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The quantal and classical/semiclassical behavior at an isloated avoided crossing are compared. While the
quantum mechanical eigenvalue perturbation parameter plots exhibit the avoided crossing, the corresponding
primitive semiclassical cigenvalue plots pass through the intersection. Otherwise, the eigenvalues agree well
with the quantum mechanical values. The semiclassical splitting at the intersection is calculated from an
appropriate Fourier transform. In the quasiperiodic regime, a quantum state near an avoided crossing is seen
to exhibit typically more delocalization than the classical state. However, trajectories near the “separatrix”
display a quasiperiodic “transition” between two zeroth order classical states.

INTRODUCTION

Bill Flygare was a colleague of one of ours for many
years, one whose stimulating and joyous presence we
shall always remember, His interests being mainly
spectroscopic and ours largely in kinetics or collision
dynamics, they occasionally overiapped. One overlap
in which we belived he would have been interested in-
volves avoided crossings, the subject of the present
paper and one which plays a role in intramolecular en-
ergy transfer.

If one plots two vibrational energy eigenvalues of a
molecule vs a perturbation parameter the curves may
intersect or, if the two states are suitably coupled by
the perturbation, undergo an avoided crossing. Such
avoided crossings can produce local changes in a spec-
trum, on one hand, and offer a way of substantially
mixing nodal patterns of the two states, on the other.

If a particular state participates simultaneously in many
(i.e., “overlapping”) avoided crossings, it takes on a
statistical behavior which is expected to expedite energy
redistribution in a wave packet for an isolated mole-
cule, and should generate, as well, an irregular spec-
trum. =3 In the present paper we compare classical/
semiclassical and quantum behavior for an isolated
avoided crossing.

THEORY AND RESULTS

We have noted elsewhere that at an avoided crossing
of twq levels of E; and E, the angular frequency (E;
- E,) /% becomes small (equals zero for the diabatic
states), and correspondingly in the classical behavior
one expects that some frequency of the motion will ap~
proach zero. 1-3 Such a motion corresponds to a nearly
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periodic trajectory, which is associated with a classical
resonance. To study the behavior at an isolated avoided
crossing we consider the following Hamiltonian,

H= 4k gl el s olls?) —ax® -ay+ 2dy? - by?

(1)
with ol = 3w} =3, Without the x* and y° terms the two
eigenvalues vs A plots considered below would intersect
only at A=0, The kxzyz term produces eigenvalues vs
A plots of different slopes. Because of the commensura
bility of ? and ) and the smallness of the perturba-
tion (a= 0.02, b= 0.005 to 0,03, and A varied from 0 to
approximately 0.1) a nearly exact 3:1 classical ‘reso-
nance occurs as some A in this range. At this A and at
nearby \’s, one expects a strong distortion of the clas-
sical motion. Its influence on the quantum and semi-
classical behavior is described below,

Quantum calculation

The quantum mechanical eigenvalues were calculated
and the avoided crossing of the (n, = 0, n,=3) and the
(n,= 1, n,= 0) states was studied. These states are
nearly degenerate. The calculation was made using
a 100-element basis set of harmonic oscillator states
(10 each for i, and for 3,), using an EISPAC matrix
diagonalization package.® The states studied are the
fourth and fifth. Their eigenvalues are accurate to
0. 0001, as judged by use of a larger basis set.

For b= 0. 005 the eigenvalues were determined
in A increments of 0. 01 (0 to 0. 1), except near the

-avoided crossing, where AX was 0.005. For 5= 0,01 and

0.03, the A increments were 0,01. Plots of these (0, 3)
and (1, 0) eigenvalues vs A are given in Figs, 1-3,
(Units of #f=1 are used throughout the paper.) Two
wave functions for a A far removed from the A at the
avoided crossing are plotted in Fig. 4, while those for
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FIG. 1. Plot of quantum mechanical eigenvalues vs perturba-
tion parameter A for the fourth and fifth eigenvalues of the
Hamiltonian (1), with 5=0,005. Semiclassical eigenvalues of
Table II are indicated with a dotted line.

