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A method for approximate treatment of collinear H atom or proton transfer reactions AH + B—A + HB
which involve two nearly degenerate vibrational states is developed. The method is based on constructing a
diabatic representation of the problem, i.c., one in which the reactant and the product vibrational states are
distinguished as such throughout the collision. The diabatic representation is constructed with the aid of the
adiabatic one discussed in an earlier paper. The treatment can also be applied to symmetric exchange
reactions, in which case it yields good agreement with other results.
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. INTRODUCTION

In an earlier paper, ! henceforth referredto as I, a-
simplified approximate treatment of symmetric collin-
ear reactions in which an H atom or a proton is trans-
ferred between two heavier particles was developed.
The treatment was based on the adiabatic near separ-
ability of the faster H-atom motion from the slower
relative motion of the heavy particles. It was useful to
employ polar coordinates. The radial coordinate repre-
sents the translational motion of the heavier particles
and the angular coordinate corresponds to the vibrational
motion of the H atom.

Due to the exact degeneracy of the vibrational motion
of the reactants and the products, the adiabatic vibra-
tional states are symmetric and antisymmetric linear
combinations of the reactants’ and products’ vibrational
states, which are exactly decoupled by symmetry. As
a result, the reactive transition probabilities between
states with the same vibrational quantum number can
be evaluated approximately within the adiabatic approxi-
mation,

There have been some accurate numerical calculations
on collinear H-atom transfer reactions since the publi-
cation of I which provide an opportunity to test the va-
lidity of the approximations used there. The compari-
sons of the results of the accurate numerical calcula-
tions with those of I are presented in Sec. II. A some-
what different approach to the symmetric H-atom ex-
change, which has the advantage of being more readily
extendable to the nonsymmetric case, is also developed
and tested in Sec. III.

The transfer of an H atom in an asymmetric reac-
tion® % ig considerably more difficult to treat. Unlike
in the symmetric case, the reactant and product states
are no longer exactly degenerate and the reaction can
occur only as a result of a breakdown of the adiabatic
approximation. Consequently, two or more coupled vi-
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brational states are generally involved in the dynamics
and approximate solutions to a set of coupled equations
must be developed.

Reasonably good analytical approximations to the re-
action probability over a wide energy range can be de-
veloped only in the case when the problem can be reduced
to the interaction of only two coupled vibrational states,
the initial reactant state and the final product state,
namely, when they are nearly degenerate. This is the
case which is treated in the remainder of the paper.

The procedure used in the paper to treat the above
problem is the following: ‘
(i) The diagonal elements of the equations in the
adiabatic representation are first obtained using the

procedure described in‘I.

(ii) The diabatic equations are then obtained in an ép-
proximate way utilizing the above-mentioned adiabatic
ones (a) for the case of strong and moderate coupling
and (b) (semiclassically) for the case of very weak cou-
pling (Sec. IV).

(iii) The transition probability is finally obtained
from the coupled diabatic equations using an exponential
DWBA approximation.

The reason for step (i) is that the coupled adiabatic
equations in terms of polar coordinates constitute a
very compact representation!*? of the system, The rea-
son for going through step (ii) is that a simple analytic
approximation to the solution of two coupled equations
can most readily be obtained in the diabatic represen-
tation,

A perturbative (DWBA) method for solving the diabatic
equations in the weak coupling limit and a procedure for
extending the validity of the results to cases of higher
coupling are then used (Sec. V) to obtain the transition
probabilities,

Numerical results are presented in Sec. VI.
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FIG. 1, Ground vibrational state transition probability for the
IH +I-1+HI reaction. The solid line ig the result of Eq. (2. 3)
and the circles are the accurate numerical results of Ref. 4.

1. SYMMETRIC H-ATOM EXCHANGE. COMPARISON
WITH ACCURATE NUMERICAL RESULTS

It was shown in I that the Schridinger .equation for a
collinear H-atom transfer collision can be transformed
into a set of coupled ordinary differential equations in
the adiabatic representation (with =1 throughout):

[+ e

+Z( ‘Pu otz Qu) ¢,p)=0.

