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INTRODUCTION

Nonlinear dynamics has been the subject of intense study in
recent years. In this review article, we present a summary of our
recent work in this field, in which nonlinear dynamics is applied
to problems involving molecular behavior. TFour aspects are
described: (1) semiclassical methods for the calculation of bound-
state eigenvalues, (2) classical spectra and correlation functions
in the quasiperiodic and "chaotic" regimes, (3) '"chaotic" behavior
in quantum mechanics, and (4) applications to collisional and laser
interactions.

I. SEMICLASSICAL METHODS FOR THE CALCULATION OF BOUND-STATE
EIGENVALUES

The calculation of bound-state properties using semiclassical
concepts has been of interest for many years.1'3 This problem has
a well-known WKB solution for systems permitting separation of vari-
ables. Recently, several methods of calculating eigenvalues for non-
separable systems that are quasiperiodic have been presented. The
earliest method" for systems with smooth potentials involves the use
of classical trajectories for the calculation of the phase space
path integrals ("actions'") used to quantize the system and hence
find the semiclassical eigenvalues.

The studies involved systems with incommensurate f:'r:equencies“"""c
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and then systems with a 1:1 zeroth order commensurability.%d Recently
we have been able to extend the applicability of this method to
systems that have Fermi resonance“® and to systems with more degrees
of freedom.*f The system that exhibits Fermi resonance has frequen-
cies of the unperturbed problem in a ratio of 1:2 and also a pertur-
bation term that couples the two degrees of freedom resonantly. The
Hamiltonian which we used in this calculation is

H = %{pxz + p - + w 2x2 + wyzyz) + }\(xy2 - BXB) . (1-1)

v X
A typical trajectory of Hamiltonian (1) is shown in Fig. 1. Intro-

ducing a curvilinear Poincaré surface of section (in parabolic coordi-
nates), we were able to calculate the eigenvalues semiclassically.

6

Y AXIS

=2 =4 O i 2 3 49
X AXIS

Fig. 1. A quasiperiodic trajectory for Hamiltonian (I-1) which has
a Fermi resonance.
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The path used in our calculation is shown in Fig. 2 (£ and n are

parabolic coordinates). An example of a py vs. £ Poincaré surface
of section for n = constant is shown in Fig. 3. The quantum condi-

tions for this type of trajectory were (I = 1)

T = §pgdg = 2n(ny + %) (I-2a)
and
1
J = ¢pdn = 2n(ny +3) . (I-2b)
y

Fig. 2. Path used for quantization of the trajectory in Fig. 1.
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Fig. 3. An example of a Pg’ £ surface of section (n = constant,
Pn > 0).

We found usually very good agreement between quantum and semiclassi-
cal eigenvalues. Since our method depends on having quasiperiodic
motion, we were not able to calculate eigenvalues for all of the
bound states for this Hamiltonian. For example, at E = 6 in our
units, the trajectories became predominantly "chaotic'", as shown in
Fig. 4. An interesting feature of Hamiltonian (1) is that for B = -2,
the Hamiltonian-Jacobi equation is separable in parabolic coordi-
nates and hence cannot exhibit chaotic motion. A recently devéloped
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Fig. 4. A chaotic trajectory of Hamiltonian (I-1).

method® for the chaotic limit was applied to this model for the
separable case, and it was found that for a large range of %, y
initial conditions, the prediction is incorrect.

A method for calculating eigenvalues for systems with more de-
: uf 4 ;

grees of freedom has also been developed. This method is an ex-
tension of the Poincaré surface of section method. Now, we use a
surface of section in 2N-dimensional phase space, with a small but
finite width in several coordinate directions. This surface of
section with the appropriate path integrals is shown in Fig. 5. A
surface of section calculated this way for the Hamiltonian
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Fig. 5. Diagram showing the three paths for quantization in a
system of three coupled oscillators (Hamiltonian (I-3)).

2 2 2 2 2 22 2 2
+p "+ P, + W, X + wy v+ w, 2 )

(1-3)
+ ;\(xy2 - nx3) + A(yz2 - ny3)

is shown in Fig. 6. Upon calculation of the three path integrals

Jx = §pxdx, Jy = prdy, and Jz = §pzdz, the values of Ji's can be
interpolated for Jy = Zw'(ni + 7), and the energy eigenvalues can be
obtained. The agreement with the quantum mechanical eigenvalues was
excellent.

