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Various processes such as electron transfer reactions, redox reactions at electrodes, and electronic excita-
tion of dissolved ions may proceed by way of intermediate states whose electrical polarization is not in equi-
librium with the field arising from the charges present. The usual expressions for the electrostatic free energy
and for the differential equation satisfied by the potential assume that the polarization and the field are in
equilibrium. Accordingly, these equations are of but limited applicability to these processes. In the present
paper equations are derived for various properties of systems having such nonequilibrium electrostatic
configurations. These properties include the free energy, energy, and entropy of the nonequilibrium system,
and the spacial dependence of the electrostatic potential. The free energy, for example, will be used to
calculate the probability of formation of nonequilibrium states in certain problems of physical interest.

INTRODUCTION

N recent years processes such as electron transfer

reactions, redox reactions at electrodes, and elec-
tronic excitation of ions in the solid state and in solu-
tion have been the subject of considerable interest.
These processes appear to involve intermediate states
having nonequilibrium electrostatic configurations in
the sense that the electrical polarization may not be
that which would be predicted in the usual manner
from the known charge distribution. For example,
when a dissolved ion absorbs light, the electron is
raised to an excited state almost instantaneously. A
considerably longer time is required for the solvent’s
dipoles to readjust themselves to this new configuration.
Thus, for some brief time after the absorption act, the
electrical polarization of the system will not be in
equilibrium with the charge distribution. This concept
served! as a basis of a theory of the absorption spectrum
of various halide ions in solution. In a different fashion,
related considerations may apply to the other processes
mentioned.

The results obtained in the present paper for the free
energy and for other properties will later be applied
to develop a quantitative theory of certain oxidation-
reduction reactions. A knowledge of the free energy
of nonequilibrium states is of use in calculating the
probability of their formation, as intermediates, in
certain cases. The usual expressions given for the elec-
trostatic free energy and energy cannot be used for
this purpose. Similarly Poisson’s equation for the elec-
trostatic potential is not applicable in its commonly
written form. Each of these equations assumed in their
derivation that the electrical polarization at each point
in the system was in equilibrium with the electric field
there.

In the present paper, equations for these properties
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of nonequilibrium states are derived. However, the
treatment of systems containing electrodes will be
reserved for a later communication. Such systems
involve certain additional complexities arising from the
presence of charges induced in the electrodes by the
medium itself,

THEORETICAL

The electrical field in an equilibrium system is
generally described in terms of two vectors, the electric
field strength E and the dielectric displacement. The
first is the negative gradient of the electrostatic poten-
tial and the second is defined in terms of the charge
distribution, and is expressible in terms of E by an
equation involving the dielectric constant of the me-
dium. In contrast, it is the state of polarization of the
medium rather than the dielectric constant itself which
defines the behavior of a nonequilibrium state. Ac-
cordingly, the dielectric displacement vector is not
useful in describing such states and will not be used
here. However, the electrostatic potential and its nega-
tive gradient, E, retain their significance and usefulness.

Three vectors instead of two will be used to describe
a nonequilibrium state, the additional vector being
required since these states have an extra degree of
freedom (the polarization of the medium is no longer
that dictated by the local value of the electric field
strength). The three vectors chosen for this purpose
will be the electric field strength, the polarization, and
a quantity, E,, the electric field strength which the
charge distribution would exert if it were in a vacuum
rather than in a polarized medium [see Eq. (19)].
We proceed now to define the state of polarization of a
nonequilibrium state more fully.

U- and E-Type Polarization

In general the electrical polarization is considered to
be the sum of electronic, atomic, and orientation con-
tributions. The time required for each of these to adjust
itself to some rapid change in the charge distribution is
the order of 105, 10~%, and 10~ sec, respectively.
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Thus, in a very brief instant after a change in the
charge distribution only the electronic polarization

will adjust itself to the change in charges, while the’

other contributions will be those characteristic of the
original charge distribution. A nonequilibrium situa-
tion will therefore temporarily prevail. Various other
physical situations, such as certain types of fluctuations
of the electrical polarization of a medium, can be
imagined, in which one or more contributions to the
polarization are in equilibrium with the charge distribu-
tion while the remaining contributions are not. These
fluctuations will be discussed in greater detail in a paper
on the theory of electron transfer reactions.

In the present paper the electrostatic free energy
will be calculated for those nonequilibrium states whose
polarization consists of two types, which will be termed
the U-type and the E-type:

(i) The U-type polarization is not in equilibrium
with the given charge distribution and is quite inde-
pendent of it. The contribution of this type to the total
electrical polarization at a point in the system will be
denoted by a vector, P,(r), defining the magnitude and
direction of this polarization. The coordinates of the
point are designated by the vector r drawn from any
arbitrary origin to the point.

(ii) The E-type polarization, denoted by P,(r), is in
equilibrium with the electric field arising from the
charge distribution and from the U-type polarization.
That is, the polarization P,(r) can be calculated from
the electric field strength at the point r in the usual way.

The total polarization P(r) at the point r is the vector
sum of these.

P(r)=Pu(r)+P.(2). (1)

In most nonequilibrium systems of physical interest,
the E-type polarization will be electronic and the
U-type, atomic and orientation polarization. However,
the following treatment is quite general in this respect,
and is applicable regardless of which contributions
make up each type of polarization.