The symbols are defined in I. It was also shown that
for a symmetric system the reactive transition proba-
bility, without a change in vibrational quantum number,
P§, can be obtained from the elastic collision phase

(2.1)

shifts for the two lowest states of Eq. (2.1). Those
states satisfy
[ ; 20F +<.(o)] #5(0) = Edg(p) , (2.2a)
1 & 0 a a
[— z 20 +€.(D)] $3(0) = E¢g(p) , (2.2p)

which are exactly decoupled by symmetry. P§, is given
by

Pfy= |5k %= sin®(£5 - £3) , (2.3)

where £} and £§ are the phase shifts for Eqs. (2.2a) and
(2. 2b), respectively. A term —1/8p® should be present
in the brackets in Eq, (2.2), It is negligible and is
omitted for notational brevity.

There have been some accurate numerical calculations
on collinear H-atom transfer reactions since the publi-
cation of I, namely, for the IH+I and I+ Mul systems® ‘)4
which enlbles us to test the accuracy of the approxima-
tion developed in I, Figure 1 shows the comparison of
the results of Eq. (2.3) and of the accurate numerical
calculation®'™ for the IHI system. It can be seen that if
the mass of the end atoms is sufficiently greater than the
mass of the center atom, the results are practically
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identical with the results of the accurate numerical cal-
culations.

The only difference in the case of the IHI system®®™

is that the P§ vs energy curve obtained from Eq. (2.3)
shifted by ~0.5%10"* kcal toward the lower energies in
respect to the accurate numerical results.® Such shifts
were also discussed in I and are roughly proportional
to the ratio of the masses of the end and the middle
atom. For the IMul system, the corresponding shift can
be expected to be about an order of magnitude smaller,
which is most likely well within the limits of accuracy®
of the numerical calculation. *

Equation (2.2) is, as confirmed by the agreement in
Fig. 1, a very convenient one for evaluating the ground
state reaction transition probabilities for a symmetric
H-atom exchange reaction. '

This treatment, however, can not be directly gener-
alized to an asymmetric system which lacks the sym-
metry basis for the decoupling. To facilitate the exten-
sion to the asymmetric case, another two state approxi-
mation, one in the so-called diabatic representation,
will be developed and tested in the next section. Since-
in the two state approximation [Eq. (2.2)], the set of
coupled adiabatic equations [Eq. (2.1)] for a symmetric
system is exactly solvable, its solution is used to check
the accuracy of the alternate diabatic approach, for
which it constitutes the starting point.

IIt. DIABATIC TREATMENT OF THE SYMMETRIC
CASE

The equations in the diabatic representation are the
equations for the p-dependent coefficient in an expan-
sion of the wave function in the form

w(s;p)=); bP) (3 3.1)
where 7,(s;p) are s-dependent vibrational wave func-
tions” with a weak parametric dependence on p. They
can be written in a matrix form as

1 a®
(-3 2 )] w01 - 20001 @2
where v(p) is 2 Hermitian matrix whose elements V,;
are all scalars, i.e., do not contain any derivatives,
and y(0) is a column vector with elements §,(p).

A set of coupled equations in the adiabatic represen-
tation can, in general,® be transformed into the diab::tic
representation by finding a transformation matrix T
which acts on the solution wave function vector ¢.

$p=T¢ . (3.3)
T is given by the solution of the differential equation:
pT=PT, (3.49)

where p is the momentum operator p = —i(d/dp), 2nd

P is the kinetic coupling matrix with elements P,, in the
set of coupled equations in the adiabatic representation.
The appropriate boundary condition for the equation in
the diabatic representation is that ¢ reduces to the prop-
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erly separable asymptotic translational wave function at
large p.

In the particular case of Eq. (2.2), the coupling ma-
trix P in Eq. (2.2) vanishes because of symmetry. The
solution of Eq. (3.4), namely T=const, is then trivial,
‘the value of the constant matrix T being

_1/1 1
A )

sinceat largep, ¢° and ¢° are symmetric and antisym-
metric linear combinations of the proper asymptotic
states, The transformation (3.3), with T given by Eq.
(3.5), transforms Eq. (2.2) into the form (3.2), namely:

(3.5)

2
[-3 2+ Vulo) - E| 401 = - Vishilo)

(3.6)
1 & v
-E W-‘- Vas(p) - E Pa(p) =~ 2191(P)
where
Vll= ng-’ E‘; ) G‘ '—'%(61 +€3) , (3. 7a.)
V‘z-'-' Vz,’-'-'('; € =.‘2-(€2-€l) . (3'7b)