In studies of unimolecular reaction rate theory, particularly
for comparison with classical trajectory results, it is useful to
have a method of calculating the number and density of states for
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Fig. 6. A Px, % surface of section for Hamiltonian ([-3).

nonseparable systems.® The "classical" number of stares NcQ(E) for
a system of n-degrees of freedom is simply given by '

(r}

_HT)

where p and q are the n-dimensional vectors of momentum and conjugate
coordinate, respectively. 6 is the (unit) step-function. (The
density of states is just dN.,{(E)/dE.) The integral can be evalu-
ated quite rapidly using efficient Monte Carlo procedures. TIn Fig.

7, the smooth N.,(E) is compared with the corresponding e¢xact guantal
result for the case of a model Hamiltonian with two degrees of free-
dom. The agreement is very good. An analogous problem (Sinai
Billiard Problem) has been recently solved by Hurrylb with similar

agreement.
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Fig. 7. A plot of the classical and quantum density of states for
the Hénon-Heiles Hamiltonian.
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II. SPECTRA AND CORRELATION FUNCTIONS

In the quasiperiodic regime, we have demonstrated®>7>8 that the
semiclassical (calculated from trajectories) and quantum (calculated
from "exact" wavefunctions) power spectra are directly comparable in
both frequency and intensity. More recently, this method of genera-
ting a spectrum from classical trajectories has also been used by
Hansel® and Powell, et al.lo0

Briefly, we obtained the classical autocorrelation function,
C(t), by averaging (e.g., the correlation eq. of the dipole) the ap-
propriate ensemble. The classical spectrum, I(w) is then given
by the Fourier transform of the autocorrelation function

I(w) = —12? fw<u'u(t)>eiwtdt . (1I1-1)

Recently, another spectral method has been introduced by Heller.ll

The justification of the use of classical trajectories to obtain
semiclassical spectra will be restated now. The quantum power spec-—
trum is

1w = Jl<k|uln>|%8 - u ) (11-2)
k

wvhere we have assumed only state |n> is initially populated and
Wkn =-% (Ey - E,), or the transition frequency. Introducing the
semiclassical wavefunction

arln> = 2TV (11-3)

the matrix element for the dipole operator for quasiperiodic motion
becomes

<k|u|n> = fée_znlkwu(g,y)eznlnwdw . (11-4)

Performing the operation gives

Zni(n—k)wdw (II—S)

<xk|p|n> = Iéu(Jn,w)e

which 1s the (n—k)th Fourier component of the dipole moment u. Intro-
ducing eq. (II-5) into eq. (II-2) results in

1w = ] lu m]? 86 - u ) (11-6)
S



142 D. W.NOID ET AL.

where wg(n) is the classical frequency component on the torus (gwkn).
ug is the Fourier coefficient for the dipole operator dependent on
the a%tion variable, J, Eq. (II-6) is exactly the result previously
used.

A typical quasiperiodic spectrum is shown in Fig. 8 and compari-
son of semiclassical and quantum frequencies for various states is
given in Table 2 of Ref. 7 for a three-oscillator system. A compari-
son of both frequency and intensity is shown in Fig. 9 for a single
Morse oscillator.® 1In Fig. 9, it is clear that not only the frequen-
cies and intensities of the "allowed" transitions are predicted, but
also those of the overtones are correctly predicted with appropriate
interpolation.8

At higher energies, the motion becomes chaotic and the spectrum
is composed of a broad distribution of sharp peaks.5’7 A micro-
canonically averaged spectrum forms a broad envelope of the single
trajectory spectrum and is shown in Fig. 10. There have not been
definitive comparisons of semiclassical and quantal stochastic
spectra,6 and we are currently studying the comparison,

In contrast to the above correlation functions, the mode energy
correlation function (i.e., <EnEn(t)> where E is the energy in the
nth normal mode) is important not to molecular spectra, but to reac-
tion rate theory.12 Some chemically interesting experiments involve
the excitation of a given bond or mode, for example in infrared multi-
photon absorption, with subsequent decay of the excitation energy
into other modes.

We have numerically evaluated several different correlation
functions using microcanonical averages.12 As expected, the corre-
lation function in the quasiperiodic regime is oscillatory and is
shown in Fig. 1ll.

In the chaotic regime, it has been previously postulated13 that
the correlation function will behave exponentially. The correlation
function in the chaotic regime has, in addition to the usual property
present in all regimes given by

(o) = <a.a(o)> = <a®> , (11-7)
also the property that

c(=) = <a-a> = <a><a(x)> = <a>2 . (11-8)

In general, <a2> # <a>2 and c(t) will decay to some value. From

the present system, we expect12 ¢ g n3/4 in the chaotic regime, which
is consistent with the results shown in Fig. 12. We have modeled the



143

INTRAMOLECULAR DYNAMICS

*Kxo3oafeay o978utrs © Jo eajoods orporaadrsenb y  *g 8131

o€ 0¢ o'l 00

[

00

(ALY

LAY

(M1



144 D.W. NOID ET AL.

0.4 SEMICLASSICAL

I(w)

0.2

o’o 1 I \ |

-
-
-
-
-
=
-t
-
-

044 QUANTUM

I{(w)

0.2 -

0.0

1 I 1 1

1 1 i 1 L 1

0.0 1.0

T T U
2.

