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Abstract

Consideration of current information on the dependence of the electron transfer rate on
the radial separation distance and on the reactants’ radial distribution function suggests for
adiabatic transfers a frequency factor closer to 1012 ~1 5~ than to 1012M~1s~1. One effect
is to raise the \ values estimated from self-exchange rate constants, and to extend thereby
the range of AG®’s in which the “inverted region” is masked by a diffusion-controlled reaction
rate.

Introduction

The bimolecular rate constant of an electron transfer rate constant in
solution is sometimes written as [1,2]

(1) kact = kCe—AG*/kT

where C is a constant! which is frequently taken to be ~1011M~1 s~1, the
collision frequency at unit molar concentration in the gas phase. xis a
factor which is unity for adiabatic electron transfers and less than unity
for nonadiabatic ones. AG* describes the free energy barrier to reaction.

It contains work terms for bringing the reactants together and contains
vibrational and solvent orientational terms, arising from a reorganization
which permits the electron transfer to occur.

In the present paper we examine the value of C more closely, taking into
account some estimates of the radial distribution function and of the de-
pendence of the electron transfer rate on the intervening separation dis-
tance r. We shall be more concerned with obtaining an order of magnitude
estimate of C rather thian with attempting to evaluate precisely each of the
factors that contribute to the bimolecular rate constant.

1 The constant C is the pZ in [1, eq. (19)] and in [2, eq. (31)].
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Theory

A detailed calculation of the electron transfer rate involves, among other
things, a knowledge of the motion along the reaction coordinate, regardless
of whether the reaction is electronically adiabatic or nonadiabatic [1].
Contributions to this motion can come from (i) intramolecular vibrations
in the reactants, including any in their coordination shells, (ii) electrically
polarized vibrations of the surrounding solvent molecules outside the
coordination shells, (iii) orientational motions of those solvent molecules,
and (iv) the translational motion of the approach of the two reactants
[1].

When motion (iv) does not contribute significantly to the reaction
coordinate,2 one can calculate the bimolecular rate constant in two steps:
one first calculates the reaction rate constant at fixed separation distance
r, a first-order rate constant k(r), and then suitably averages overallr. The
averaging is particularly straightforward when the rate of diffusion is fast.
Then the probability that the pair of reactants has a separation distance
between (r, r + dr) at any time equals essentially the equilibrium (no re-
action) probability, g(r) 4mr2dr. g(r) is the equilibrium radial distribution
function for the pair. One can then write the bimolecular reaction rate
constant R, as

(@) Boct = j; " g(r)4mr2k(r) dr

We have used the subscript “act” to denote “activation controlled rate
constant.” Later we return to the case where, instead, diffusion is a slow
step.

It is convenient to write k(r) in terms of an electronic transition proba-
bility factor x(r) (e.g., a velocity averaged Landau-Zener factor), a free
energy barrier AG’(r),3 and a mean frequency factor v associated with
motions (i)-(iii). AG’(r) depends on r mainly via contributions (ii) and
(iii) of the vibrational and orientational polarization of the solvent mole-
cules [1,2]. Contribution (i) to AG’(r) is independent of r [1,2] when the
dependence of intramolecular vibrations of each reactant on r is negligible.
We now have

3) E(r) = k(r)ve—AG'(V/kT

We proceed to estimate C from egs. (2) and (3) by considering individu-
ally g(r), «(r), v, and AG’(r). g(r) is a damped oscillating function of r.

2 That is, if ¢ denotes the reaction coordinate, g then has contributions mainly from the
coordinates in (i)-(iii). Only then is it meaningful, one can show, to speak of a first-order
rate constant k(r) for each fixed separation distance . In hard sphere collision theory only
(iv) contributes to the reaction coordinate. ’

3 This term was denoted by AF*(R) in [2, eq. (31)].



FREQUENCY FACTOR IN ELECTRON TRANSFER 867

For purposes of making an estimate of the terms in eq. (2) we write g(r) in
a suggestive form:

4) g(r) = go(r)e—w /AT

where go(r) is a largely geometric factor, being similar to the value it would
have for an uncharged and nonspecifically interacting pair. All of the
specific-interaction contributions to g(r) are contained in what might be
called the “work term” w(r). go(r) in a liquid rises sharply from a value
of about zero in the short range repulsive potential region to a maximum,
characteristic of the behavior of nearest neighbors, then falls to a value
somewhat below unity, and then, after more oscillation, reaches a limiting
value of unity at larger r [3].
We write the sum of w(r) and AG’(r) as AG*(r):

(5) AG*(r) =w(@) + AG'(r)

The factor v in eq. (3) is in units of s~1 and is a mean of the frequencies
of each of the motions (i)-(iii), each weighted by its contribution (one can
show?) to AG’. For example, if a coordinate does not contribute to AG’,
it does not contribute to v. Typical frequencies for (i), (ii), and (iii) are ~400
cm™! (for metal ligand bonds), ~200 cm™1 (for the solvent water), and ~1
cm™! (again for water) [7]. The contributions of (ii) and (iii) to AG* are
estimated to be roughly equal [7], so that when weighted (iii) contributes
negligibly to v in the case of water as the solvent. The relative contribution
of (i) and (ii) will vary from system to system, and we shall for concreteness
select a mean v of 300 cm~!, which is about 1013 s~1,

