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Quantum mechanical and semiclassical results are compared for the spectrum of the Morse oscillator. When
an average quantum number [(n + m)/2] trajectory is employed for an n —m transition, good agreement is
obtained between the quantum and semiclassical intensities and between the frequencies, for the fundamental
and the overtones studied. Spectra of nonrotating OCS in the quasiperiodic and chaotic regions are presented,
and the intensities of a number of overtones and combination bands are calculated. Even very low intensity

transitions are observed.

I. Introduction

There has been considerable interest in recent years in
the semiclassical analysis of coupled anharmonic systems.!?
These studies have been motivated in part by the difficulty
of exact quantum mechanical calculations on systems as
small as bent triatomics when one attempts to include
rotations and all of the vibrational-rotational couplings.
Indeed, there appear to be no exact calculations on tria-
tomics for other than J = 0. Because of this difficulty,
many workers'? have investigated various bound state
semiclassical methods, exact and approximate, using the
Bohr-Sommerfeld-Einstein—Keller quantum condition

f Toda=(n+8hG=1,..M @D
C;

Here, p and q are 2M conjugate momenta and coordinates,
n; is & quantum number, the C; are M topologically inde-
pendent paths, and the §; are known constants. A number
of small systems have been investigated with these tech-
niques, and the results have, in general, been encouraging.
In the quasiperiodic regime the classical trajectory uni-
formly covers an M-dimensional surface (a torus) in 2M-
dimensional phase space. The motion is characterized by
the M constants of the motion (left-hand side of eq I.1)
and by the M initial phases canonically conjugate to these
M actions.

Recently, we obtained from a classical trajectory the
power spectrum of any classical mechanical variable.** It
was shown?® that the spacings of the quantum mechanical
vibrational eigenvalues agree well with those deduced from
the classical vibration frequencies, in the classically qua-
siperiodic regime. It was also shown that in the classically
chaotic regime a line spectrum was obtained while in the
chaotic regime the spectrum was “dispersed”.® This me-
thod of generating a molecular spectrum from classical
trajectories has now been applied by several investigators,
e.g., ref 6-11.

We used a zeroth-order Hamiltonian to define semi-
classically the initial conditions (the “eigentorus”) for the

1 Contribution no. 6518.

* Phys., 74, 4872 (1981); P. H. Berens, S. R. White, and K. R. Wilson, ibid.,

trajectory used to obtain the classical autocorrelation
function. The Fourier transform of this correlation
function then provided the power spectrum.® Later, we :
also showed for one spectrum that good agreement with .
quantum mechanical results for the spectral intensity could |
also be obtained.®

In the next section of this paper the basic semiclassical
formulae are presented for the spectra. In section III the
quantum mechanical expression for the intensity is given .
for the Morse oscillator. In section IV the semiclassical ;
method is tested by comparing it with the quantum ana- 1
lytic results in section V for the fundamental and various i
overtones. In section VI the spectrum of a nonrotating :
OCS molecule is obtained with this semiclassical spectral ;
method, and the intensities of some fundamentals and a
ln;unr:iber of overtones and combination bands are calcu-

ted.

II. Semiclassical Correspondence ;

In deducing the spectrum from a classical trajectory we |
first calculate® the classical autocorrelation function by
averaging the quantity of interest, such as the dipole
moment u(t), over the appropriate ensemble. The reduced

(1) D. W. Noid, M. L. Koszykowski, and R. A. Marcus, Annu. Rev. ,
Phys. Chem., 31, 267 (1981), and references cited therein.
(2). 1. C. Percival, Adv. Chem. Phys., 86, 1 (1977), and references cited

therein.

(3) D. W. Noid, M. L. Koszykowski, and R. A. Marcus, J. Chem. Phys.,
67, 404 (1977); cf. D. W. Noid, Ph. D. Thesis, University of Illinois, 1976, ;
Chapter VII. !

(4) D. W. Noid, M. L. Koszykowski, M. Tabor, and R. A. Marcus, J.
Chem. Phys., 72, 6169 (1980).