Fig. 9. Quantum and semiclassical spectrum for a Morse oscillator.

0
w



145

INTRAMOLECULAR DYNAMICS

-autdax D130BYD BYy3 103 Inq ‘g *811 ut sy -Q1 °*31a

m

o't 0t ol 00

- 10

EA

(M1



146 D.W.NOIDETAL.

1.00 -
o(T) W\JW\/WVMN\M/V
0.95
0.90 T T T L
0.0 50.0 100.0

TIME

150.0
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Fig. 12. Correlation function for chaotic motion.
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memory functions of Figs. 11 and 12, with the result in the chaotic
regime being

-dt

c(t) = a + (b cos w t + c)e + f cos w,t , (11-9)
and in the quasiperiodic regime
c(t) = a' + b' cos w,t + £' cos Wyt (11-10)

with a corresponding result in the memory function.!?2 The correlation
functions of molecular systems are currently under investigation.I“

IIT. CHAOTIC BEHAVIOR IN QUANTUM MECHANICS

The classical motion of nonlinearly coupled oscillators tends to
be predominantly "quasiperiodic", or "regular', at low energies, the
trajectories being confined to N-dimensional tori in phase space. At
higher energies, the motion can become predominantly '"chaotic" or
"irregular",l5 displaying great sensitivity to small changes in in-
accessible phase space. In a study of the quantum mechanical wave-
functions of a system with (2:1) Fermi resonance, we noted an
analogous behavior; namely, in the quasiperiodic regime, the wave-
functions tended to be localized in well-defined regions of configu-
ration space. On the other hand, in the chaotic regime, the wave-
functions spread over most of the allowed configuration space. The
wavefunction for the trajectory in Fig. 1 is shown in Fig. 13.%&48
The chaotic tyEe wavefunction for the trajectory in Fig. 4 is shown
in Fig. 14.%€,"48

Another well-~known suggestion of quantum chaotic behavior is
from Percivall® and Pomphrey17 and is related to the second differ-
ences. Second differences of eigenvalues were calculated from

AZEi = E (A + 63) = 2EQ), + E; (A - 8)) (ITI-1)

using a 62 = 0.001. The Ain's are divided by E; for normalization.
The results are plotted in Fig. 15. Apart from two distinctly large
values of AZEi's not in the figure and discussed below, the second
differences seem to form distinct families. The family of smaller
AZEi's tended to belong to those states with high 2 quantum numbers
(internal angular momentum like quantum numbers”d), whereas the
family with the larger Ain's belong to states with low 2. In this
study, we found that only the cases of avoided crossing or crossing
of eigenvalues in the E()) vs. X plots did extremely large second
differences result, and so avoided crossings provide a mechanism for
the origin of such large second differences.®
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-In a recent manuscript,18 we illustrated the avoided crossing
behavior for a system of three coupled anharmonic oscillators with
a Hamiltonian

1 2 2 2 2.2 22 2 2
= = +
H Z(Px py +pz +mxx +wyy +wzz)
2 2 2 3 3
+ K122xy + K133xz + K233yz + Klllx + Kypo¥ (111-2)
2.2 2.2
T Rppgpx Y ¥ Kyp3gy 2

In Figs. 16 and 17, the eigenvalues E are plotted versus Kjo9
for two ranges of energy. In the lower range, Fig. 16, no avoided
crossings are observed. Above a certain energy, there are an in-
creasing number of overlapping avoided crossings, as in Fig. 17.
These figures were drawn through points at -Kjp2 = 0.10, 0.11, ...,
0.16, and hidden symmetries were assumed absent. In that case, there
are no curve crossings, since curve crossings would then correspond
to a conical intersection in an energy versus multidimensional para-
meter space, and such crossings would be of "measure zero'". Over-
lapping avoided crossings, we have suggested,19 will produce a
statistical behavior in the wavefunctions for the quantum mechani-
cally chaotic regime.

