

(9) D. W. Noid, M. L. Koszykowski, and R. A. Marcus, J. Chem. Phys.,

. 71, 2864 (1979).
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(11) R. Lawton and M. 8. Child, Mel. Phys., 37, 1799 (1979); R. M.
Hedges and W. P. Reinhardt, Chem. Phys. Lett., 91, 241 (1982).
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Flgure 3. Same as Figure 1, but for a librating trajectory of a 3-D
Henon-Helles Hamiltonian; £ = 5.0, initial actions were not chosen to

correspond to integers.
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Flgure 4. Fly-by views of tha trajectory in Figure 3. The successive
views correspand to counter-clockwise rotation of the cube about its

Z axls.

two-coordinate system. A 3-D “fly-by” of this trajectory
is given in Figure 4, and the spatial orientation of the 3-D
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complicated resonance structure. In Figures 5-8 the initial conditions
were determined as described in the caption for Figure 1, except that

E, = (n, + 1w, Here £ = 11083,

trajectory can clearly be seen.
In Figures 5-7 are plotted trajectories for a model of

nonrotating OCS, using the Hamiltonian in ref 12. Each
figure provides views of a trajectory in the three planes

(12) A. Foord, J. G. Smith, and D. H. Whiffen, Mol. Phys., 29, 1685

(1975).
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Figure 8. Three views of a quasibound (5,0°,5) state of OCS; £ =
16848.

defined by @, =0, Q; = 0, and Q3 = 0, and labeled a, b,
and c, respectively. The solid line is the equipotential
contour determined by the total energy.

Figure 5 describes the (2,2°,3) zeroth order state of OCS.
The trajectory displays a higher order, accidental 4:1
resonance in the Q. and @, degrees of freedom. The 4:1
character of this resonance is demonstrated by the double

Nold et al.
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Figure 7. Three views of a “chaotic” trajectory of OCS (state 2,4°,3)
at ~180 Q, periods; £ = 12131.

figure eight pattern of the Q.,—@Q, cross section (Figure 5a)
and the fact that wy(=1967.0)/w.(=491.7) = 4.00; the fre-
quencies were obtained from a spectral analysis'? (Fourier
transform) of the coordinates @,(t), Q.(¢), and @4(t). Al-
though the zeroth order frequencies, w3 = 2092.46 and 3
= 523.62, are also close to the ratio 4:1, we note that, for

(13) D. W. Noid, M. L. Koszykowski, and R. A. Marcus, J. Chem.
Phys., 67, 404 (1977).
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most zeroth order OCS states, the addition of the per-
turbative terms to H,'? removes this zeroth order near
degeneracy resulting in incommensurate fundamental
frequencies and therefore distorted box-type trajectories.
(These results are not presented here.) For the (2,29,3)
state considered here, the initial conditions and the per-
turbation have combined to restore the 4:1 resonance ac-
cidentally.

The appearance of four “holes™ in the @,~Q; cross section
for this trajectory (Figure 5c), even though the resonance
is w3 & 4w, rather than w; =¢ 4w, is explained as follows:
Since the @,-Q; resonance condition holds for all values
of @, we expect the 4:1 pattern, albeit distorted, to persist
over a range of @, values. That is, adherence to the con-
dition wy/w, = 4.0 coupled with the incommensurability
of w,(=817.0) results in excluded volumes of configuration
space rather than the excluded areas associated with
resonances in two degrees of freedom systems. Here the
excluded volumes can be pictured by orienting Figure 5a
at 90° with respect to Figure 5c and lining up the @, axes.
Figure 5b simply displays the (solid) @,-Q; cross section
in between the two innermost excluded volumes.

Figure 6 describes a trajectory for the zeroth order
(5,0°,5) state of OCS obtained by using the same Hamil-
tonian. The trajectory, whose energy exceeds that needed
for dissociation, is a quasibound one and is of the distorted
box type. This trajectory is the 3-D analogue of a reso-
nance state as found in ref 14.

In Figure 7 are plotted three views of a bound “chaotic”
trajectory of OCS at ~180 @, vibrational periods. [The
maximum forward time from which this chaotic trajectory
could be successfully back integrated's was only ~180 Q,
vibrational periods (~11.7 ps).] The trajectory was de-
tected to be unstable both by its sensitivity to integration
error parameters and the associated back integration
difficulties, and by its “grassy” power spectrum.!®* We also
used the spectral method!? to show that the trajectories
of Figures 5 and 6 were quasiperiodic.

The trajectory plots in Figure 7 are seen to be somewhat
similar to those in Figures 5 and 6, but those in Figure 7
appear to be ragged around the edges. We believe that
if executed to sufficiently long times the Figure 7 plots
might eventually fill up all the classically allowed space.
This point was tested by comparing the time evolution of
cross sections for a quasiperiodic (2,0°,3) and a chaotic
(2,4%3) trajectory to a maximum time of ~1300 @, periods.
Despite the onset of numerical integration error, even for
the quasiperiodic trajectory, one feature became prominent
as time increased. The quasiperiodic cross sections
“converged” and retained well-defined boundaries (i.e., the
trajectory remained on a torus); a comparison of Figure
8a for ~1300 @, periods and Figure 8b for ~160 @, periods
illustrates this feature. In the chaotic case the boundaries
remained ragged and the trajectory slowly filled the
available configuration space (cf. Figure 8c for ~1300 Q,
periods and Figure 7¢ for ~180 @, periods). The filling
of Figure 7a occurred most rapidly, followed by Figure 7
and then Figure 7h. .

Conclusions

In this paper, a technique is presented for visualizing
both the shape and internal structure of classical trajec-
tories. When this technique is coupled with the surface

(14) D. W, Noid and M. L. Koszykowski, Chem. Phys. Lett., 73, 114
(1980).

(15) Back integrated in the chaotic case to at least two digits in the
conrdinates and one digit in the momenta. (The nccuracy in the quasi-
periodic cases was considerably greater, ns was the forward integration
time of ~625 Q. vibrational periods in Figures 5 and 6.)
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Figure 8. Comparison of the quasiperiodic (2,0°,3) state of OCS (a)
at ~ 1300 Q, periods, (b) at ~ 160 Q, periods, and (c) the chactic
(2,4%,3) state at ~ 1300 Q, periods: for the (2,0°,3) state £ = 10036.

of section guantization or with perturbation methods
which take the observed shape into account, it is possible
to quantize essentially all nonrotating triatomic molecules
for which quasiperiodic trajectories are found. The ad-
vantage of this technique is that the programming effort
is trivial. There will be some cases where the trajectories
are “chaotic” even if the quantum mechanical states are

“regularly spaced”.'® For such trajectories the present

(16) D. W. Noid, M. L. Koszykowski, M. Tabor, and R. A. Marcus, J.
Chem. Phys., 72, 6169 (1980).
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method would, of course, not be useful in the quantization.
Another method has been recently developed by Ashton
and Muckerman’ which examines the outer surface of the
3-D classical trajectory.

The two methods are complementary in that Ashton and
Muckerman could obtain our results by “slicing” their
representation of a trajectory (in the absence of internal
resonances) and we could obtain their results by “stacking”
our slices. (The stacking was used to obtain Figure 4.)

The resolution of our figures can be altered simply by
changing the bin size. In addition, although we have ar-
bitrarily chosen planes perpendicular to the Cartesian axes,

any slice can be obtained by specifying the associated |
functional form of G in DEROOT. é
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