The Charging Process

The free energy of a nonequilibrium state of the
system can be calculated if a reversible path for reaching
for reaching that state can be found. The electrostatic

. free energy is generally defined as the reversible work
done along this path. It is the difference in the electro-
static free energy of two states which is the property
used in problems of physical interest, regardless of
whether these states are equilibrium or nonequilibrium
in nature. For example, the difference in free energy
arising from electrostatic interactions, between any
two states which do not differ in the number of each
species of charged particles present, is given by the
difference in work done in charging up.each of the states.
Accordingly, in any state the contribution to the free

energy arising from the electrostatic interaction of
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charges with each other and with the polarized medium
may be calculated by subtracting from the electro-
static free energy, F, the work, Wis,, required to charge
up the state in a vacuum when the charges are infinitely
distant from each other.

The reversible charging process employed to create
the type of nonequilibrium state described earlier will
be performed in two stages:

(i) In the first stage the final value of the U-type
polarization, P,°(r) say, will be produced in a reversible
manner by the formation of some appropriate charge
distribution. Meanwhile the E-type polarization as-
sumes some value, P say.

* (ii) In the second stage the polarization P,(r) will be
held fixed but the charge distribution will be reversibly
altered until the final charge distribution is obtained.
During this process the E-type polarization changes
from PS(r) to some function, P,(r) say, whose value
will be dictated by the charge distribution and by
P.(r).

In this manner a system has been produced having
the polarization, P.(r)+P.(x), where P,(r) is not,
but P,(r) is, in equilibrium with the field.

The reversible work performed in this charging
process can be calculated if the potential ¢/(r) is known
during each stage at each point of the system. Accord-
ingly, an expression for ¢ (r) will first be given.

Equation for the Electrostatic Potential

A polarized volume element 4V, having a polariza-
tion P, exerts the same potential? as does a dipole of
moment PdV. This is true regardless of whether the
polarization has a value dictated by the local electric
field, or whether it is quite independent of it. That is,
this equivalence of polarization and dipole moment is
applicable regardless of whether or not the system is an
equilibriumn one electrostatically, in the sense defined
earlier. -

The potential of a system consisting of a collection of
charges and of dipoles can be written as the sum of con-
tributions from each of these. A system consisting of
charges and polarized volume elements can, therefore,
be treated in a similar manner. Consequently, an expres-
sion for the electrostatic potential which treats a system
in this way can be used for the present nonequilibrium
case. Such an expression for the potential®* ¢(r') at a
point r’ of the system is given by Eq. (2).

~ (pDdV  ro(as
"(')"fh—ﬂﬁflr—r'l

P v———d1 vV, (2
+f ®- v

tSee G. Joos, Theoretical Physics (Blackie and Son, Ltd.,
London, 1934), p. 267. S .
. ¥M. Mason and W. Weaver, The Eleciromagnetic Field (Uni-
versity of Chicago Press, Chicago, 1929), p. 67; compare refer-

ence 2,
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where p(r) is the charge density per unit volume at the
point r of the system and ¢(r) is the charge density per
unit area at a surface element dS of an interface of the
system. The surface integral is over all interfaces in
the system. The polarization P is sum of the E- and
U-types and is given by Eq. (1). The subscript r of the
gradient operator V, indicates that the differentiation
involved in V is with respect to the coordinates of r,
and not of r’. In later expressions where this subscript
is omitted it will nevertheless be tacitly implied.

The Electrostatic Free Energy

Equation (2) for the potential will now be applied
to calculate the work done in each step of the two-stage
charging process.

(a) Stage I

The U-type polarization P,°(r) can be induced by
charging up the system reversibly, such that the end
of this stage of the charging process the charge density
is p°(r) and surface charge density is ¢*(x), say. Expres-
sions are given later for determining the p° and o°
needed to produce any specified polarization function,
P.L(xx).

When, during the course of this charging process,
the charges have a fraction A of their final charge at the
end of this stage, the corresponding charge distributions
will be denoted by p*(r) and ¢*(r). That is,

=2 Ac?. 3)

Similarly ¢*(r) and ¢°(r) will denote the potential
at the stage A and at the end of Stage I of this process,
respectively. If no electrical saturation occurs, that is
if at equilibrium each type of polarization is propor-
tional to the local value of the electric field strength,
then it can readily be shown that

Y=\ @

To establish this equation the equilibrium relation-
ships between P,, P, and E, which prevail during Stage
I, will first be defined. If E* denotes the electric field
strength, — V¥, and if @, and e, denote the polarizabili-
ties associated with each type of polarization, then?

Pr=aB Pl=c,EM (5)

and o*=

The same relation between P, and E will prevail in
Stage II, but not that between P, and E.

It follows from Egs. (1), (2), (3), and (5) that the
potential y* is given by Eq. (6).