the A at the avoided crossing are given in Fig. 5, One
sees the expected mixing of the two nodal patterns in the
latter,

We turn next to a comparison with a perturbation treat.

ment of the splitting in the avoided intersection region.
Quantum mechanically the energies in Figs. 1-3 are of
the approximate form®

E,~3(Hy + Hy) 25 [4|Hy |*+ (Hyy = Hp)* T2, (2

so that at the avoided intersection (Hyy = Hy,), the split~
ting is 2|Hy3]. H,; calculatedby perturbation theory usiig
harmonic oscillator (0, 3) and (1, 0) wave functions is
given by [y8sHylodxdy. Only the xy® term in Eq. (1)
contributes to this Hy;. For a state (n,, n,) denoted by
(v,, v, - 1) interacting with a state (v, - 3, v,) the matrix
element is found to be

Hyp= =[2,0,(v,- Do, - 2)/ 5’14 b/4 . @
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FIG. 2. Same as Fig. 1 but with b=0,01,
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FIG. 3. Same as Fig. 1 but with 5=0.03. Semieclassical
elgenvalues of Table II are Indicated with a dotted line.

In the particular case of the (1, 0) and (0, 3) states one
has

Hyp= ~[6/ulo®®]V%/4 . (4)

The results of Eq. (4) for the splitting are given in
Table I, where they are compared with the exact quan-
tum mechanical results, They agree quite well. Hy(})
and H,,(A) could also be computed, including now the
%%, y° and x%y? terms, but for reasons discussed later
we are particularly interested in H,, at the avoided in-
tersection,

Classical and semiclassical calculation

We consider next the classical behavior. Trajec-
tories were obtained by integrating the equations of
motion for the Hamiltonian (1. 1) using the DEROOT pro-
gram.® A typical trajectory.is shown in Fig. 6. One
half-cycle of the trajectory is seen to be S shaped (re-
flecting the fact that w)= 3u), i.e., there are three
half-cycles of the x motion to one of the y. To quantize
this trajectory we use methods described previcusly™®:;
The Poincareé surface of section results are recorded
for p, vs8 y each time the trajectory crosses the line
x=constant (in the present case we used x=0) ina |
particular direction (e.g., x>0). Originally we plotted
p, v8 y at x= 0 and calculated the area $ p,dy." Sub-
sequently, we found® that evaluation of this area via an
action-angle plot (/3 vs uf) required fewer trajectory
points (shorter time trajectory) since J ,°, is much more
nearly constant than p,. Thus, instead, we evaluate
the $ J3du) area, J? and ) variables are deduced
from ) and p, via the usual harmonic oscillator expres-
sions”;

27wl = tan"(wl y/p,) , JI=a(pl+ Wi/}, (5)

with a standard convention on the relation between the
phase of »? and the sign of p,. Similarly for y= 0 the
area $ J2du? was calculated. These integrals are set
equal to (n, + })k and (n, + )&, respectively, and the

initial conditions of the trajectory are varied until the
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n, and n, arce the desi red integers, As a check we also
calculated the phase integral [(p dv v p,dy) along Lhe
cycle of the trajectory and joined the ends on the v =0
surface of section {the trajectory close method of Rel.
Tc)l. This integral and the § JSdv" integral served to
determine the eigentrajectory. The two methods agreed
to = 0.0005.

A comparison of quantal and semiclassical eipenvalues
for the (0, 3) and (1, 0) states arc given in Table 11 and
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P1G. 4. Plot of the square of
wave functions for Fig, 1 at
A=0 01,

Figs. 1 and 3 for b - 0,005 and 0.03. In following the
behavior of the cnergy of each semiclassical state (0, 3)
and (1, 0), we observed that it passes through the region
of the avoided crossing instead of showing an energy
level repulsion there. The present semiclassical method
(“primitive semiclassical”, i.e., no uniform approxi-
mution) does not yvield the splitting and so in the vicinity
of the avoided crossing the comparison (indicated by
footnote « in Table 11) is made with the mean of quantum
eigenvalues for (0, 3) and (1, 0) states, This limitation

FIG. 5. Plot of the square ot
the wave function for Fig. 1 at
the avolded Intersceetion (A

0, 055).
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FIG. 6. Plot of the classical trajectory (“cigentrajectory')
which corresponds semiclassically to the (0, 3) state at
b=0.005, A=0.01, i.c., to the left |¢ 1% in Fig. 4.

can be avoided, as discussed later.