(6) D. W. Noid, M. L. Koszykowski, and R. A. Marcus in “Classical
Semiclassical and Quantum Mechanical Problems in Mathematics, .
Chemistry and Physics”, K. Gustaveon and W. P. Reinhardt, Ed., Plenum .
Press, New York, 1981, p 181. {

(6) J. D. McDonald and R. A. Marcus, J. Chem. Phys. 65, 2180 (1976).

(7) K. D. Hansel, Chem. Phys., 33, 35 (1978).

(8) G. E. Powell and 1. C. Percival, J. Phys. A, 12, 2053 (1979).

(9) D. Poppe, Chem. Phys., 45, 371 (1980).

(10) S. C. Farantos and J. N. Murrel!, Chem. Phys., 55, 205 (1981).

(11) An interesting analysis of rotation and vibration of diatomic
molecules in condensed phases using classical trajectories to calculate the '
spectrum has been made by P. H. Berens and K. R. Wilson, J. Chem.

75, 515 (1981).
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classical spectral intensity? ] is then given by the Fourier
transform of the autocorrelation function:

1= o= f " ulorutnes de (I1)

In the quasiperiodic regime the ensemble needed to obtain
the spectral frequencies consists of an ensemble of tra-
jectories, but we showed® that a single trajectory can suffice
when an equivalent formula, given later, is used.

The justification for using classical trajectories to obtain
gemiclassical spectra is as follows:

Equation II.1 can be rewritten as 12

I = Tmiuin)Pé(w = Wmn) (IL2)

where we have considered the case where only state |n)
is initially populated and where wp,, is the transition fre-
quency

1
Wnn = ;;(Em -E) (I111.3)

We shall use the semiclassical wave function
(wjn) = ™ (11.4)

where w is the angle variable (e.g., ref 13). The matrix
element for the dipole operator becomes, on introducing
the identity operator fo'lw) dw (w]

1
(miuin) = (miw)(wluin) dw
= j; ! miwu(d,w) win) dw
= f ttrimoy(J w)etiw dw  (IL5)

where the semiclassical action operator J is [h /i) 3/ow +
1/,h) for an oscillator.! Performing the operation gives

mipn) = [ wpleiome du - (T160)
and similarly
1
(njm) = j; gl w)etrmme dw  (I1.6b)

where J,, is the classical action for the torus corresponding
to the semiclassical state n. For an oscillator one has

J,=(n+%h (IL.7)

We have written the above equations in terms of only one
coordinate for notational simplicity. The extension to M
coordinates is clear, e.g., dw becomes I1; dw;, nw becomes
Tinw;, ete.

Equation IL6 should satisfy the condition that (mlu|n)
be Hermitean, but does so only approximately; the sem-
iclassical analysis leading to (IL.6) assumes that [n-m| <<
n. To satisfy the Hermitean property we replace J,, and
J,, in eq IL6 by their mean value, (J, + I}/ 2:

1 [ J, + .
(mlujn) = j; n( 2 5 ”'.w) it-miv gy (I1.8)

This expression is then introduced into eq 11.2 to obtain
the intensity.

One sees from (I1.8) that the matrix element appearing
in eq IL.2 is the n~mth Fourier coefficient for the dipole
operator, evaluated at an action variable (J, + Jn)/2.
Similarly, the frequency wp, is replaced by the classical

(12) R. G. Gordon, Adv. Magn. Recon., 3, 1 (1968).
(13) R. A. Marcus, Chem. Phys. Lett., 7, 52b (1970).
(14) P. M. Moree, Phys. Rev., 34, 57 (1929).
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frequency for a system with the action variable (J, +
J.)/2, rather than J,, or J, alone.

Equations I1.2 and I1.8 are the equations previously
useds (eq 2.7 and 2.9 there), although w,, was, instead,
replaced by [w(J) + w(Jn)]/2, an approximation less ac-
curate than the present one (see below).