Finally, we would like to comment on the relation of the idea
of avoided crossings to some other work in the literature related
to quantum chaotic behavior, and also to provide preliminary evidence
for the expectation that as h + 0, overlapping avoided crossings cor-
respond to classical chaos. We have seen that avoided crossings
produce large second differences in plots of eigenvalues versus per-
turbation parameter. Pomphrey studied second differences for the
Hénon-Heiles potential, using a value of h smaller than ours, and
found many more cases of large second differences. In quantum
mechanical perturbation theory calculation,20a we also observed many
more "zeroth order crossings" (which yield avoided crossings upon use
of degenerate perturbation theory near the crossing) for Pomphrey's
h than for ours. Similarly, in classical perturbation theory calcu-
lations for the Barbanis potential, we have found, using a grid of
action variables, an onset of '"zeroth order crossings' roughly at an
energy where classical '"chaos" begins.

Stratt, Handy and Miller?! in their investigation of the Barbanis
potential studied nodal patterns of quantum mechanical wavefunctions
and found for some states major changes of nodal patterns. We
believe, and are currently testing this possibility, that these
changes are each associated with avoided crossings. In this study,
it will be interesting to see whether the latter are isolated
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avoided crossings or overlapping ones. (Only the latter may prove
to be associated with "chaotic" behavior.1?)

Nordholm and Rice?? studied the wavefunctions Y for the Hénon-
Heiles potential and examined their projections on those of the un-
perturbed (harmonic oscillator) basis set. When a y was substantiall
distributed over a number of the latter states, it was termed ''global
and was termed local otherwise. So defined, a state can appear to
be global not only when its wavefunction is "statistical" (sometimes
labeled 'stochastic', 'ergodic', 'chaotic'), but also when its shape
is considerably distorted from the corresponding one of the unper-
turbed system., Indeed we were actually able to find classically the
invariant tori, each of which corresponded individually semiclassi-
cally to many of the quantum states that had been termed '"global",
so that all of these particular global states certainly are of the
second case, i.e. nonchaotic. Even though globality is, therefore,
not necessarily, or even primarily, due to chaotic behavior, it is
very interesting in its own right. It provides information on the
nature of the wavefunction relative to that of some unperturbed
system. Because of the basis set dependence of global vs. local
states, similar calculations were made using natural orbitals as the
basis set.2? The comparison is still, to be sure, a coordinate de-

pendent one.

IV. APPLICATIONS OF QUASIPERIODIC AND CHAOTIC BEHAVIOR

Scattering Processes

Scattering resonances receive much attention in the quantum
dynamics literature and can contribute significantly to the total
cross section of a scattering process. They are also an important
source of disagreement between quasiclassical and fully quantum
mechanical scattering calculations. A standard method of locating
these resonances has been quantum mechanical scattering calcula-
tions.23 However, when the resonances are very narrow (as in the
following system reviewed in this paper), a quantum calculation faces
a time-consuming and difficult task in locating each one. Alterna-
tively, as the dimensionality of the problem increases, the quantum
mechanical solution becomes correspondingly more difficult. Moti-
vated bz this difficulty, the variational approach (stabilization
method) 2% was used by Eastes and Marcus?® to locate resonances. They
compared this variational calculation to an exact quantum mechanical

calculation.

The compound state resonance studied arose from the coupling of
a Morse interaction potential, which monotonically goes to the dis-
sociation 1limit from the bottom of the well, to a harmonic oscillator
A new semiclassical location of resonance energies26 was recently
made, which utilizes the Poincaré surface of section quantization of
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the classical action integral. The eigentrajectories (trajectories
with the correctly quantized actions) then correspond to quantum
quasibound states; therefore, their energies correspond to the reso-
nance energies.

The model Hamiltonian used was

H = pxz + pyz +y% + pe @ (*xY) _ opema(x-y)/2 (Iv-1)

m

which corresponds to a collision between a harmonic oscillator and a
particle with a Morse interaction potential, where D is the depth,

m is a mass ratio, and o is the steepness of the potential between
the colliding partners. The parameters are the same as those in
Ref. 25.

The Hamiltonian (1) will support no bound states along the exit
channel (essentially the x coordinate) for energies greater than D,
the dissociation limit of the Morse oscillator. However, even at
such energies, some classically bound states of the entire system
can be located, because of their quasiperiodic motion. An example is
the trajectory in Fig. 18. They were then quantized using the Poin-
caré surface of section semiclassical method described earlier.
Excellent agreement for the positions of . the resonances was found
between the semiclassical and full quantum results. Where no scat-
tering resonances were found in Ref. 25, the trajectories did not
produce quasiperiodic surfaces of section, but instead drifted,
leading to escape of the particle. Such a chaotic type of unbound
trajectory is shown in Fig. 19.

