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Intramolecular vibrational energy transfer is the subject of much current
experimental and theoretical research. Some aspects of this problem are
reviewed in this talk, together with a2 few new additions. Inasmuch as ex-
tensive references have been given in a recent review,’ they are omitted in
this extended abstract in the interests of brevity. Topics discussed include
(1) experimental work, {2) some theoretical concepts on "regular” and “cha-
otic" motion in the classical and quantum mechanics of anharmonic systems,
and (3) the question of whether experiments can distinguish regular from
chaotic behavior. By way of introduction we begin first with a review of

the unimolecular rate constant of reactions occurring in the gas phase.

Unimolecuylar Reaction Rate Constant

The study of intramolecular energy transfer began with investigations of
unimolecular reactions in the 1920's and 1930's, and was resumed especially
in the post 1950's. The current interpretation of these data via a Lindemann
mechanism for a reaction A = B involves activation by collision with a mole-
tule M to form a vibrationally-hot molecule A*, which can either be deacti-
vated by subsequent collisions or form a reaction product B:
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Current interpretation of experimental data in these reactions is typically
via 3 statistical theory - RRKM theory - in which a microcanonical distribu-
tion of states is assumed for each A* of energy £ and for the transition
state of the second step in (1), Transition state theory is then used to
calculate the rate constant k(E), One finds, in RRKM theory,

k(E) = NH(E)/hp(E), (2)

where N1(E) is the number of quantum states of the transition state of energy
less than or equal to E, h is Planck's constant and p(E) is the number of
states per unit energy for molecule A*,

This expression for k(E) is then multiplied by the steady state distribu-
tion function p.(E) dE for the probability of finding an A* in the energy
range (E, E + dE). and integrated over all €, k(E) may also depend on other
quantum numbers, such as the angular momentum of A*, J, e.g., via the centri-
fugal potential, and then one integrates the corresponding k(E,J) ps(E,J)
dEdJy over all E and al) ).

Much of the current experimental research is designed, in effect, to avoid
the need for this convoluting of k(E) by preparing molecules A* with a nar-
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rower energy distribution, namely by some way other than the collisional path
in eq.(1). Before considering some of these methods, we first give another
form of eq.(2) for k(E), derived in the Appendix. It §s somewhat more re-
vealing of its content and appears to be new:

K(E) = v, NHE)/N,(E), (3)

where v. {s any classical vibration of A* and N,(E) is the number of states
of A* with energy equal to or less than E and with this one degree of free-
dom removed. Thus, k(E) equals this frequency v multiplied by the quantum
equivalent of a ratio of phase space available to the transition state to

that available to 3 molecule with the same number o; degrees of freedom. The
geometry and vibration frequencies may differ for NT and N;, and NT(E) is
2zero until E exceeds some critical Ey, which in turn is related to the thermal
activation energy. As a function of E, k(E) has a threshold at £ = Eo, then
rises and tends to “"saturate" at high E,

Some Experimental Studies

Among the studies that have been made are those of (1) unimolecular reactions,
(2) chemical activation (in bulk and in molecular beams), (3) photochemical
excitation followed by internal conversion, (4) infrared multiphoton disso-
ciation (in bulk and in beams), (5) high overtone induced reactions, (6)
dissociation of van der Waals' complexes, (7) unimolecular reactions in beams
at low energies, (8) infrared excitation followed by the study of subsequent
fluorescence or absorption, (9) vibronic excitation followed by dispersed
and other fluorescence, and (10) high resolution spectroscopy. Several of
these are considered below:

One of the first methods used to secure a narrower range of E's for A*
involves its formation via a chemical activation step, e.g., the addition of
an atom or free radical to an olefinic double bond, or the insertion of a
CH, group into a CH bond,
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The intervening free radical or molecule is vibrationally hot, Its energy
distribution is mainly due to the thermal distribution of the initial sub-
state. Chemical activation has been studied in bulk and in molecular beams.
In the bulk case k(E) has been inferred via measurements of products in com-
petition with the frequency of deactivating collisions, and £ has been varied
by varying the initial reaction leading to the formation of a hot molecule.

A classic example of the use of the former to study the rate of vibrational
energy randomization has been the measurement of ratios of products in care-
fully selected reactions by Rabinovitch et al. Typically, the intramolecular
energy redistribution time thus inferred was about 1 ps at the high vibration-
al energies involved.

The products' energy distribution for chemical activation in beams has
been used to infer that of the transition state and, thereby, whether or not
the microcanonical assumption used for A* in RRXM theory is valid. Such
measurements are unambiguous when there are no exit channel effects (no sub-
sequent translational-vibrational energy exchange in the exit channel), namely
when the exit transition state is "loose", Reaction (4) displayed statistical
behavior, An interesting example of nonstatistical behavior occurred, in-
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stead, in the reaction of Cl addition to a bromoolefin, with Br subsequently
leaving the hot free radical. The estimated lifetime (< 1 ps) was presumably
too short for statistical intramolecular randomization to occur,

Another method for preparing vibrationally hot molecules is & photochem-
ical one in which the molecule is excited with 1ight to form an electron-
ically-excited state. - In some systems the resultant excited molecule under-
goes internal conversion to form a vibrationally hot ground state and its
subsequent unimolecular reaction can be studied.