Solving the coupled equations (3. 6) numerically would,
of course, give the same results already given by Eq.
(2.3). Equation (3.6) can also be solved perturbation-
ally yielding what is usually known as the DWBA?® solu-
tion for the transition matrix element:

Th= [ 9%0) Vialo)lo)do (3.8)
where p}(p) are the solutions of the analogs Eq. (3.86)
with the right-hand side, 1i.e., the coupling V,, set to
zero. Linearizing the V,; and the exponent of V,, a
(= - In V;,) around the turning point, one can evaluate
the integral (3.8) analytically to yield (cf. Sec. V):

0.6 1
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FIG. 2. Ground vibrational state transition probability for the
model (Ref. 12) surface I, The solid line is the exact solution
of Eq. (2.2) given by Eq. (2.3), and the circles are the result
of the present exponential DWBA approximation {Eq. (3.10)1.
The dotted line 1s the DWBA without the exponcntial approxi-
mation, .
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FIG. 3. The logarithm of the transition probability vs energy
for surface I. The solid line is the result of Eq. (2.3) and the
circles are the present result [Eq. (3.10)].

° .
|S1a] /2= 2078, < (3,‘%}—)1—,, exp(a’®/24F). (3.9)
Equation (3. 9) differs from the semiclassical result
{5.11) in I only by the exponential factor in Eq. (3.9),
which is in most cases very close to unity. A more ac-.
curate, albeit more complicated, analytic approxima-
tion to Eq. (3.8) than Eq. (3.9) also exists.'® For the
present purposes, however, the simpler expression
(3.9) is sufficiently accurate,

The perturbative DWBA expression [Eq. (3.8)] is
valid only in the weak coupling case (p =2, | Tyyl2 «<1).
It can, however, be readily extended to the case of
higher coupling (i.e., higher transition probabilities)
by introducing in an ad hoc way the sinusoidal depen-
dence of the transition probability

Pgﬂ = Sinz(zﬂﬂz) ’

known as the exponential DWBA approximation, 1!

(3.10)

The transition probability vs energy obtained from
Eqs. (3.9) and (3.10) is shown in Fig. 2, together with
the exact solution of Eq. (2.2) given by Eq. (2.3). The
logarithm of the transition probability vs energy in the
tunneling region, obtained from Eqs. (3.10) and (2.3),
is shown in Fig. 3. The surface used is a LEPS sur-
face with the asymptotic parameters being those of the
IH +I-1+HI reaction. ' Its potential energy contour
plot is shown in Fig. 4.

It is seen from Figs. 2 and 3 that the exponential
DWBA approximation to the result of the coupled equa-
tions in the diabatic representation yields for the sym-
metric case a result in satisfactory agreement with the
exact result [Eq. (2.3)]. The exponential DWBA ap-
proximation to the solution of a pair of coupled equa-
tions can, therefore, be assumed to give a good ap-
proximation to their solution. .

In the next section, a pro'cedurg' for obtaining a pair
of coupled equations in the diabatic representation for
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FIG. 4. The eontour

Contour plot for the surface [ (Ref. 12).
energies are in keal mol™!,

a nearly degenerate asvmmetric H-atom exchange
problem is developed.

IV. THE NEARLY DEGENERATE H-ATOM
TRANSFER. GENERATING THE DIABATIC
REPRESENTATION

A. Moderate to strong coupling

We consider the case where two of the adiabatic di-
agonal terms in Eq. (2.1), one of which asymptotically
corresponds to a reactant state and the other to a prod-
uct state, are nearly degenerate at large values of p,
The nature of the interaction between such two states
is closely related to that between two states which have
the same quantum number in a symmetric system. For
the nearly degenerate case, the following closely re-
lated approximate treatment is developed.

First, the adiabatic eigenvalues are calculated, either
quantum mechanically as described in I, or if one pre-
fers less computation at a slight loss of accuracy, from
a semiclassical treatment of a double minimum poten-
tial,

The most important simplification arises from the
fact that the two nearly degenerate states interact much
more strongly with each other than with the other states
of the system, and the interaction with the other states
can be neglected. The problem can hence be reduced
to interaction of two states, a case particularly amen-
able to an approximate solution.

Upon neglecting all but the two nearly degenerate
states, Eq. (2.1) reduces to

1 4° 1 HETV

-5 gEH G = E Q| dy(p)=iPyp o= da0)
[ 2 dp 8p dp (4.1
1 gt T ! l

I:— 5 ;’iﬁg + €y — W - FE+ (J:_.-_.] ha(p)=iFn, r;—n Aylp) .