4 Electrical saturation will be assumed to be absent, in the
interest of simplicity. However, the two-stage charging process
used here could presumably be applied to treat this more com-
plicated case. A modificalion which treals one system having local
regions of saturated dielectric is described in ¢ forthcoming paper on
the theory of election iransfer reactions.
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Ir—r'll [r—r1] -

f (e W T——av. (6)
lr—r|

Dividing by A we have
gl/’ f pdV f %S
|r—r'|
‘P).
—f(a,-!—au)V(-):—)-V

At the end of Stage I of the process, A=1 and y=y~.
Thus, when A equals 1, Eq. (7) becomes

p°dV 'f %S
l—r| J |—r|

- f (aeta,) VWOV

I'—l'

1r—r’|dV' )

1
av. (8)
|r—r']

Now the electrostatic potential is a unique® function
of position. However, both y*/\ and y® are seen from
Egs. (7) and (8) to be that potential which would be
produced by the charge distribution, p* and ¢* in a
system whose polarizability in the volume element dV
is (aetay). According to the uniqueness theorem,®
¥*/A and ¢° must be equal. Equation (4) has therefore
been established.

The work done in changing the charge density of a
volume element dV by an amount dp* is y*dp*dV, and
in changing the surface charge density of an area ele-
ment 5 by an amount do* is y*do*dS. The total work W
done in either stage of the two-stage charging process
may be found by integrating this over the entire system
and over the change in the charges in that stage. Ac-
cordingly, W is given by Eq. (9).

dp* do
W= f f |[/‘—(D\dV+f f Y ——-d\dS. %)
rYv  dA rJs  d\

Introducing into this equation, Eqs. (4) and (3) for
¥, p*, and ¢, and integrating it from A=0 to A=1,
we obtain for the work done W in the first stage of the
charging process:

=1 f WVdV+3 f oS, (10)

(b) Stage II

In this stage the charge distribution is changed from
its value at the end of Stage I, p° and ¢°, to the value at
the end of Stage ITI, which will be denoted by p(r) and

§ Compare reference 3, pp. 100, 146.
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o(r), say. At any stage A of this half of the charging
process, the charge distribution will be designated as
p*(r) and ¢*(r), given by Eq. (11).

p*=p"+\(p~p?),

o*=g%-A(a—d"). (1)

The fraction X increases from 0 to 1 during Stage II.
The U-type polarization is held fixed at P.°(r) through-
out Stage II. The E-type polarization P>*(r) at the
stage X is related to the electric field strength — W,
as in Eq. (3).

Introducing these quantities into Eq. (2) for ¢ we
obtain as the value of ¥ during Stage II

0 0 a® g )
] e

1
+ f (Pd—ae¥) - V———aV. (12)
7]

This potential y* can be shown to depend linearly on
A in the following way: We subtract Eq. (8) from Eq.
(12) and observe that P.? equals —a,V¢’. Dividing the
resulting equation by X we obtain

Y=y p—p° tr—cr"
= V+f|

A [r—r'|
‘I,)‘_‘lﬂ 1 .
a5 )-v av. (13)
A Je—r'|
" Setting A=1 in this equation it follows that

p—p° o—a°
y—ph= f L v+ is
- V=1

|r—r'|

1
aV(g—y)-v—dV. (14)
[r—r|

It is seen from these equations that both (Y*—y9)/A
and (y—y) are the potential which would be produced
by the charge distribution, (p—4") and (¢—¢?), in a
system whose polarizability in the volume element dV
is &o. According to the uniqueness theorem these poten-
tials are therefore equal.

W =)A=y —¢". (15)

Introducing Egs. (11) and (15) into Eq. (9), inte-
grating the resulting equation from A=0 to A=1, we
obtain for the work done during Stage II, W,

Wii=} f G+ o=V

+ [ @HPe-nas. 9

The electrostatic free energy F is the total work done
in the over-all charging process and is given by Eq. (17).

F=W+Wir
-1 f (Vo-FVo—y®)dV 43 f (Yo-FPo—ye9)dS. (17)

This expression for F can be converted into a more
useful form, giving F in terms of the properties of the
final state of the system only, namely in terms of
P.%(r), E(r) and the field strength E.(r) directly due
to the charges. To do this we use an equation established
in Appendix I

[vwiav+ [wis
) =.— f (Pyi+Pj—Ej/4x)-EJdV, (18)

where ¢ denotes either the superscript ° or no super-
script, and j has a similar significance. The dot in the
integrand indicates the dot product of the vectors.
The quantity —E.7 is the gradient of the potential
directly resulting from the charges that is, it is the
electric field strength which the charges would exert if
they were in a vacuum rather than in a polarized
medium: :

Ec"(r)-—'—V'[f el ai(r)ds, (19)

le—r| J |r-r|

where the integration is, as indicated by dV’ and 45,
over the coordinates of 1’ and not of r. From Egs. (17)
and (18) we obtain for F

A Ec Ec
r=i

-(E,—E,°)—P°-E,]dv, (20)

where P° and P are given by
P°=P. %+ E°, (21)
P=P.,+c.E. (22)

Inasmuch as E.° and E° are not characteristic of the
final state of the system, but rather of the state of the
system at the end of the first half of the charging
process, it is desirable that they be eliminated from
Eq (20). To do this the following equation, established
in Appendix IT, will be used.

f P (B—E)dV = f P-(B—E9dV.  (23)

\-N-
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Rearranging the terms of this equation we obtain

f (P-ES—P.E)dV
=f(P-E°—P°-E)dV
- f ((Po+a.E)-E'— (Pud4aE)-E}dv

- f P.0- (B~ E)dV. (24)

Remembering that E°=P.%q,, the desired equation
for F can be obtained from Eqs. (20) and (24):

F=§I[EC;EC—P-E,+P.,-(E—E) ,dV, (25)

4 Qy
where P is given by Eq. (22) and the superscript ° has
been dropped from P,°.

Thus, the electrostatic free energy of a nonequilib-
rium state having U-type and E-type polarization is
given by the preceding equation. The expression is seen
to depend on the known P,(r) and E.(r), and also
upon E(r). The vector point function E.(r) is calcu-
lated from the known charge distribution according to
Eq. (19). The electrostatic potential, and hence its
negative gradient E, may be calculated with the aid of
Eq. (2). To-do this it is convenient to convert this
integral equation for ¢ into a differential equation, and
to specify the boundary conditions. This is done in a
later section.