For a system in a particular quantum state the corre-
sponding semiclassical autocorrelation function is an av-
erage over appropriate angle values (initial vibrational and
rotational phases). It was shown (cf eq 2.10 of ref 3) to
be equal to

[=2 lim (%l S Tu(t) expleint) dt)r) (IL9)

21 T—o

It was noted in ref 3 that, for a nondegenerate system in
a given quantum state, a single trajectory suffices for use
in (IL9), and so for that case the ( ) sign can be ignored.
In contrast, eq I1.1 for the intensity requires an ensemble
of trajectories, a sample over initial phases (the initial angle
variables). In a degenerate system the () sign in (I1.9)
denotes an average over angle variables canonically con-
jugate to certain action variables, namely, those absent in
the Hamiltonian.

III. Quantum Mechanical Spectral Lines
The well-known Morse oscillator Hamiltonian' is given
by
p?
H = =— + D(1 - e))? (I1L.1)
2
The wave functions resulting from the solution to the
Schradinger equation for this Hamiltonian are!

Yo%) = N/ 22612, 5(z) (I11.2)
where
abn! |
= —— . = ~a(r-rg)
N [ Tk - ) ] 2= ke (11L3)
b=k-2n-1
k=1/x, = 2uw,/ ha® @, = a(2D/p)'?  (I11.4)

with w, being the angular frequericy and w,x, the anhar-
monicity constant, defined by eq III.4. We shall denote
by b’ the expression

b’=k-2m-1 (I11.5)

For the present purpose of comparison of classical and
quantum results we shall write x as a constant plus r —r,.
Thereby, with m = n

pan = (muln) = (m|(r -roin)
Equations I11.2-TIL5 yield

Bt =
NN,

a

(I1L6)

hese
fo e22/2+¥/2-0g71 \n (k /2)L,¥ (2)L,0(2) dz
(11L7)

where we have changed the variable of integration from
rtoz.

By extending the upper limit to infinity, a negligible
error is introduced into the integration and one obtains,
noting that ¥, and ¥, are orthogonal

NulN,
a

=

Hmn

j;me“z“” 2+5/2-Dg-1 In 2L,,Y(2)L,(2) dz
(11L.8)
The Laguerre polynomials are introduced, and after
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evaluation of the integral'® and use of the identity'¢ for m
>n

m Tk-n) n m+i-n-)I'k+i-m-n-1)

m! Tk - m) = ik + i - 2n)
1

“m-nk-m-n-1)
one obtains!®

(_l)m-n-ﬂ (m! r'(k-m) bb')l/z

Hmn = - k-m-n-D\ n! T(k-n)
{m > n) (111.10)

This quantum mechanical expression is then introduced
into eq I1.2.

The problem of calculating matrix elements for the
Morse oscillator was treated by Dunham!? for specific
transitions, by others,!8 and recently by Gallas,'> who ob-
tained expressions for matrix elements of all powers of the
displacement coordinate.

(I111.9)

IV. Semiclassical Spectral Lines

In this section we compare the frequencies of the
quantum mechanical and the semiclassical spectral lines
first. Comparison of eq IV.1 and IV.3 shows that the
semiclassical (WKB) expression for the eigenvalues for a
Morse oscillator agrees exactly with the quantum me-
chanical expression when (L.1) is introduced. However,
what we are concerned with in this paper is how the fre-
quency obtained from a single classical trajectory agrees
with the quantum mechanical fundamental frequencies (n
— n + 1) and overtones (n — m, m > n + 1). What
interpolation or rule will provide good or even exact
agreement for the Morse oscillator?

The quantum mechanical energy levels of a Morse os-
cillator are given by

En =(n+ 1/2)’“"0 - (n + yz)zh“’e)(e (IV.1)

The angular frequency w,, is (E,, — E,)/h and so is
Wmn = (M = N)wy = (M = n)(n + m + 1w,x, (IV.2)
The classical energy as a function of the action J is ¥°
E = (Jw,/27) + J2wex,/2xh (Iv.3)
(The X, has an h which cancels the h in the denominator.)