An example for which such near-degeneracy occurs
is the CIH « Br— Cl+ HBr reaction.'® A conlour plot for
a model LEPS surface with the asymptotic parameters
chosen so 4s to fit the above reaction is shown on Fig,
5. The diagonal elements of Eq. (4.1} for this surface
are shown in Fig, 6 with the full lines.

The usual method for transforming {rom an adiabalic
to a diabatic representation by diagonalizing the kinetice
eneregy matrix can generally not be used when there is
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a transfer of a particle involved, except in the some- i
what trivial case of Eq. (2.2) where the kinetic coupling ¢
matrix vanishes. The reason is that a part of the pa-
rametric dependence of the basis set x(s;p), and conse-
quently, of the kinetic coupling, is an artifact of the way
in which the y(s:p) are defined and does not correspond
to an actual interaction of the undarlying diabatic states,
This problem appears frequently in electron transfer
reactions and is known as the translation factor prob-
lem. '™ Another way of determining the diabatic ma-
trix elements V,,, V,,, and V¥, which does not make use
of the nonadiabatic coupling element needs to be devised.

The diagonalization condition for a two state diabatic
potential energy matrix can be written as

i 5 » Frrir . I 2., 172
€, =2( Vi + Vaa) £V (Voo = VitV Vi (4.2)
(e, corresponds to the plus sign and €, to the minus),
or, in a form more convenient for our purposes in

terms of €* and V*, as

etede reg)y Visa(V V). (4.3)
One finds from Eq. (4.2} thal

V=gl (4.4)
and

Vi=(e 2 =(V) . (4.5)

That is, the sum of the two diabatic diagonal terms
equals the sum of the adiabatic ones in the two state ap-
proximation, However, in order to obfain the diabatic
interaction matrix element Vy, {Eq. (4.5)], as well as
the individual diagonal diabatic elements V;; [Ea. (4.3)],
the difference between the diagonal diabatic matrix ele-
ment for the two states involved must be known.

It can be assumed on physical grounds that the diabat-
ic vibrational states, which in general can be identified
with a particular configuration throughout the collision,
are associated with one of the wells of the double well
potential (Fig. 7). Eigenstates localized in a single well
can be defined in a multitude of ways: These eigenvalues
will generally be somewhat sensitive to the choice and
cannot be readily identified with the diabatic states’ ei-
renvalues. The difference between the single well ei-
renvalues is substantially less sensitive to that choice
and will be assumed to approximate fairly closely the

FIG, 5. Contour plot of the surinee 11 {Rets, 2e)und sl The
contour energies are in keal mol™,
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SFIG 6. Diagonal adiabatic (full line) and diabatic (dashed
Jine) matrix elements for model surface 1I
4011-1 +Br— Cl+HBr).

S e

!

{difference between the diabatic eigenvalues. According-
ty, we make the approximation
Ve HE}-ED), (4.6)

:f'where EY and Ej are suitably defined single-well eigen-
values, Both the diagonal and the off-diagonal elements
of the diabatic potential energy matrix can then be eval-
vated using Eqs. (4.3)~(4.6).
E‘; The single well eigenvalues E‘f and Eg in Eq. (3.7),
fwhich now define V;, V5, and Vy, via Eqs. (4.3)~(4.6)
jare strictly defined only if the E{ lie below the barrier
1op, which seems to limit the present treatment to tun-
heling energies. However, the V™ in Eq. (3.7) is a very
tveak function of p, which makes it possible to simply
extrapolate V" and thus determine V), and V,, at smaller
walues of p, where E] and EJ are difficult to determine
directly. This extrapolation enables one to extend the
reatment to energies throughout one full cycle of in-
creasing and decreasing Pf; in the transition probability
’1; V8 energy curve.