In each problem of physical interest the U-type
polarization function P, (r) must be computed by some
method in order to calculate the electrostatic free energy
according to Eq. (25). The method of computing P
will generally depend in part upon the nature of the
particular problem. In some cases, for example, it will
be shown that P, will appear as a solution of an equa-
tion arising from the maximization of the free energy
expression subject to certain restraints. This subject
will be discussed in detail in later papers which will
apply Eq. (25) to various physical and chemical
problems.

A more intuitive but less rigorous derivation of Eq.
(25) for the electrostatic free energy is given in Ap-
pendix IV.

The derivation of Eq. (25) for the electrostatic free
energy assumes that all contributions to the U-type
polarization were originally in equilibrium with the
same charge distribution. A less common case would
be one where one contribution to the U-type polariza-
tion was originally in equilibrium with one charge
distribution, while the other contribution (if any) to
the U-type polarization was originally in equilibrium
with a different distribution. This problem can readily
be handled, a three-stage charging process being used
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instead of a two-stage process, but appears to be of less
physical interest and will not be treated here.

In the application of Eq. (25) it is useful to express
the polarizabilities, @, and a,, in terms of dielectric
constants., The polarization of an egquilibrium system
satisfies? Eq. (26).

D=E+4xP, (26)
where D, the dielectric displacement, equals DE, D

being the dielectric constant. It follows from this that
P and E are related according to Eq. (27).

47P=(D—1)E. 27
Since P=cE, it follows that
4ra=D-1, (28)

When the electric field is either steady or slowly vary-
ing, then D becomes the static dielectric constant, D,.
Further, according to Eq. (5), under these conditions

P=P.4+P.=(e.ta)E
so that « of Eq. (28) becomes a.+a,. Thus we have
dr(ey+a)=D,—1. (28a)

If, instead, an electric field alternates with a very
high frequency, only the electronic polarization can
follow the electric field. In that case, D of Eq. (28)
becomes D.,, the optical dielectric constant, i.e., the
square of the refractive index in the visible region of the
spectrum, say. Further, P=P.=a.E then, so that
of Eq. (28) becomes a,. Thus we have

4rere=Dop—1. (29)

On the other hand, when the E-type polarization is
electronic plus atomic then D,, should be replaced by
D, the optical dielectric constant in the infrared region
of the spectrum, and we obtain

4rag=D;=1.1 (30)

In the case of water, we have® at 25°C D,=78.5,
Do,=1.8, and D;,=35.5.

( 6 égllie, Hasted, and Ritson, Proc. Phys. Soc. (London) 60, 145
1948).

t Note added in proof —The charge distribution at the end of
Stage I of the charging process, denoted by g° and &°, is a fictitious
distribution used to produce the specified U-type polarization,
P.(r). By contrast, the charge distribution at the end of Stage II
is the actual distribution of charges on the ions of the system.
The complete charging process is performed at fixed configuration
of these ions, though they may be uncharged in Stage I and
charged up in Stage IT. Thus the reversible work given by Eqg.
(25) was also performed at fixed configuration of these ions.
There is therefore an additional free energy term which should
be considered, namely the entropy term associated with the pre-
liminary formation of this given uncharged configuration of the
jons from a random configuration. Let e;, ¢:(r), and ¢;° denote the
charge, the concentration, and the average concentration of ions
of the ith species which make up the continuous volume charge
distribution p(r); »(r) equals Zieici(r). Then, this additional
entropy term associated with the formation of the given con-
figuration from a random one is the well-known excess entropy
of mixing and is given by Eq. (25a):

—kZ; | ci(lnc®—Inc®)dV. (25a)

The total electrostatic contribution to the free energy includes
this term and F given by Eq. (25). It is the sum of these two
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Energy and Entropy of Nonequilibrium Systems

The form of the expression for the electrostatic energy
and entropy of these nonequilibrium states will depend
upon the nature of the U-type and E-type polarization.
In most problems of physical interest the E-type polar-
ization will be electronic and the U-type, atomic plus
orientation. In the interest of brevity, the energy and
entropy expressions will be derived for this case alone.
Other cases offer no difficulty, however. It may again
be remarked that it is the difference in electrostatic
energy and entropy of two states which is of physical
interest.

When the E-type polarization is electronic, the
U-type is atomic plus orientation polarization. There-
fore, no rearrangement of atoms occurs during Stage II
of the charging process since P, is held fixed. Since the
process is performed at constant temperature, no change
in the momentum distribution of the nuclei occurs
either. There will therefore be no entropy change in
Stage II. The corresponding energy change is therefore
equal to the free energy change, Wiy, and is given by
Eq. (16).