At b=0,03, a new type of trajectory was readily found
(Fig. T). It was oblained using action variables (J3, J})
which were approximately the mean of those for Lhe
(0,3) and (1, 0) states, i.e., J2=3(0+ %+ 1+ £)h and
J,=5(3+ 5+ 0+ §)h. After some iteration a trajectory
was found whose p, vs x Poincaré surface of section
plot at y = 0 showed two ovals connected near the lower
part of the figure (Fig. 8). The inner oval had an area
of about 1. 257 and the larger oval had an area of about
2,887, The corresponding J2 vs n? surface of the sec-
tion is plotted in Fig. 9. The time dependence of the
J%s shows a cusplike oscillation between the JVs
roughly of the (0, 3) state and of the (1, 0) state; as
in Fig. 10 for J°.

The plot in Fig. 8 is actually the separatrix or nearly
the separatrix for two different types of motion. In the
first of these the p, vs x plot is a closed curve lying en-
tirely within the small oval in Fig. 8, and at the ap-
propriate energy one such curve corresponds to the

TABLE 1, Splitting of encrgy levels at the inter-

section, ™
Quantum Semiclassical
b Quantum  perturbation perturbation
0,005 0,0033 0., 0035 0.0041
0,01 0.0066 0. 0070 0, 0082
0,03 0,0193 0,0210 0, 02406

Defined as the minimum value of | £, - E, |, using
A) increments given in the text.

h2”1’1._.| caleulated, respeetively, from 100-huar-
monic oseillator quantum mechanical basis set,
quantum [Eq. (4)] and semiclassical [Eq. (8)] per-
turbation formulas.

TABLE 1l. Comparison of quantum and semiclassical eigen-
values for the (0,3) and (1, 0) states,

Eq Ege Eq Eg:

h A (0,3) (0,3) (1,0 (1,0)
0, 005 0,01 4,987 1,987 5.002 b

0,03 4,998 4,999 5.007 5.007

0,05 5.0117 5.010 5.011% 5.012

0.055 5.013° 5.013 5.013* 5.013

0.060 5.015% 5.016G 5,015 5.014

0.080 5.028 5.027 5.019 5.019
0,03 0.01 4.977 4,977 5.006 eed®
0,04 1,993 4,996 5,015 et

0.07 5.017% 5.012 5,017 5.016

0.10 5.029% 5.030 5,029 5.024

0,13 5.054 5.047 5.027 5.031

AThe [live values labeled a in this column are averages of the
following respective pairs: (5.0092, 5.0128), (5.0114,
5.0147), (5.0132, 5.0169), (5.0069, 5.0262), (5.0181,
5.0392).

bSmallest J, ~ 8. 127 instead of J, = 37,

cSmallest J, ~ 3, 187 instead of J, = 3

SSmallest oJ, ~ 3. 117 instead of J, = 37,

(0, 3) state, The shape of the trajectory is more or less
elongated boxlike. In the second type of motion, pro-
duced by another set of initial conditions at any energy,
the p, vs x plot is a closed curve lying between the two
ovals and is somewhat half-moon shaped and exhibit S
shaped trajectories. Outside the larger oval in Fig. 8,
a px vs x plot is a closed curve and at the appropriate
energy one such curve corresponds to the (1,0) state.

We consider next a semiclassical estimate of the
splitling in the intersection region, a splitting not
obtained in the primitive semiclassical results. We
make use of Eq. (2). To calculate Hy, we introduce the
semiclassical basis set wave functions in terms of angle
variables rw, and i, for the mean motion at the inter-
seclion, and use a simple semiclassical perturbation
theory.