Vibrationally hot A*'s have also been prepared by selectively pumping 3
vibrational mode of a molecule using infrared multiphoton absorption. Such
studies provide interesting insight into different properties of the states
of the molecule in the lower energy range and in the higher one (the so-
called quasi-continuum). To be sure, the system yields a distribution of E's
of the reactive A*'s, rather than a nearly monochromatic one. A number of
the studies have tested the RRKM form of k(E) indirectly, via measurement of
the energy distribution of the reaction products, usually measuring the
translational distribution but on some occasions a vibrational one. Another
test has been via measurement of branching ratios, e.g., in the measurement
of the HF/HBr ratio in a reaction in which CF mode was pumped:

CHoFCH,Br ™V CH, = CHBr + HF  or CHCF = CH, + HBr (5)

The observed ratio was found to be the statistical one computed from RRKM
theory,

By and large, the behavior of the dissociating or isomerizing A* prepared
by the above methods has been interpreted using RRKM theory. More recently,
vibrationally-hot molecules have been prepared by excitation of a high CH
overtone in a molecule. The lifetime has been measured indirectly as a func-
tion of the vibrational energy, via competition with deaetivating collisions,
and, subsequently, directly using studies in real time. In the case of
CH3NC - CH,CN, the results are in ballpark consistency with those inferred
from RREM theory and unimolecular studies, while data on the unimolecular
studies is needed for comparison in the other cases. Some argument regarding
nonrandom behavior has been made from apparent +50% fluctuations from a mono-
tonic k(E) vs E plot in one reaction. Such effects if real would probably
go unnoticed in unimolecular plots, but the main question is rather whether
or not the k(E) measured in such selectively-prepared molecules is or is not
in rough agreement with that inferred from statistical (e.g., RRKM) theory,

Another interesting source of information has been initially cold van der
Waals' complexes (such as I,He) in which the I, is vibrationally-excited via
lasers, The subsequent lifetime has been inferred indirectly from line width
studies. Typically, one has I,(v)X + I,(v-1) 4 X and RRKM theory does not
apply to such systems. In the language used below, their motion is much too
regular, rather than chaotic.

Other more recent interesting and relevant studies include the infrared
emission from a molecule (methyl formate) in which a CH band is excited (one
photon) with an infrared laser and emission from other bands is observed,
(McDonald), the observation of vibrational quantum beats (Zewail), the pump-
probe work and vibrational quantum beats reported here by Bloembergen,
the study of k(E) versus E for molecules in which the energy barrier for re-
action is very low - ~ 1500 cm~? (reported here by Zewail) instead of the more
usual 15,000 cm-! barrier, the study of modal intramolecular relaxation via
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dispersed fluorescence in substituted benzenes, (parmenter at this confer-
ence, Smalley) and the measurement of highly resolved spectral sequences in
small molecules.

Some Theoretical Concepts

We turn next to current theoretical work on regular and chaotic motions with-
in a molecule. An anharmonic molecule, viewed classically, is an example of
a nonlinear mechanical system. Such a system has been extensively studied in
recent years, particularly in astronomical journals. There is a relatively
recenttheorem(Kolmogorov-Arno1d-Moser) which shows that at low energies the
motion of such a system is for most initial conditions highly "regular" (i.e.,
quasi-periodic): In an N-coordinate system such a3 motion has N constant
"action variables" and so moves on an N-dimensional surface in a 2N dimen-
sional phase space, a torus, rather than on a 2N-1 constant energy surface.
It is thus quite highly restricted in its motion. An example of this regu-
larity is given for N=2 by the classical trajectory in coordinate space
(e.g., Figs.1-4 below). Such motion is highly nonstatistical.

At higher energies the motion tends, for an increasing fraction of the
initial conditions, to be chaotic rather than reqular, as for example in
Fig.5. The spectrum of the classical trajectory, determined from the Fourier
transform of an autocorrelation function of the trajectory, changes corres-
pondingly. It is "regular" for a quasi-periodic trajectory (N fundamental
frequencies, plus overtones and combinations). In the chaotic case it is
more diffuse, centered around principal frequencies usually red-shifted from
those at lower E.

The above dynamical behavior is consistent with one current view in which
statistical theory is appropriate for interpreting rate processes at higher
energies; at lower energies, 2 quasi-periodic type of theory should be used,
e.g., by treating a molecule as possessing independent vibrational modes,
using some version of the usual radiationless transition theory and its
Franck-Condon type matrix elements to treat rate processes, Such a treatment
would, in a sense, be a quantum modification of N.B. Slater's treatment of
urimolecular reactions. In that treatment, which was classical, a special
case of quasi-periodic motion was assumed, namely, independent harmonic 0S-
cillations. The drastic effect of even small anharmonic coupling on the
motion in the presence of internal resonances was neglected but can be in-
cluded in any modified theory. The "transition state” (using transition
state terminology) was assumed to be a hyperplane in the coordinate space.