The classical angular frequency w(J) is 2x»(J), where v is
dE/dJ. Thereby

w(J) = w, + 2Jw,x./h (Iv4)
and so classically the Ith overtone is
lw() = lwy + 2Jlw.xa/h (IV.5)

If we replace J by its mean value for the n — m tran-
sition, (J,, + J,,)/2, we obtain
lw(f) = lw, + (n + m + 1lwyx, av.e)

This expression is seen to be identical with the quantum
mechanical one, eq IV.2, remembering that m - n = [. To
obtain this exact agreement for the Morse oscillator it is
seen to be essential that the classical frequency w(J) be
evaluated at J equal to (J, + J,,)/2. To obtain the ov-
ertone corresponding to E,, - E, for this and other systems
we shall use in the following the Fourier transform of the

15) J. A. C. Gallas, Phys. Rev., A, 21, 1829 (1980).

(16) E. R. Hanson, “A Table of Series and Products”, Prentice-Hall,
Englewood Cliffs, NJ, 1976.

(17) J. L. Dunham, Phys. Rev., 35, 1347 (1930).

(18) E.g., H. S. Heaps and G. Herzberg, Z. Phys., 133, 48 (1952), and
other references cited therein and in ref 15.

(19) C. C. Rankin and W. H. Miller, J. Chem. Phys., 55, 3150 (1971).
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correlation function obtained from the classical trajectory
whose action is (J, + J,,)/2.

We turn next to the semiclassical intensities. The vi-
br%tional coordinate for a Morse oscillator can be written
as

(r-rd = (1/a) In {[1 - P cos (.t + ¢)]/(1 - P?)}
(Iv.7)

where ¢ is an arbitrary phase angle and w, is given by

w, = wy(1 - PYI/2 (IV.8)
P is related to the vibrational energy E by®
P = (E/D)'/? (IvV.9)

and so is related to J by (IV.3). Calculation shows that
the w, defined by (IV.8) is the angular frequency, 2z-
(6H/3J), at the given J.

The dipole moment, taken as r - r, for the present
comparison and so given by (IV.7), can be expanded in the
Fourier series

r—r,=ay/2+ lZia, cos lwt +¢) =Y ); aeiletts
(1V.10)

where a; = a_;. It has been shown that the g, are given

by20.2 1

o 1-a-py2 Y
oo (la)( (P ) ) 050

In applying (IV.11) to calculate the intensity of a tran-
gition n — m using (I1.2), with P related to J via (IV.3)
and (IV.9), we shall set J = (J, + J,,)/2. Le., we have

J=(n;m+l/z)h

The ! in (IV.10)-(IV.11) is simply m-n, as one sees by
comparing (I1.8) and (IV.10) and noting that 27w equals
wt + ¢. Accordingly, the semiclassical matrix element p,,,*
is given by

tmn =Ya, with l=m-n (m>n) (IV.13)

Classical rotational corrections to the a; expressions have
been given by Tipping.2'®

Before proceeding with the numerical results, it is useful
to compare eq II1.10 and IV.11 analytically. In (IIL10),
k- m—n -1 is the arithmetic mean of b and b’ and so,
in the first approximation, can be replaced by its geometric
mean (thereby neglecting terms second order in (m - n)).
The m! contains m — n factors more than does n!, and the
arithmetic average of these terms is (m + n + 1)/2. Re-
placing the geometric average by the arithmetic average,
m!/n! equals approximately [(m + n + 1)/2]™". The I'(k
- n) contains m — n more factors than I'(£ - m) and their
arithmetic average is k —!/o(m + n + 1). Again replacing
the m — n factors by their geometric average to the m—nth
power, we now have

~_( N )m—n 1
Paon = AN-k) a(m-n)

N=Y%n+m+1)

(Iv.11)

(Iv.12)

(IvV.14)

where
(IV.15)

(20) 1. E. Sazonov and N. 1. Zhirnov, Opt. Spectrosc., 34, 264 (1973).
{21) (a) R. H. Tipping, J. Mol. Spectrosc., 53, 402 (1974). (b) One
integrates the Fourier expression for g, by parts, uses a cosine addition
formula, and then uses eq 1 in Section 3.813 of I. 8. Gradshteyn and L

- M. Ryzhik, “Table of Integrals, Series and Products”, Academic Press,

New York, 1965, p 366.
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TABLE I: Comparison of Quantum Mechanical and
Semiclassical Spectral “Intensities’ (lu,,!*) for the