In Stage I, the system is of the conventional type
electrostatically, and the electrostatic energy and
entropy can be calculated in the usual way. Since Wr
is the electrostatic free energy of an equilibrium system
at the end of Stage I, the usual thermodynamic formulas
can be applied, giving the energy and entropy in terms
of derivatives of the free energy with respect to tem-
perature. Accordingly, the electrostatic energy U; and
entropy St at the end of Stage I are given by Eq. (31).

W /T oW s
U,=( ) ,s,=—(——) .G
o1/T J e oT /e

where E.? is held constant in the differentiation.

It is concluded therefore that the electrostatic energy
U and entropy S are given by Egs. (32) and (33),
respectively.

oW y/T oW
U=( ) +Wi=F— T(——) (32)
81/T JE 8T / Ep

oW
(),
aT /e

where F is given by Eq. (25), W is given by Eq. (10).

terms, rather than F alone, which is the electrostatic free energy,
F,, say

(33)

Fo=F+kTZ; f ci(Inei—Inc?)dV, (25b)

where F is given by Eq. (25). In a very dilute solution ¢; equals c;,
and F, equals F.

Similarly the total electrostatic contribution to the entropy is
the sum of the term in Eq. (25a) and of S given by Eq. (33) in
the following section. In Eq. (32a) therefore the energy remains
unaffected. )

The variation process performed in the subsequent section
“The 'Equilibrium State” is performed at a given ionic configura-
tion.

R. A. MARCUS

With the aid of Eq. (18) this equation for Wy can be
converted to Eq. (34).

Wi=—1} f (Puta B —ES/4n)-ESV.  (3)

In calculating U and S from Egs. (32) and (33), a
knowledge of E.? is necessary. If the charge distribution
with which P, was in equilibrium is given, then E.° can
be determined from Eq. (19). Otherwise it can be calcu-
lated from the known P,(r) and the known a, of each
volume element. To do this the intensity of the field
E%(r) with which P, would be in equilibrium is calcu-
lated from the relation E°=P,/a.. Next, the volume
charge density p° and the surface charge density o° are
calculated” from this known E°(r). The quantity E.°
can then be determined from p° and ¢° using Eq. (19).

Of particular interest in the application of these
expressions to certain problems is the calculation of the
difference in energy of two states, which differ in their
charge distributions but have the same P,(r), the same
polarizabilities, and the same physical boundaries. This
energy difference will generally consist of two contribu-
tions: (1) a difference in internal electronic energy of
the charged (ionic) particles and (2) a difference in the
electrostatic energy of interaction of the charged parti-
cles with each other and with the medium. It is the
second difference which will be calculated here. This
difference is the difference in the value of U, in the two
states, where U is the electrostatic energy of each state,
as defined in Eq. (32), relative to the value it would have
if the charged particles of that state were isolated and
in a vacuum. If Wi, is the work required to charge up
the state when it consists of charged particles in a
vacuum, then Wi, is temperature independent and the
electrostatic energy of that state, (dWiso/T)/(81/T)
simply equals W, itself. Thus the quantity U, is given,
according to Eq. (32), by the relation

oW,
Uf= U- W{go‘_—‘F'_ T( — ) _Wigo- (323,)
N\ 9T /e

In charging up systems to produce each of the two
polarized states by the charging process used here, it is
seen that W; will be the same in each case, since Wr
depends only on P.(r). Accordingly, the difference in
the (relative) electrostatic energy U, of two states
having the same P,(r) but different charge distribu-
tions is given by Eq. (35).

AU, =AF— AW iso.
The Equilibrium State -

It is of interest to verify that P.(r) assumes its equi-
librium value, a,E(r), when the free energy expression

(35)

? The quantities ¢ ¢°, E°, and P, are in “electrostatic equi-
librium’" with each other, so that the usual expressions for p° and
o can be used. We have, for example, p°=V-E/4x D= — V3*/4= D.
Similarly, o® can be calculated from the surface divergence of E°
at the interface. Compare reference 2, p. 254.



FREE ENERGY, NONEQUILIBRIUM POLARIZATION

is minimized with respect to the vector point function
P.(r). A method which is somewhat similar to that
described below will later be used in a theory of electron
transfer reactions to determine the most probable con-
figuration of various intermediate states.

Using Eq. (25), the variation 6F is first calculated and
set equal to zero. The variation, performed at fixed
charge distribution, i.e., at 8E.=0, is given by

2P,
5F=%f(—5P~Ec+ -8P.,—P..-5E—5Pu-E)dV.

Qy

Introducing the value of 6P obtained from the variation
of Eq. (1),

8P (r)=68P.(r)+8P(r)=6P.+aE, (36)

we have
2P,
8F=%f~(*—Ec_E ‘6Pu
Qy
—(a,Ec+P,.)-BE}dV=O. 37N

However, 6P, and SE are not independent variations,
and are related in the following way. In Appendix III
it is shown that

f P-3(E—E)dV = f (E—E)-sPdV,  (38)
where 8E.=0 in the present case. Introducing Eq. (36)

for 6P into this equation and rearranging terms we
obtain as the relation between 6P, and SE,

f (0Bt Py) 5BV = f (E—EJ)-5PudV. (39)

Using this equation, Eq. (37) for 6F becomes
2P,
sr=4 [ ( -2E) 3P.dV=0.

a

(40)

Since this equation must hold for all possible varia-
tions of P, in each volume element it follows that in
each volume element the coefficient of &P, is equal to
zero. That is, at equilibrium we find

Pu=auE- (5)

Field Equation and Boundary Conditions

(a) Field Equation

Using Green’s theorem, Eq. (2) for the electrostatic
potential ¥ (') can be rewritten as®

p—V-P o+ P,
N av —ds, (a
sr= [r—av+ [T ()

where P, is the component of P which is normal to the
surface element dS, the normal being directed from the
medium to the surface.