The existence of these two radically different types of motion
(quasiperiodic and chaotic) led us to believe that there would be a
change in the behavior of the inelastic cross section when the in-
ternal vibrational motion of one of the scattering partners reached
the stochastic regime. One example with no observed effect has been
reported.27 We have also investigated this problem with a model
consisting of a vibrator with two degrees of freedom undergoing a
collinear collision with an atom.28 The Hamiltonian for a system
which exhibits more delocalized motion in the chaotic regime than

that of Ref. 27 is

H = Hvib + Hp (1IV-2a)
where
B =p24p 2+y?+Dfexp - 2v(x-y) -2 exp ~y(x-y)) (1V-2b
vib X y :
m
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A trajectory for the molecular part of Hamiltonian (Iv-2b), when
the atom and molecule are far apart, is shown in Fig. 20 for the
quasiperiodic regime and in the chaotic regime in Fig. 21. In order
to investigate the scattering process, we calculated the average of
the square of the energy transfer. The translational and "x-mode"
vibrational energies were kept constant, and the average was calcu-
lated with 1000 trajectories over the vibrational phases. Fig. 22
shows the results as a function of total vibrational energy of the
molecule Ey at two different translational energies. Fig. 22 shows
that when the vibrational motion changes to chaotic (above E » -2.5),
there is a difference in the behavior of the energy transfer proba-
bility. More detailed studies of this phenomenon are currently
underway.
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Fig. 20. Quasiperiodic trajectory for Hamiltonian (IV-2b) with
E = -3.5.
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Infrared Multiphoton Dissociation

There has been considerable interest in infrared multiphoton
dissociation processes during the past few years.zg‘37 Particularly
interesting experimental results have recently been obtained in which
two infrared lasers of different powers and frequencies have been
used to dissociate polyatomic molecules.3? Their results indicate
that polyatomic molecules may be dissociated much more easily (lower
powers) by the use of two lasers than with just one.3% These experi-
ments also demonstrate that isotopic selectivity is significantly
enhanced and that two-laser multiphoton dissociation may be more
ideally suited for laser isotope separation.

We investigated the effect of one and two infrared lasers inter-
acting with a diatomic molecule,33:3% and we examined in detail the
probability of dissociation for cases when the laser powers are equal
and when one has a much higher power than the other. Although a model
Hamiltonian was used to represent the diatomic molecule and its
interaction with the lasers, the conclusions are analogous to those
found experimentally for polyatomic molecules: the diatomic molecule
was dissociated much more easily by using two laser frequencies than
with just one. Recent results from nonlinear mechanics suggest that
this two-laser effect may be due to a transition from quasiperiodic
motion to a chaotic type motion.

Similar calculations were performed on a more realistic Hamil-
tonian where the parameters used correspond to the diatomic molecule
being hydrogen fluoride.3% It was found that in the two-laser case,
a different type of dynamics occurs as opposed to the one-laser. An
example of the one-laser energy adsorption as a function of time is
shown in Fig. 23. The corresponding plot for the two-laser case is
shown in Fig. 24. An explanation of this process may be the result
of resonance overlap caused by the two-laser terms. The process has
been postulated by Ford!S and Chirikov3® to be a source of stochastic
instability in nonlinear mechanics. When the two resonant widths,
Aw, associated with the two frequencies wy and w, are large, and
when the wsy is red-shifted, chaotic behavior and dissociation occur.

In another study, we modeled the IR multiphoton process for a
model of a triatomic molecule.3? The maximum excitation energy is
shown in Fig., 25 as a function of wy for Ey = 0.05, 0.10 and calcu-
lated both quantally and classically. In both cases, the agreement
between the classical and quantal excitation is excellent. The only
differences between the two calculations are (i) the quantal excita-
tion falls more abruptly on the red side of the peak; (ii) the quantal
threshold for dissociation is slightly higher than the classical.
These effects may reflect the greater difficulty of exciting the dis-
crete quantum levels, especially in the earlier states of excitation.
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Franck-Condon Factors

The Franck-Condon factor"? for transitions between different
electronic states has recently been expressed in terms of the Wigner
distribution function.*! The various cases for quasiperiodic and
stochastic type classical motion were considered."? It was found
that the Wigner function is represented by very different types of
functions in the quasiperiodic regimes.'t3,4"

It was shown that in the classical limit, evaluation of the
Franck-Condon factor requires solution of the dynamics if the
vibrational state is quasiperiodic; in the chaotic regime, the
Franck-Condon factor depends only on the global structure of the
interaction surface.
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