Morse Oscillator for HF& b
tran-
sition quantum¢ I[(n + (I(n) +
m-n int m]/2)d I(n)® I(m))/2’

0-+1 54x10? 654x 107 3,
0-2 61x10"* 6.1x 10¢ 7.
0-+3 1.7x 10°* 2.6x 10°% 3.3x 1077 53X 10°*
0-4 86x 107 15x 10°7 2,.2x 107 8.6 X 10°¢

% The “intensities”’, denoted by I in the columns for no-
tational brevity, are really lu,,,* or lg;/2I* and are in units
of A%, They are also the same as “integrated band inten-
sities”, as one sees by integrating a 5 function in (II. 2)
over a small w-interval centered about w = w,,. ° For
purposes of this comparison the dipole moment is written
asr - r, plus a constant. ¢ Equation III. 10. 9 Semiclas-
sical, Equations IV, 11 and IV. 12. € Unsymmetrized
semiclassical. /“Average semiclassical’’,

0x 102 4,7x 10°?
2x 10°* 6.9x 10

The classical expression can be simplified by recognizing,
after some manipulation, that :

(Iv.16)

1- (1 - PYY2 = Jo /(8x2uD)V2
2Ja Ja?
P = - 17
(8x%uD)V/?  8a%uD (v17)
and, thereby, on using (I11.4) and (IV.12)
a N \i1
- (ﬁ—_k) " (IV.18)

which is identical with the quantum mechanical result
(IV.14). The approximation made in (IV.14) was in the
replacement of geometric averages by arithmetic ones.
When one considers that the approximation made in (I1.8)
involves using an arithmetic mean of J’s, instead of using,
via ladder operator in the p of (IL5), a more geometric
method of calculating n — m transitions, this arithmetic
mean - geometric mean relationship between (II1.10) and
1V.11) is not surprising. ’

V. Comparison of Quantum Mechanical and
Semiclassical Spectra

(a) Comparison of Quantum Mechanical and Semi-
classical Spectra. We have chosen to apply the method
to HF using®? D = 5.716 eV, r, = 1.75 ay, and a = 1.22 a5},
where a, is the Bohr radius. The results are shown in
Table I. Also shown for comparison are some semiclassical
results one would have obtained had some approximation
other than J = (J,, + J,;)/2 been used in eq IL8 for the
semiclassical matrix element u,,,.

(b) Fundamentals and Overtones of OCS. In this sec-
tion we use the method of ref 3 to obtain from classical
trajectories the spectrum of OCS. The anharmonic force
field and the dipole moment function given for OCS in ref
23 and 24a, respectively, were employed. The Hamiltonian
used is given by eq 29-31b of ref 25 for a nonrotating

molecule. The dipole moment function taken from ref 24a"

was devised there by fitting the calculated |u,,,|%’s to ex-

(22) This is a Morge fit to an ab initio calculation used for infrared
multiphoton absorption by J. R. Stine and D. W. Noid, Opt. Commun.,
31, 161 (1979). The calculated o, and w,x, differ by 1% from the ex-
perimental values.

(23) A. Foord, J. G. Smith, and D. H. Whiffen, Mol. Phys., 29, 1685

(1975).

(24) () A. Foord and D. H. Whiifen, Mol. Phys., 26, 959 (1973). Due
to the differences in the scaling of coordinates in ref 24a and 25, the
constants taken from the former were rescaled for present purposes. (b)
J. Overend in “Infrared Spectroscopy and Molecular Structure”, M.
Davies, Ed., Elsevier, New York, 1963, p 3456. -

(25) L. C. Percival and N. Pomphrey, Mol. Phys., 35, 649 (1978).
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Figure 1. Vibrational spectrum of OCS in the classically quasiperiodic
regime, n state (0,0°,0). Noticeable peaks are for vy, 2v,, vy — ¥y,
20, v, + 2v,, vy, and v, + vy at 865.2, 1037.8, 1210.3, 1730.4,
1903.0, 2075.5, and 2940.7 cm™', respectively. The 4v, peak at
2075.6 cm' Is In Ferm! resonance with 5 and is hidden. The 4», and
vy peaks are resolved in the spectrum for the “(0,0°,'/,)" state, oc-
curring there at 2075.5 and 2084.0 cm™", respectively. The 4, peak
is one order of magnitude less [n intensity than the 2v, peak.