8 Compare reference 3, p. 57, Eq. (44).
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A differential equation for the electrostatic potential
¢(r') may be obtained from Eq. (41) by operating on
that equation with the operator V.2 The subscript '
indicates that V.. involves differentiation with respect
to the coordinates of r'. In this manner we obtain®

VA= —4x(p—V-P). (42)

Introducing the relation P=P,—a.Vy, we obtain the
desired differential equation.

(14 4ra,) Vo= —4n(p—V-P.). (43)

This equation reduces to Poisson’s equation, V%
=—4gp/D, when P, assumes its equilibrium value
—a, W (for 14+4ra,+4me, equals D, according to
Eq. (28a)).

(b) Boundary Condition at an Inler face

At any surface the boundary condition may be in-
ferred from Eq. (41) by available methods. It is found

to be!®
W oy
—+—=41F(G'+Pn1+.Pn2),

6n1 a‘nz

(44)

where 8¢/, and Pn, are the normal components of —E
and of P, respectively, along a normal to the surface,
the normal being directed from medium 1 to the surface.
The corresponding quantities in medium 2 are desig-
nated by the subscript 2. :

This equation can now be expressed in terms of the
normal component of P, in media 1 and 2, Pu,» and
Pu,ny, say. We first observe that the relation between
Pa and Pu.n is given by Eq. (45).

Pn1= Pe.n1+Pu.u1
(45)

3y
=—ag—+Pum
an1

where ac, is the value of @, in medium 1. An analogous
equation exists for medium 2. Introducing these equa-
tions into Eq. (44) we obtain the desired boundary
condition.

oy
anz

=47r(0'+Pu.u1+Pu.nz). (46)

9 Compare reference 3, p. 93. In the expression given there, p’
is to be replaced by 4w (p—V-P), o' by 4w (c+P,), and u is to be
set equal to zero in order to obtain Eq. (42) of the present paper
from Eq. (68) of that text, p. 96, using the method outlined there
for differentiating twice under the integral sign.

10 See reference 3, p. 97. To apply the method outlined there,
we first note that the last term of Eq. (41) of the present paper is
to be integrated over both sides of each surface. This term may,
therefore, be rewritten as

f {(o+Pm~+Pnp)dS/r—r'|},

where the integration is only over one side of the surface, either
side, and 1 and 2 refer to the two media which form the interface.
Equation (44) of the present paper may then be obtained by
replacing n of Eq. (70), reference 3, by 4r(c+ Pni+Pns). Their
o®/0n, 1s our — aY/an,. .

oy
(1+4mwe)—+ (1+4ma.s)
ony
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It is readily verified that this equation reduces to the
customary equilibrium boundary condition when P,
assumes its equilibrium value.

(¢) Boundary Condition for an Ion

The boundary conditions and approximations com-
monly used in equilibrium systems containing ions will
first be discussed, and illustrated with a derivation of
the free energy expression for an isolated ion and for
interacting ions. Analogous conditions and approxima-
tions will then be derived for nonequilibrium conditions.

Tons are usually treated as spherical conductors.
The boundary condition at the surface of a conductor
and, therefore, at the surface of each ion is, for an equi-
librium system:! ¢ is continuous at this surface, and
further

Ey)
D—4dS=4xe (47)
an
and
yY=constant in each ion, (48)

where ¢ is the ionic charge and 8y/d# is the component
of the electric field strength, E, along a normal to the
surface, directed from the dielectric medium to the
surface of the ion.

When the system contains an isolated ion in a dielec-
tric medium, it is readily verified that the expression
for ¥ which satisfies the appropriate differential equa-
tion in the dielectric (V&/=0), and which satisfies the
above boundary conditions and the boundary condition
that ¢ is zero at infinity, is given by Eq. (49).

¥(r)=¢/Dr,
¥(r)=¢/Da, r<a,

r>a
CS)

where g is the ionic radius. Calculating E, the negative
gradient of ¢, from this equation, the electrostatic free
energy for this ionic system can then be shown to be
given by Eq. (51), using Eq. (50) for the free energy of
an equilibrium system.

E-EdV
F= f ,
8xD

F=e¢/2aD.

(50)

(1)

The usual Born? expression for the free energy of
solvation of an ion is then obtained by subtracting from
this the value of F in a vacuum, which is ¢*/2¢ according
to Eq. (51) since the dielectric constant of a vacuum is
unity.

In the case of two ions which are separated by a dis-
tance, R, the usual equation used for the free energy is

e’ e’
F= t F—, (52)
2Da, 2Das; DR

U See reference 3, p. 146. Their 6&/9n is our —ay/an.
2 M. Born, Z. Physik 1, 45 (1920).

e1es
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where ¢, and e, are the ionic charges, and @, and e,

are the ionic radii. The first two terms are the solvation

terms of the isolated ions [compare Eq. (51)], while

the third term is, of course, the Coulombic free energy

of interaction of the ions. An expression for the electric

field strength E which yields Eq. (52) when introduced
into Eq. (50) is E= — W, where y is given by

(3} €2
y=—+—
Dr, Dr.