4 —
2 |-
Y o
-2 -
-4 1 1 1 1 1 | I 1 1 |
=1 0o i
X

FIG. 7.
E=5,01,

A transition-type trajectory for b=0.03, A=0.070,
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The lowest order perturbation theory 1s one where the
semiclassical basis set & involves angle variables o'
and nf‘_'. for the harmonic oscitlator problem, We then
have

o g ‘ . )
Hy = // el W H s Gl ey dedl de

o8 = exp Zuilu el v onged) (8)
where the integrals are over a unit interval, and G, n)
equals (0,3) and {1, 0) for 5, and (. respectively, The
only term in M in Ea. (1) which makes i contribution to
this integral is the resonant coupling tern - ho Y, This
v? is next expressed in terms of the unperturbed ac-
tion-angle variables, For the J¥ and J': appearing in this
v the mean of those in the Lwo stales 18 used, us in
Ref. 10 where the spectral matrix clements were cal-
culated with mean .f”n, for reasons given theroe,

One finds that

Hys =T e e 20 (9

3

where J2 and J7 have mean values L. 1o und

V3L )b, respectively, and o, = 3w = 3. In the hmit
where the fractional difference of the J"

L s the two
states is smail and simalarly for the J s, Hq.

"Tiis
sevn to approach Eq. (3, as mdeedat should Ly the
correspondence principie, (We note that 20+ 0 - L

I'he case whire there should be the grentest discropaney
between the two equations s the present one, mimealy
the matryx element af the 11,0 anid 1000 states, For

these states one hinds

Hyp= -8 .0

nod Let
The difference belween Fas, () and (8) s only approx-
nately 159 for this worst case. The results for 21H,]
are given in Table |,
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An improved value of Hy,, but still limited by the mean
action approximittion, should be one where the s in
. (6) are replaced by more exact «’s. A meun action
trajectory, generated from a Hauniltonian with v ab-
semt, was used to caleulate the spectrum of %, From
the mtensity near the origin, and the spectral theory
described in the Appendix, 21H,] was estimated to be
0. 80, which is compuarable to the values in Table 1.
This estimate of a low intensity line at very low {re-
quency (which was = 0,0024 in the present case) re-
quired 2! points for the Fourier transformation, with
a corresponding frequency resolution of 2> 107",

DISCUSSION

We have seen that the primitive semiclassical method
vields ewgenvalue curves which pass through the
avorded crossing rather than undergoing a level repul-
sion, but which otherwise yields good agreement with
the quantum eigenvalues (Table 1),

For the present system the (1,0) and (0, 3) classical
stales appear to be distinet, (We found the isolated
states in most cases.) Thus, they arc connected to cach
other in the avoided crossing region by a guantum
mechanical tunneling process. Such a tunneling occurs,
e.¢., belween the librating trajectories in the Henon—
Heiles potential, "in compound state resonances in in-
other system, 2 as well as in others, The barrier for
the trajectory in these cases is not a potential energy
one hut rather one imposed by the constants of the mo-
tion (the action variables), ' much as a centrifugal bar-
rier arises from an iction variable, the angular momen-
tum, and an attractive force.

When the coupling term causing the “tunneling” can
be identified, as in the present case, the splitting of the
crossed levels can be estimated [rom the perturbation
theory, as in Table [, Classical canonical perturbation
theary'* and semiclassical uniform approximations!'s
have been used to treat other semiclassical eigenvalue
problems, and we have adapted them to the present
problem, ' Results based on a perturbation approxima-

e
¥
3%
P
A
e i
-1 b
W
v
IG. 9. surface of seetion plot of Jf Vs u-f for the trajectory

in Fig. 7.
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tion have been obtained, 17 and are consistent with the
repulsion of the levels displayed in Figs. 1-3,

The trajectory in Figs. 7-10, which undergoes a
transition between the two zeroth order states in a
regular (quasiperiodic) manner, is at or near the
“geparatrix,” and is narrower, i.e., more difficult
to find, at low b’s than at high, (The “resonance width”
is smaller at small b’s, being proportional to b'/? by
Chirikov’s theory. '®) The oscillation between the two
states is similar to one which we found in a study of the
Fermi resonance system, !® to one found in the laser-
driven Morse oscillator problem, 2 and is related to
but not the same as the apparently more random flipping
found by Reinhardt and co-workers between librating and
precessing trajectorles in the Henon-Heiles system.