3

“ .
° The resulting Vy, and V,, vs p for surface II is shown

Sln Fig. 6 with the dashed line. Log V,; vs p isshownin
ifhig 8. The right end of the curve for log V;, denotes

limit of the reliability of the small numbers V;, ob-

e
%fa.lned as a difference between two much larger numbers,

)[Eq (4. 5)] A much more reliable treatment for this
yregion of p’s (large p s), based on the semiclassical
a;eatment of a double minimum potential, is given next,

4.

b .Weak couplmg, semiclassical evaluation of V,,

The mteractmn matrix element V,, is evaluated in
&q (4.5) from the difference between (€°) and (V "),
'}lhich in turn are given in terms of the differences be-’

een the two adiabatic and the differences between the two
diabatic levels, respectively [Eq. (4.3)]. In cases

when the barrier between the two wells is very large,
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i.e., V;,is very small, this evaluation of a small num-
ber as a difference of two large ones can, and does lead
to a serious loss of accuracy. Another more direct ap-
proach to evaluating V,, which circumvents the above
problem in the low V,, limit is next obtained from the
semiclassical treatment of the eigenvalues of a double
minimum potential,

The eigenvalues of a double minimum potential which
lie below the barrier top can be obtained semiclassically
by finding the energies E, or E, at which the semiclas-
sical double well eigenvalue condition (4.7) is satis-

fied”' 16, 17:
tan[a,(E) —% +§ ] tan [az(E) —% + f]:l"a(E) . 4.7
The symbols in Eq. (4.7) are given by
_ exp[ - 2Q(E)]
THE) = 17T + expl- 2Q(E)] * (4.8)
33 32
E)= E)|lds, a4 E)= Eds ,

QUE) £2 Ip(Eds , @ fﬂp(

2B [ “pEVds (4.9)

¢(E)=Q+arg I‘(z +z-§)-§ln % , (4.10)
where f =1 throughout and

pi={2(E; - V(s;o) )}/ 2, (4.11)

and the turning points s; in Eqs. (4.9) and (4.10) are
marked on the cut through the surface at p =const, showr
in Fig, 7.

On the other hand, if the wells are considered sep-
arately, one can define distorted single well eigenvalues
influenced by the presence of the barrier, but for which
I'(E) in Eq. (4.7) is assumed purely for this definition
to be zero, i.e.,

. S
FIG. 7. A schematic cut through model surface I at p=const.
The solid horizontal lines show the adiabatic levels and the
dashed ones the diabatic levels. The s, in the figure are the
intagration limits for Eqs. (4.9) and (4. 10) for E=E,,
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log Vi

-2L

P

FIG. 8, The logVy,; vs p for model surface II. The daghed
part of the curve corresponds to the region where Eq. (4.5)
becomes unreliable (CIH +Br— Cl+HBr),

a(EN=42n+ ) n+d0, (4.12)

where n, is the vibrational quantum number.

Since one expects that each of the two E; would be
close to the E?, one can simplify Eq. (4.7) by expanding
it around one of these E}’s. One cbtains

da 4
(;;)(El - E)tan [az(Eo -5+ §]=P2(El) : (4.13)
Keeping in mind that the E; are nearly degenerate,
one can further simplify Eq. (4.13) by expanding the
tangent about E3 to get the shift due to the presence
of the other well, Thereby, we have

E,~E0=2Ye 4T} E
1 15—11;"@! (Ey) ,

where v, is the local frequency, or (apart from a factor
of 27) the reciprocal density of states, given by

(4.14)

.1 dE| l( 2&)" ‘
V1% 21 an, " 2\dE,/ (4.15)
Similarly,
E,-E= %%rz(sz) . (4.16)

Subtracting the two level shifts for the eigenvalues for
the left and right well, i.e., subtracting Eq. (4.14)
from Eq. (4.16), and approximating E, - E? and - (E,

- E2) by AE + AE® [prompted by the consequences of
Egs. (4.2) and (4. 6)] one gets:

AE._-AE°=A4EV:":EU (ri;rg) , (4.17)
where )
AE=3}(E,-E,), LE°=3(E}-EY),
r,2I(E), T;=T(E,). (4.18)

Identifying the “half-difference” of the two double well
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eigenvalues AE in Eq. (4.5) with the half-difference of

the adiabatic eigenvalues ¢~ and the half-difference of

the distorted single well eigenvalues AE® with that of

the diabatic eigenvalues V-, rewriting Eq. (4.5) as
Vi

AE-OE'= gt

and, comparing Eqs. (4.17) and (4. 19), one obtains
Vi =20y 0 (T3+TD), {4.20)

which in the limit of a symmetric system (v,=v, =v, T}
=TIy, =T') becomes the usual degenerate level splitting
result;

Viz=2vr- (4'21)

Equation (4. 20) is the desired equation for calculating
V2, in this small coupling limit. The principal condition
for the validity of Eq. (4.20).is the near degeneracy of
the E;, i.e., that the spacing of E, or E, from any other
level in the system is much larger than E, - E;, which
is the basis of the two state approximation,

(4.19)

V. EVALUATION OF THE TRANSITION
PROBABILITIES '

Once an approximation to the diabatic matrix elements
V;; has been obtained, one can, in principle, solve for
the uncoupled analogs of Eq. (3.6),

3 )=l Voo

(5.1)
in order to obtain the transition probability via Eq.
(3.8).