Several rather rough estimates have been made for the dependence of
x on r, which in each case has an exponential dependence onr. We can then
write

(6) k(r) = kge =2

where kg is the value of k(r) at r = ¢, and ¢ is the value of r where go(r) has
its maximum. If kg is about unity, the reaction is usually termed adiabatic.
When there are no intervening molecules between the two reactants, a has
been estimated to be 2.6 A~1 [8]. When there are intervening molecules,

4 See, for example, (4, chap. 3, eqs. (66) and (79)]. The reaction coordinate, if one uses a
Fourier coordinate description of the solvent polarization [5] and a normal coordinate treat-
ment of all other vibrations, is 2;k;Q;a; (when k; is taken to be the same for reactants and
products), a; is equilibrium displacement of the ith coordinate due to reaction. k;a; is seen
to be the a,; in eq. (66), more precisely the «y; in eq. (79). We obtained the above form for
the reaction coordinate by setting the potential energy of the reactants equal to that of the
products plus a constant. The latter constant vanishes at the transition state. Different
values of the latter constant generate a family of parallel hypersurfaces, on each of which the
reaction coordinate has some constant value. This definition of a reaction coordinate is similar
to that in the brief discussion involving the coordinates ¢ and v following [6, eq. (A2)].
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a has been estimated to be about 1.4 A-1[9). [Elsewhere, a more precise
formula than (6) will be used, one which joins a nonadiabatic equation for
k(r) with an adiabatic equation at the r where both are equal.]

In calculating the integral over r in eq. (2), we consider these cases where
there is not and where there is intervening material between the reac-
tants.

The function go(r) falls from its maximum (at r = ¢) of between 2 and
3 to a value of about unity in a distance of about one half a molecular di-
ameter or perhaps somewhat less.5 If that diameter is about 6 A, then
exp(—ar) is a more rapidly varying function of r in the vicinity of r = & (it
falls to 1/e of its value in 0.4 A in the case of no intervening material).
Taking AG*(r) to be relatively slowly varying also, the integral in eq. (2)
can be evaluated approximately by taking go(r) = 0 for r < &, replacing r?2,
g(r), and AG*(r) by their values at r = o, and integrating fromr = ¢ to .
One obtains

(7) Eact = go(0)e—2G*0VkT 4 g2pkp/at

Using the previous estimate of » ~ 101351 g4() of between 2 and 3, and
o ~ 2.6 A~1, one obtains for a pair of reactants, each of radius 3 A,

(8) Ract ~ 1012kge ~AG*()/kTM-1g=1 (g =g A)

For larger reactants the numerical factor in eq. (8) is of course larger than
10!2, since it is proportional to 62 For the case of an electronically adiabatic
reaction kg ~ 1.

When there is intervening material, the most probable r is somewhat
greater than ¢, the mean go(r) is less than g¢(g), @ ~1.4 A~ and so the
constant multiplying exp(—AG*/kT) in eq. (8) is still of the same order of
magnitude. Thus a value of 1012M ~1 s~1 appears to be a reasonable choice.
For more specific assumptions more detailed estimates of C in eq. (1) can
be made. '

It is useful in compare® this value of 1012M ! s~1 for C with the gas phase
hard sphere collision frequency Z = (8wkT/u)1/242, for molecules of reduced
mass 4 ~ 50 and radius 3 A. The latter equals 2 X 1012M-1s~! at 300 K.
Physically the reason why the value of C is higher than Z (some five times
higher in the present estimate) is twofold. Collisions of hard spheres occur
only on contact, while electron transfer can occur at various r which are
larger than the “contact distance” 0. Second the go(o) is larger than unity,”

5 For example, [3b, Fig. 6]. Strictly speaking, we should use instead a go(r) for a pair of
solute molecules. When these solute molecules are much larger than the solvent’s, go(o) =
1.

6 See footnote 1.

7 See footnote 5.
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the “dilute-gas” hard sphere value, although it can be close to unity if the
solute molecules are appreciably larger than those of the solvent.

Thus far we have assumed diffusion to be rapid. If we use, in the first
approximation, the estimate in eq. (7) for kact, the observed rate constant
is given in the steady state by eq. (9) for the case of no back reaction
[10,11]:

1 1 .1
Robs Ract Rdift

9)

where kgt is the diffusion-controlled rate constant. Its value depends on
the charges of the reactants, being of the order of 101°M~1 s~! in water for
uncharged species. When Egir > Racts Bobs €quals kact, and equals Rgjr
when kgt > Rdifr-

In the so-called normal region, where the bimolecular rate constant in-
creases with increasingly negative standard free energy of reaction AG°®
[2,6], the reorganizational term in AG*(r) favors small r.8 (The work term
w(r) in AG*(r) favors small or large r, depending upon its sign.) The closer
the reactants are together, the less the distant solvent molecules experience
a change of potential energy, via a change in the local electric field, when
the electron transfers, and so the less the need for solvent reorganization
to occur, and so the smaller is AG*(r).