VW W ¢
0 1000 2000 3000 4000 3000 6000
7 {em™)
Figure 2. Vibrational spectrum of OCS in the classically chaotic re-
gime, at an energy corresponding to the state (3,4°,2).

perimental integrated band intensities (using equations
in ref 24b), employing a potential different from the
present one. Thus, the |u.,| given later in Table II need
not agree with those in ref 24a nor, thereby, with the data.

The initial conditions were chosen semiclassically by
using the zeroth-order Hamiltonian (and the initial coor-
dinates were ¢, = g5 = g3 = 0). Hamilton’s equations were
solved by using a standard program? for solving coupled
differential equations. The u(t) was calculated from the
trajectory. (The numbers of ¢ values used are given later
in footnotes b and ¢ of Table 1I.) A Fourier transfrom of

- the u(t) was next computed (NAG program CO6AAA) by

using a CRAY 1S. In Figures 1 and 2 power spectra for
the sum of coordinates g, + g, + g are plotted for the
(0,0°,0) quantum state (energy of 1746.9 cm™) and for an
energy corresponding to the (3,4°,2) quantum state (energy
of 10652.4 cm™), respectively. The former is in the clas-
sically quasiperiodic regime and the latter is in the clas-
sically chaotic regime. In the chaotic case the correlation
function associated with a single trajectory decays expo-
nentially with superimposed oscillations while in the

(26) M. K. Gordon, Sandia Laboratories Report, SAND76-0211. For
a discussion of the algorithm, see L. F. Shampine, and M. K. Gordon
“Computér Solution of Ordinary Differential Equations”, Freeman, San
Francisco, 1975.
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TABLE II: Relative “In‘tensities" (unn!?) of Overtones of OCS?®

The Journal of Physical Chemistry, Vol. 86, No. 12, 1982 2117

v, em™!
transition v, n - m I([n + m)/2)® I(n)¢ present? quantum¢ harmonic
v, 0-1 1.00° 1 861.4 859.0 875.6
0-2 9.4 x 1072 7 102 1715.4 1710.6 1751.2
0-3 2.0x 1073 2, 10-¢ 2561.4 2655.1 2626.8
04 1.1 x 10" 1 1077 3400.2 3395.2 3502.4
0-5 3.1x 10°¢ 4231.6 4378.0
vy 0-1 1.00¢ 1 2064.0 2062.0 2092.5
0~2 5.7x 10" 1 107 4104.7 4104.4 4185.0
0-+3 2.8x 10" 1 1077 6126.5 6277.5
04 7.6 x 10" 8124.6 8370.0
v+ vy 0-1¢ 1.00° 1. 2922.6 2918.1 2968.1
0- 2¢ 2.3x 10 4.7% 10°¢ 5769.9 5936.2

@ These “‘intensities” are really the Iu,,,1*'’s (¢f. footnote g of Table I) relative to the relevant 0 — 1 transition. The
I 1*'s for the 0 — 1 v, and the 0 — 1 v, + », bands are 0,034 times and 0.010 times of 0 — 1 v, band, respectively. The
absolute value of |;.4m,i_|‘2 for the 0 — 1 v, band is 4.0 x 10-* D% », is the symmetric stretch, v, is the asymmetric stretch,

and the bendisv,. T
indicated are those at zero vibrational angular momentum,

e bend does not contribute much to the particular dipole spectral function studied. All transitions
b Semiclassical. 32,768 points for u(t), taken from an effec-

tively continuous trajectory (absolute accuracy in integration routine of 107), sufficed to yield sufficient intensity for all
transitions in this column. The ¥’s and I's are for the (n + m)/2 trajectories. ¢ Unsymmetrical semiclassical. % Reference
23. ¢ Le, (0,0°0) -~ (1,0%1) and (0,0°,0) — (2,0°2), respectively.

quasiperiodic case there are only oscillations.?? The
spacing between the frequency points used to calculate
these spectra was, to two significant figures, 0.38 cm™, and
so the precision of the lines in the spectrum is approxi-
mately £0.4 cm™. The quasiperiodic and chaotic trajec-
tories in Table IT had integration times of about 25 ps and
could be back-integrated to seven places and to five places,
respectively.