Y=Zconstant

r1>a1, 72203 (53)

ri<aer or ri<ay, (54)
where ¢ is the potential at a point distant r, and r,
from the centers of the ions. While this solution for y
does satisfy Laplace’s equation, V3=0, it will satisfy
the boundary conditions discussed earlier only if the
ions are essentially point charges. Clearly, for example,
¥ given by Eq. (53) has an essentially constant value
on the surface of the ion only when the ions are either
very small or far apart. In fact, only under these condi-
tions are Egs. (53) and (54) mutually consistent. The
approximation discussed here may be termed the point
charge approximation, or perhaps more appropriately,
the pseudo point charge approximation, since finite
radii of the ions are used in Eqgs. (53) and (54), and in
the integration of Eq. (50).

It is readily verified that Egs. (53) and (54) for ¢
satisfy the boundary condition given by Egs. (47) and
(48), when the point charge approximation is made:
&Y/dn is calculated from Eq. (53) and integrated over
the surface of one of the ions, ion 1 say. The contribution
of the second term in the right-hand side of Eq. (53)
to this surface integral is found to be zero when the ion
is essentially a point, while the contribution of the first
term to the integral is found to be 4we,/D. Adding these
it is seen that Eq. (47) is satisfied.

It follows from these considerations that the inter-
action free energy of two ions is e/ DR only for point
charges. .

In the treatment of ions in nonequilibrium dielectric
media the same type of boundary conditions will be
introduced. Integrating Eq. (46) over the surface of
the ¢th ion, and observing that in a conductor P,
and E, vanish, we obtain as the desired boundary
condition,

f (1+41ra,)gd5=41r(el+ f Pu,.dS) (55)
(48)

where a,, 8y/dn, and Pu, refer to the values of these
quantities on the dielectric side of the iondielectric
interface. It can be verified by using Eq. (28a) that
Eq. (55) reduces at once to Eq. (47), when Pu, assumes
its equilibrium value, —a.dy/dn.

For two (or more) ions interacting in a medium, the
point charge approximation is introduced by treating

Y =constant in each ion
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the surface of integration as a very small surface about
the center of each ion, as in the equilibrium case. The
values of dy¢/0n and Pu, at the surface are, as before,
those which the medium would have if it extended up
to the small surface.

APPENDIX L PROOF OF THE VALIDITY OF EQ. (18)
It will first be assumed and later proved that
p(r) Wt o(r)
[r—r|

|r—r|
E.(r)

=_f4r

Equation (18) can then readily be established as follows:
Using Eq. (56), Eq. (2) for the potential becomes,

1
-V —dV.
|r—r']

(56)

1 .
Y(r)= f(P—Ec/‘i‘rr) 'Vrde. (37)

Thus, the left-hand side of Eq. (18) is, upon changing
the variable there from r to v’ and introducing Eq. (57)
for y(r’),

1
Ihs= f f (P‘—Ec‘/%)-v,l—'ldef(r’)dV’
r—r

+ f f (P—E/te) v r_l

This equation may then be written as

Ihs= f (Pi—E.i/dr)-V { f ': i ?l

f —————-—dS’ IdV (59)

dVei(r)dS’. (58)
r|

It is seen from Eq. (19) for E. that — V, operating on
the term in brackets in Eq. (59) is simply E.’ so that
Eq. (59) becomes

ths=— [ (P-Ean)Eeav. (60
This is simply the rhs of Eq. (18).
It now remains to establish the validity of Eq. (56)

in order to complete the proof. Introducing the defini-
tion of E. [Eq. (19)] into the rhs of Eq. (56) we obtain

ths of Eq. (ss):-fv,lf e
|r—r"|

0'([") dS"l-V,. 1 v

[r—r|

[r—1"|
where in Eq. (19) the integration variable r’’ has been

(61)
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used instead of r'. Interchanging the order of integra-
tion in Eq. (61) we obtain

ths of Eq. (56)= f (PN (2,2)dV"

+ f (NI (", X)dS", (62)

1 1 1
I(r”,r')=—fV, Vs dV. (63)
4 [r—1"'| |r—r|

The integral I(x”,t) can be readily evaluated. The
points r=r' and r=r" are first enclosed by small
spheres of volume ¢, and Green’s theorem is then ap-
plied to the volume of integration r— e outside of these
spheres. We let r be infinite. Thus,

where

1
(e, r')—-—hmf Ir—r”l lr_r,IdV
=—hm[f -dS
4 0 [r—r" |r—r’|
- dV . (64)
f,.. PR

The second integral is zero in the volume 7—e since
V2(1/|r—1’'|) equals zero there. The first integral is
evaluated over every surface present. There is no con-
tribution from the various physical interfaces since the
integrand is continuous on each of these and its value
on one side of an interface thereby cancels its value
on the other side during the surface integration. It also
vanishes on the surface at infinity. On the surface of a
small sphere about r=r" it is readily shown that its
value tends to zero as e tends to zero. On the surface
of a small sphere about r=r’, its value can readily be
shown to tend to 4x/|r"—r'| as ¢ tends to zero. We
may conclude then that

I(r",)=1/|r"—r|. (65)

Introducing this into Eq. (62) it is seen that that
equation is the same as the left-hand side of Eq. (56).
The latter equation has therefore been established.