The question arises as to whether this classical mechanical transition
from quasi-periodic to chaotic motion has quantum implications. According
to our recent findings in a numerical study, the former may be a necessary
but not a sufficient condition for quantum "chaotic" behavior (as judged by
the spectrum). Sufficient conditions have been postulated, both by Kay and
by the writer, based on Chirikov's theory for the onset of chaotic motion

"overlap" of internal resonances). Our sufficient conditions for quantum
chaos include one where the overlap region in phase space should (when di-
vided by hN) exceed unity, i.e., contain at least one quantum state.

One limitation of the Chirikov theory for classical chaos is that it is
basis-set dependent, i.e., dependent on the choice of the unperturbed
Hamiltonian, Hy. Another approach, which I am suggesting and which we
are currently testing, is a basis-set independent extension of the Chirikov
resonance, namely we examine the trajectories and find the various domain or
domains in phase space where a trajectory of given shape dominates. One
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Fig.4

Legend to Fiqures 1-6

Classical trajectories y(t) vs x(t) for the Hamiltonian
= 2 2 2,2 2,2 2 2 . :
H %[px *+ Py * oy +wgx?) + Ax(y? + nx?), for several cases: Fig.l

w, and w_ not commensurable; Fig.2, w, = wy (3 1ibrating ellipse-like

trajectories); Fig.3, w, = wy (1 precessing ellipse-like trajectory); Fig.4,
w, = 2wy (1 1ibrating figure-eight like trajectory); and Fig.5, w, = Zwy
(chaotic trajectory). 1In Fig.6 is the wave function for the system of Fig.4

would then try to determine if a chaotic region corresponds to an overlap of
such domains. Further, the size of that overlap domain relative to h would
indicate, according to this model, whether or not a local "quantum chaos”

exists. A trajectory of a given shape corresponds, incidentally, to 2 given
resonance (cf Figs.2-4).

Rnother approach to "quantum chaos" that we have suggested, again basis-
set independent, involves examination of plots of vibrational energy eigen-
value vs a perturbation parameter, and seeing whether avoided crossings and,
more particularly, whether overlapping avoided crossings occur. Overlapping
of avoided crossings will result in destruction of regular shapes of wave
functions, so that fairly regular nodal patterns no Jonger occur. (A reg-
ular-shaped wave function is given in Fig.6.) The relation between the
"overlap of different trajectory shapes" method and the overlapping avoided
crossings method will be discussed elsewhere,

Can Experiment Distinguish Chaotic from Reqular Behavior?

Not considered above is the relation, if any, between experiment and the
classification of states as regular or chaotic. The more well-defined the
"preparation of the initial state" in an experiment the more one expects 2
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difference between regular and chaotic behavior. For example, if one examines
the vibrational spectrum of a molecule at ultra high resolution and finds
reqular sequences of eigenvalues, the corresponding quantum states of the
molecule are apt to be "regular": An isolated avoided crossing at the given
value of a perturbation parameter will cause some mixing of two nodal patterns
of the wave function, and some perturbation of the regular eigenvalues' se-
quence. [E.g., the eigenvalue sequence in a pendulum problem (1ibration-ro-
tation), which is a model for an isolated resonance, is not as simple as that
of, say, a Morse oscillator.] Overlapping avoided crossings will produce

even more irregularity in the spectrum.

In reactions, the difference in rate constant of A* in the two models -
quasi-periodic or chaotic - can be large, depending on the preparation of the
initial state. (Strictly speaking, a dissociating molecule is never quasi-
periodic, at most only approximately so, but we'll neglect this detail,) If
A* is prepared via a collision in eq. (1) to form a nearly microcanonical dis-
tribution of states, or a distribution of states centered about the microcan-
onical, the energy dependence of the rate constant might be similar in the
regular and chaotic cases. If, on the other hand, the state of preparation
is less coarse-grained the experiment may distinguish between the two cases.
Relaxation by itself is no indication: For example, it has been shown that
even an integrable system (no classical chaos at any energy) shows relaxation
of a classical state if the initial excitation involves the excitation of
many KAM tori at once, by exciting some 2eroth order mode, rather than by
exciting motion on a single KAM torus.

This field is in its infancy, both experimentally and theoretically, and
jt will be interesting to see the growing relation between these new experi-
ments and the new theories.

Appendix. Derivation of Eg.(3) .

The p(E) is dN(E)/dE, where N(E) is the number of states of A* with energy
equal to or less than E. N(E) can be written, at least approximately, as

N, (E-E'), the number of states of an A* with one degree of freedom removed and
with energy equal or less than E-E', times the number of states p'(E')dE' of
the missing degree of freedom having the energy in E*, E' + dE', integrated
over E' from O to E. If for this extra degree of freedom we select a vibra-
tion of A* whose frequency v. is low enough to be regarded as classical and
which can also be treated as a harmonic oscillator, then p'(E') equals 1/hvc.
One then finds that p(E) in eq.(2) equals N,(E) [using dN,; {E-E')/dE = -dN
(E-E')/dE']). From these results and eq.(2) eq.(3) follows.
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