In Table II the intensities of the overtones are given
relative to the relevant fundamental. The intensities of
some combination bands are also given. The sensitivity
of the results to different numbers of points (twice as many
or half as many) and to different spacings between the
spectral points (half as large or twice as large) was tested.
The results for any given frequency varied only about
20-30%, with change of number of points or their spacings,
when the amplitude exceeded the background by at least
10:1. The frequencies and the quantum mechanically
calculated frequencies?® are also given.

In these spectra, the height of a peak is proportional to
the time of a trajectory, and to calculate the absolute in-
tensity one divides by the trajectory time (cf. eq I1.9). The
result is then independent of the trajectory time. Longer
trajectories reduce the width at the base of the line® but
do not alter the ratio of height of | {(7u(t) exp(~iwt) dt|
divided by trajectory time T.

It is useful to compare the |u,,,|* in Table II with those
inferred® from experimental integrated band intensities.
The absolute value of |u,,,[? for the 0 — 1 », transition
calculated here is 4.0 X 107 D2, and experimentally is
4.6 X 103 D% The |ip,|®s of 0 — 1 », and v; + v, bands
are 0.034 and 0.010 times that of the 0 — 1 »; band
(footnote a of Table IT) as compared with the experimental
value*@ of 0.039 and 0.011, respectively. The values of the
0 — 2y, and 0 — 2 y5 bands, given by 0.094 and 0.00057
in Table II are, experimentally, 0.092 and 0.0039. Agree-
ment of the Ju,,|*s can be improved by using a newly fitted
dipole moment function. In separage calculations we have
found that the theoretical |u,,,|?’s are, particularly for the
overtones, quite sensitive to the assumed dipole moment
function and to the assumed anharmonic potential.

The calculation of the intensities of these overtones
quantum mechanically is a straightforward problem in the
one-dimensional case but becomes difficult in the several

(27) M. L. Koszykowski, D. W. Noid, M. Tabor, and R. A. Marcus, J.
Chem. Phys., 74, 2530 (1981).

dimensional case, if a variational calculation is used: a

large basis set is needed and high accuracy is required of
the wave function for computing the matrix elements.
EitHer approximate quantum calculations or a semiclas-
sical method such as the present one may offer a suitable
alternative.

Some useful aspects of the present method include its
ease of calculation—the extremely simple programming
and execution, no requirement of analytical evaluation of
matrix elements for rapid calculation, no breakdown when
Fermi resonance occurs, and ready applicability to larger
systems. (Indeed, it has been so applied.5®) The trajectory
time used in the present results suffices for frequencies
in the same range for larger molecules. Longer trajectory
times are needed if the frequencies are smaller. The small
deviations of the frequencies in Table II from the quantum
mechanical ones appear to be due to the approximation
inherent in using a single trajectory (an !/,(n + m) tra-
jectory) instead of using the energy difference of the n and
the m eigentrajectories.

The present method applies regardless of whether the
trajector is quasiperiodic or chaotic and, indeed, is one tool
for distinguishing the two.! Its quantum implications are
at present clear only in the quasiperiodic case, although
it can presumably be used ot obtain averaged quantum
results at high energies. Thus, a limitation of the method
for predicting an individual spectral line n — m and its
intensity is the restriction to conditions where the “state”
1/, (n + m) is classically quasiperiodic.

Previously, semiclassical calculations on OCS have been
made for its eigenvalues,? though not for the intensities;
a perturbative-iterative method was used. Good agreement
was found for the eigenvalues for which the method con-
verged. Another trajectory method for describing spectra
has been given by Heller et al.® This method is com-
plimentary to the present one in that it is more appropriate
for electronic spectra (Franck—Condon) factors rather than
for pure vibrational-rotational spectra.!
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