APPENDIX II. TO SHOW THAT
S P -(E—E)dV=fP-(E°—ES)dV (23)
Taking the gradient of Eq. (2) for ¢ and using Eq.
(19) for E. we obtain
1
E(r’)—Ec(r’)=—V,.fP(r) Ver—gd?.
r—

This is actually the contribution of the polarization to
the field strength, E. Similarly,

(66)

E(r)—ES(r)=—V, f Po(’)'v'lr——lr'—ldv' (67)
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Introducing Eq. (66) for E—E. into the left-hand side

9f Eq. (23), we obtain, using in the latter equation the
integration variable r’ instead of r,

lhs of Eq. (23)= -fP“(r’) Vi

4
Interchanging the order of integration, bringing
P°(r')- V.. into the integral over V, this becomes

r—r

P(r)-Vrl—l—,idV}dV'. (68)

- f P(r)-v,l f P°(r’)-V,r|r_+,'dV’}dV. (69)

According to Eq. (67) this is simply /P(r)-{E%(r)
—EJ (r)}dV, the right-hand side of Eq. (23).

APPENDIX III. TO SHOW THAT
JP-S3(E—E.)dV=f(E—E,)-8PdV (38)

Taking the variation of Eq. (66) it is seen that the

left-hand side of Eq. (38) is, using the integration
variable r’ instead of r in the latter equation,

- f P(r')-v,.{ f aP(r)-v,IT;lr—,ldV]dV'. (70)

Interchanging the order of integration, bringing
P(r')- vV, into the integral over V, this term becomes

- f aP(r)-v,{ f P(r’)-v,,ﬁdV']dV. (71)

With the aid of Eq. (66) this is seen to be 5P
-(E—E.)dV, the right-hand side of Eq. (38).

APPENDIX IV. ALTERNATIVE DERIVATION OF THE
FREE ENERGY EXPRESSION, EQ. (25)

A more intuitive but less rigorous derivation of
Eq. (25) for the free energy will be presented in this
Appendix.

The free energy of interaction of a dipole, whose
moment is @, with an electric field of strength E is®

(72)

If this dipole is an induced dipole, the work required
to produce it is'?

fs =B
E=0

where ao, the polarizability, is given by u=aoE. If the
electric field is now turned off but the dipole moment

is held fixed then there will remain a certain free
energy Fi, stored up in the dipole, given by the dif-

13 Reference 2, pp. 272-273.

—u-E.

u-dE= —y?/2ay, (73)

R. A. MARCUS

ference between Eqs. (72) and (73).
Fi=v¥/2ay. (74)

Consider now a system consisting of a distribution of
charges in a polarized medium. As before, the polariza-
tion will be composed of two types whose contribu-
tions are P.(r) and P,(r). The free energy of the
system as a whole may be régarded as the sum of the
free energies of each volume element, considered iso-
lated, and the free energy of interaction of all the
volume elements. As previously mentioned,? the polar-
ization can be treated as a dipole moment per unit
volume. Therefore, the free energy stored up per unit
volume in one of these isolated volume elements due to
the production of U-type and E-type polarization is

(Pu * Pu/zau)"*' (Pe' Pc/zae)- (75)

This follows from Eq. (74) by successively substituting
there the relations y=P,dV and u=P 4V and, respec-
tively, ao=a.dV and ap=a.dV. The relations between
the a’s follow from their definitions. For example, we
have ao=u/E=P dV/E= (P./E)dV=c.dV.

The other contributions to the free energy of the
system as a whole arise from various interactions. For
example, the free energy of interaction of the E-type
polarization of a volume element dV with the ‘field
arising from the U-type polarization of the entire
system (field strength E,, say), with that arising from
all the charges (strength E.), and finally with that
arising from the E-type polarization of the entire system
(strength E,, say) is seen from Eq. (72) to be

—P, (E.+E~+E,)dV. (76)

Similarly, the free energy of interaction of the U-type
polarization of the volume element with the fields
E,E.,andE,is

—P.- (Bu+EAE)dV. )

Finally, there is the free energy of interaction of the
charges with each other. This term is the same as the
corresponding quantity for charges in a vacuum, since
the terms describing the interaction of the charges with
the polarization have already been considered. An
examination of the usual expression' for the interac-
tion of charges in a vacuum, and the definition of E,
given in Eq. (19), shows that this term is, per unit
volume,

E.-E./8r. (78)

The expression for the electrostatic free energy of the
system is then obtained by summing all these terms
and integrating over the entire volume of the system.
In performing the integration several of these terms
should be divided by a factor of two; otherwise, certain
interactions would be counted twice. These terms are

- f (P,-E,+P.-Eo+P,-EutP.-E)iV. (79)

1 Reference 2, p. 275.
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~ We thus obtain The electric field strength E is simply the sum
(E+E.,+E,). Introducing this and the relations,
P f [Ecﬂ PSP P (E B E.) - P,=aE, P=P+P,, into Eq. (80) we obtain
8 20y 20, \ 2 2 E2 P2 P-E. P.E
F= f { } av
8 2a. 2 2

Eu Eg )
) 2 2 which is identical with Eq. (25).