As suggested earlier? a classical resonance leads to
an avoided crossing. One sees both quantum mechanical-
ly and classically that this resonance facilates the dis-
tribution of excitation among different modes, e.g.,
between the different zeroth order states in Figs. 4
and 6, as in Figs. 5 and 7. Interestingly enough, the
results show that the classical state is (in the vicinity
of an avoided crossing) less delocalized than the quan-
tum state, apart from trajectories near the separatrix
trajectory, Thus, in the classically quasiperiodic
regime some classical trajectories may predict less
energy randomization than the quantum treatment, be-
cause of the absence of tunneling. In the classically
chaotic regime the reverse can be true: The system
may appear as classically chaotic but the density of
states may be too small to cause irregularities in the
spectrum or in the nodal patterns of the wave functions,
functions, !~
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APPENDIX: FOURIER TRANSFORM CALCULATION
OF Hy,

A formula which should be an improvement over Eq.
(6) would entail using the latter but with a more exact
choice of action-angle variables (J, w) generated, e.g.,
by a trajectory arising from the H in Eq. (1) with only
the — bxy® removed. The only term in H which con-
tributes to the integral for Hy, is now - bxy’. The semi-
classical wave functions are those given in Eq. (6), but
with the #’s replaced by the w’s for this trajectory.

One sees from this new Eq. (6) that we need to calculate
a Fourier component (2 = i), (n?—n) of =bxy*. In

our case this will be the (1-0), (0-3) component i.e.,
the (w, - 3w ) component, where the w’s denote the exact
frequencies of the new Hamiltonian H + bxy , rather than
the w"s in Eq. (1). We first note that when the dynami-
cal motion is quasiperiodic, any dynamical function

iy, - bxy’, e.g., can be expanded in a Fourier series
in the exact angle variables (wy, ..., wy) for this N-
coordinate system:

N
70= 3 fu(exp 2 2nimpm,)
m (-l

where f,, denotes f,, ...,y - The characteristic angular
frequencies for each w, are w; (27w, = w,t+ ¢, where
¢, is an initial phase). In our case H;, equals the f,
corresponding to m,= 1 and m,= -3. The f,’s can be
calculated as in our spectral analysxs"‘ Y. The Fourier
transform I(w) of the autocorrelation function f(0) f(¢) is
considered:

(a1)

' Hw) = % f nf(o) F{) exp(=iwt) dt . (A2)
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This I{w) 18 related to tne following time average, as
before!':

2y

(A3)

i uxpl—l."l)d/,> .

(The two expressions differ by a term which vanishes as
T - w,) When the expansion (A1) is introduced o kq.
(A3) one finds

A
1(‘4'):2 ln;:ﬁ(z "I‘A'i-'-l.')‘

(A4)

Thus, the desired quaatity | 7,1 is the square rool of
the coefficient of the relevant dirac delta function in
Eq. (Ad4). Each spectral tine approaches a delta func-
tion as T —=, but for finite T the integrated area of
I{w) vs win the vicinity of the line gives {1a1%. The
height of the line is proportional to T and the width is
inversely proportional.  Thus, when one calculates
the height of the peik and divides by 7 once obtains a
quanuity independent of the trajectory time and propor-
tional to the area, Since heights are eusier Lo mea-
sure than areas we have used this indirect way of
evitluating the area. ' The relation belween area
and height was obtained via o suitable test function,

For £(n we have used — vy and looked at the intensity
of the appropriate Fourier compounent Ypi w, band,
namely =, =3«,. The Fourier transform of the mean
action trajectory near the avoided crossing was cal-
culated, and the results for the sphitting obtaned in this
way are given in the text,
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