In the so-called inverted region [6], which should occur at very negative
AG®, the bimolecular reaction rate constant decreases, instead, with in-
creasingly negative AG® due to the difficulty in this region of intersection
of the potential energy curves of the reactants with that of the products.
A larger r produces a larger solvent reorganizational term parameter Ao (in
the notation of [12]), causes thereby an increased lateral displacement of
the two surfaces, and permits them to intersect more easily in this highly
exothermic region. Thereby in the “inverted” region an increased r ac-
tually causes a decrease in AG* [13]. The “inversion” will be less evident
when this decrease in AG* is large enough.

Some further words about the inversion region are in order. Inaquan-
tum mechanical treatment of the reorganizational motion, e.g., via the
evaluation of Franck-Condon factors, only the intermolecular vibrations
need to be treated quantum mechanically, since the frequency of the other
coordinates is relatively low [7]. Moreover, using typical metal-ligand
frequencies the quantum correction to the classically calculated reaction
rate was found to be typically small in the normal region (from 20% to a
factor of 4 in a recent calculation [7]). The nuclear tunneling was more
noticeable in the inverted region 7], because that tunneling tended to de-
crease the tendency of the rate to decrease with increasing —AG° at very
negative AG®. This nuclear tunneling does not, however, cause the effect

8 See the 1/R in the Ao of [12, eq. (A3)] or in [2, eq. (89)].
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to disappear (see [13] and, e.g., [14]). In the field of radiationless transitions
this effect of decreased rate with increased exothermicity is again very well
known [15], and is termed there the “energy gap” law. _

Some experimental evidence for the “inverted” effect has been offered
[16,17]. Indeed, the preferential formation in other highly exothermic
reactions of electronically excited states of products, instead of the more
exothermically formed ground state products, would be a further mani-
festation of this effect.

The calculated inverted effect is less when one takes into account the
higher estimate of the frequency factor (102 versus 10!1M~1s~1) and the
role discussed above of the dependence on r of the solvent reorganizational
contribution to the A in AG*(r). The inverted effect is masked to some
extent by the presence of kgj¢ in eq. (9).

For many reactions which have been studied no evidence of the inversion
has been obtained, e.g., [18-20]. In some cases alternate pathways may
exist, hydrogen atom transfer, for example, or formation of electronically
excited products. In others, where the rate has been inferred only from
the quenching of fluorescence of one of the reactants, quenching may occur
via an exciplex formation [21,22], rather than via electron transfer, when
exciplex formation is possible. In others the calculated inverted effect may
be less due to the two factors cited above. In still others, anharmonic effects
can contribute to decreasing (or increasing) the rate, and high-frequency
modes which play less of a role in the normal region may also contribute
importantly to accepting the excess energy in the “inverted” region. The
latter would reduce the tendency for ks to decrease with increasingly
negative AG® in the very negative AG® region.

There has been some tendency [23] to use an equation which was derived
[24] originally for atom transfers.® This equation displays no inversion.
However, except in the actual case of atom transfers, the application of such
an equation must be regarded as purely empirical, at present, and to have
no theoretical advantage over the frankly empirical Rehm-Weller equation
[18].

As an example of the effect of using a value for C in eq. (1) of 1012M -1
s~1instead of 1011M~15-1 we consider the series of highly exothermic re-
actions [17]

(10) *RuL3* + ML§* — RuL}* + ML#*

The asterisk denotes an electronically excited reactant, L and L are various
permutations of the ligands bpy and mebpy, and M denotes Cr, Os, and
Ru.

% An analogous equation is given in [25), and it has been pointed out [26, 27) that it is the
same as that in [24].
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Figure 1. Experimental (open circles) and calculated rate constants for reaction
(9) versus AG®°. Dashed line—classical result; solid line—quantum mechanical
result; solid circles—quantum mechanical calculation to form an electronically

excited product; dashed-dotted line—classical result to form an electronically ex-
cited product. Numerical constants used are given in [13], together with an iden-

tification of the individual reactants in the plot. The units of k are M~1g~1,

We use a C of 1012 instead of the 10! used in [13], and use a A¢g which is

greater than that used!® in [13] by an amount A)g,
1

~AN/RT = =

¢ 10

(11)

50 as to give the same self-exchange rate constants. Figure'l is obtained
instead of [13, Fig. 3]. One sees, on comparison with [13, Fig. 3], that the
results are now closer to the observed values in the highly exothermic re-

To study the effect of the dependence of AG*(r) on r in this inverted

zion.
region, evaluation of the integral in eq. (2) will be made in a later paper.
The effects described herein may also be present in electrode reactions,

10 Denoted by Aoyt in [13].
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as will be discussed in a future paper. Very rapid reactions in solution or
at electrodes (low AG*) frequently involve aromatic organic molecules [28].
The calculation of AG*p, from the rate constant [28], when AG* ¢, is small,
is sensitive to the value of C.
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