If V,i(p) in Eq. (5.1) has no multiplet turning points,
a good approximation to the solutfon for the purpose of
using it in Eq. (3.8) can be obtained by solving the
equivalent of Eq. (5.1) for a potential linearized around
the turning point

E- V(@)= Fo-p,), (5.2)

where F=(dV,,/dp) evaluated at p=p, (i=1, 2), andp,
are the classical turning points. Writing V,, as

exp[- v(p)] and expanding v(p) around the outer turning
point, one cbtains the integral (3.8) in a form which can

" be evaluated analytically:

2 -
1= 2 " ail- o -y
X Ai[- B(o - p,)] exp[- a(p ~py)]dp (5.3)
where 8=(2F)'/3, a=(dv/dp),.,, and V3, =exp[- v(p,)].

Uéing the integral form for the Airy functions, Eq.
(5. 3) transforms into

T‘if% J: dx f :dy exp[(i/3)(x* +y*)= i Bdy]

><f dp exp{- i[8(x + y) - ialo}, (5.4)
-where & is py~p,. After some algebra, one gets
‘ T = .___V.m_rze (a_s.)] _%if (5. 5)
12%| 2rar )2 *P\24F )] P ~|2oF )’ '
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where Vy, and A are the values of Vy3(p) and [Vye(p) -
Vy1(p)] halfway between the turning points, Equation
(5. 5) differs from its counterpart for the symmetric
case Eq, (3.9) by the exponent outside the square
bracket,

The DWBA result, Eq. (5.5), could also be replaced,
in analogy with Eq. (3.10), with an “exponential” ap-
proximation to the probability P® of the transition:

PRzgin®(21T2). (5.6)

This equation predicts a transition probability as high
as unity, Numerical results of Abu Salbi and Kouri
(to be published), however, make clear the short-
comings of this resonant type equation.

Improved extenstons of the DWBA results (Eq, 5.5)
to higher energies, which take into account the lack of
exact resonance, as well as direct approximate solu-
tions!®?° to the two-state problem posed by Eq. (4.1),
will be discussed elsewhere,

VI. NUMERICAL RESULTS

The calculations for the nearly degenerate H-atom
transfer were made on a model LEPS potential energy
surface which has the asymptotic parameters for the
ClH+Br—~Cl+HBr reaction. The Sato parameters were
set to: 0,02, 0.02, and 0.0 in order to obtain a surface
with a barrier height of ~12 kcal mol™!, 318

The adiabatic eigenvalues €, used to obtain V* via Eq.
(4.4) were calculated using the finite element method?®!
used in I. The one-well eigenvalues used to obtain V-
via Eq. (4.6) were cbtained (a) from potentials such that
the potential was set to a constant equal to the barrier
top energy from the barrier top into the other well, using
the same method, and (b) from E}’s obtained semiclas-
sically using Eq. (4.12), The V" was used only for
values of p for which the results of (a) and (b) were in
agreement.

Vi2 was calculated from Eqs. (4.5) and (4.20), re-
spectively, in the regions of p noted in Fig. 8.

0.8}
| .
0.4F
\/
L 1 _\ 1 ’
i1 13 :

TOTAL ENERGY ()

FIG, 9. The transition probubility va energy (Eq. (5.5)) for
the model surface II (C1H + Br —Cl + HBr).
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FIG. 10, The log of the transition probability for surface II
(CIH +Br— Cl+HBr) in the tunneling region.

For surface II the nearly degenerate transition is a
(0—~2) one, The transition probability P§, was evaluated
using Eq. (5.6) and is given in Fig. 9 as a function of
the energy. The log of the transition probability P§; vs
energy in the tunneling region is given in Fig. 10. At
present there are no exact results with which to com-
pare these results of the present equations, for the sur-
face used in Figs, 9 and 10,
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